
Math 454 Handout 3

On Fourier Transform

The Fourier Transform is the analogue of the Fourier series on an infinite domain.

Let’s consider first a finite domain [−L,L] with periodic boundary condition. Remem-

ber: since {e−inπx
L }n=∞n=−∞ solves the Sturm-Liouville problem φ′′+λφ = 0 with 2L-periodic

boundary conditions, they also form an orthogonal basis for 2L-periodic functions. Thus,

given smooth function f(x), it’s Fourier series, in the complex exponential form, is

f(x) =
∞∑

n=−∞

cne
−inπx
L (1)

with coefficients given by

cn =

∫ L
−L f(x)e

−inπx
L dx∫ L

−L |e
inπ
L |2 dx

=
1

2L

∫ L

−L
f(x)e

inπx
L dx (2)

Then, we formally let L → ∞ and consider S-L problem φ′′(x) + λφ(x) = 0 for x ∈
(−∞,∞). Then, the solution family consists of λ = ω2 and φλ(x) = {e−iωx} for all

ω ∈ (−∞,∞) — thus it’s called a continuous spectrum. The Fourier series in (1) become

the Fourier integral (just like the limit of Riemann sum becomes an integral)

f(x) =

∫ ∞
−∞

c(ω)e−iωx dω, (3)

where the counterpart of (2) is

c(ω) =
1

2π

∫ ∞
−∞

f(x)eiωx dx (4)

Definition. Transforms between f(x) and c(ω) in (3), (4) are called the Fourier

transform pair. In particular, c(ω), more often than not denoted as f̂(ω), is the Fourier

transform of f(x). And, f(x) is the inverse Fourier transform of f̂(ω).

f(x)← F.T.→ f̂(ω)

• Application of Fourier transform in solving PDEs on infinite domains.

Consider the 1D heat equation

ut = kuxx u(x, 0) = g(x),
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for x ∈ (−∞,∞). The idea here is to apply FT (4) on each term of the equation and

arrive at an ODE of f̂(ω). Solve for f̂(x) with ease and finally invert it back to f(x)

using the inverse FT (3).

So, first, FT the original PDE

ût = kûxx

(Note that k is a constant and thus can be factored out.) Now, since FT only involves x

and ω, it doesn’t affect the time derivative on the LSH

ut ← F.T.→ ∂

∂t
û(ω, t).

But it does affect the RHS.

Differentiation in x-domain amounts to multiplication in ω-domain

In fact, differentiate (3) w.r.t. x

d

dx
f(x) =

∫ ∞
−∞

c(ω)
∂

∂x
e−iωx dω =

∫ ∞
−∞

c(ω)(−iω)e−iωx dω

and therefore

f ′(x)← F.T.→ −iωf̂(ω)

Do it one more time

f ′′(x)← F.T.→ −ω2f̂(ω).

Now, the original PDE, after F.T., becomes

∂

∂t
û(ω, t) = −kω2û(ω, t)

which ONLY involves t derivative. In other words, for any fixed ω, the above equation

is an ODE and we can simply integrate it to obtain

û(t, ω) = û(0, ω)e−kω
2t = ĝ(ω)e−kω

2t.

Here, û(0, ω) simply comes from the F.T. of the original initial condition u(x, 0) = g(x).

Finally, apply the inverse F.T. (3) on û to get

u(x, t) =
1

2π

∫ ∞
−∞

ĝ(ω)e−kω
2te−iωx dω. (5)

• Fourier transform and convolution.
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The solution formula (5) can be inconvenient sometimes since it involves imaginary

numbers and TWO integrations (one for ĝ and one for u). To simplify this, we use

another very important property of F.T.

Multiplication in ω-domain amounts to convolution in x-domain.

More precisely, if the F.T. of f(x) and g(x) are f̂(ω) and ĝ(ω), then the inverse F.T. of

f̂(ω)ĝ(ω) is

1

2π
f ∗ g(x) =

1

2π

∫ ∞
−∞

f(x0)g(x− x0)dx0 ← F.T.→ f̂(ω)ĝ(ω).

(Notice the prefactor 1
2π

.) Apply this property to (5), we see that u(x, t) equals the

inverse F.T. of ĝ(ω)e−kω
2t, which is

u(x, t) =
1

2π
g(x) ∗G(x, t) =

1

2π

∫ ∞
−∞

g(x0)G(x− x0, t) dx0 (6)

where G(x, t) is the inverse F.T. of e−kω
2t. Classical calculation shows that

G(x, t) =

√
π

kt
e−

x2

4kt .

Final remark: the form of (6) reminds us of the Green’s function. In fact, G(x, t) is

the Green’s function for the heat equation, satisfying

Gt = kGxx, G(x, 0+) = δ(x).
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