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Abstract. With solid-wall boundary condition and ill-prepared initial data, we prove the singu-
lar limits and convergence rates of compressible Euler and rotating shallow water equations towards
their incompressible counterparts. A major issue is that fast acoustic waves contribute to the slow
vortical dynamics at order one and do not damp in any strong sense. Upon averaging in time, how-
ever, such a contribution vanishes at the order of the singular parameters (i.e., Mach/Froude/Rossby
numbers). In particular, convergence rates of the compressible dynamics, when projected onto the
slow manifold, are estimated explicitly in terms of the singular parameters and Sobolev norms of the
initial data. The structural condition of a vorticity equation plays a key role in such an estimation
as well as in proving singular-parameter-independent life spans of classical solutions.
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1. Introduction. Hyperbolic partial differential equations (PDEs) of multiscale
nature have seen rapidly growing applications in recent years. We conduct a theoreti-
cal investigation in this paper concerning two prototypical examples: the compressible
Euler equations with low Mach number and the rotating shallow water (RSW) equa-
tions with low Froude and Rossby numbers. All three numbers depend on physical
models. Here, we study the scaling regime where they are small and thus give rise to
multiscale dynamics. The settings of these two systems are given below.

The spatial domain Ω ⊂ RD (D = 2 or 3) is bounded and connected, and its
boundary ∂Ω is smooth and connected. Prescribe the solid-wall boundary condition
on the velocity field u,

u · n∣∣
∂Ω

= 0.

Here and below, n = n(x) denotes the outward normal at x ∈ ∂Ω.

Both Euler and RSW equations can be described in terms of total density ρ̂ and
velocity u, ⎧⎨⎩

∂tρ̂+∇·(ρ̂u) = 0,

ρ̂(∂tu+ u·∇u) + ∇p(ρ̂)
ε2

=
1

ε
F,

where small parameter ε� 1 brings in fast oscillations. The equation of state is

pressure = p(ρ̂) with p(·) ∈ C∞, p(1) = 0, p′(1) = 1.
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SINGULAR LIMITS AND CONVERGENCE RATES 1051

The differences between these two systems are the following. For Euler equations,
we consider two or three dimensions and external force F = 0. For RSW equations,
only dimension D = 2 (on the horizontal plane) is considered and external forcing is
due to the Coriolis effect1F = −u⊥. Also, ρ̂ is understood as the total thickness of
water/air in the vertical direction.

Without loss of generality, impose

1

|Ω|
∫
Ω

ρ̂ dx = 1

since
∫
Ω ρ̂ dx is conserved by both systems.

Having ρ̂ ≈ 1 as the total density, define the density perturbation

(1.1) ρ :=
ρ̂− 1

ε
,

and rewrite the above system for the unknown pair (ρ, u),⎧⎪⎪⎨⎪⎪⎩
∂tρ+∇·(ρu) + ∇·u

ε
= 0,

∂tu+ u·∇u+ p′(1 + ερ)

1 + ερ

∇ρ
ε

=
1

ε
F,

(1.2)

u · n∣∣
∂Ω

= 0,

∫
Ω

ρ dx = 0.(1.3)

Theorem 1.1 (Euler equations). Consider the initial-boundary value problem
of the D-dimensional compressible Euler equations (1.2) with F = 0 and constraints
(1.3) subject to initial data (ρ0, u0) ∈ Hm(Ω) with m > D

2 + 4. Assume (ρ0, u0) is
compatible with the boundary condition “∂kt u0” · n∣∣

∂Ω
= 0 for k < m—consult Remark

1.2.
Then, upon Helmholtz decomposition of the solution into incompressible and po-

tential parts (detailed definition given in section 2), (ρ, u) = (ρP , uP )+(ρQ, uQ), there
exist general constants C, T dependent only on m,Ω, p(·), and ‖(ρ0, u0)‖Hm so that

(1.4) ρP ≡ 0, max
0≤t≤T

‖uP − u‖Hm−3(Ω) ≤ Cε,

where u solves the incompressible Euler equations{
∂tu+ u·∇u+∇q = 0,

∇·u = 0,
(1.5)

u · n∣∣
∂Ω

= 0, u0 = uP0 .

Moreover, the fast component of the solution vanishes at order O(ε) in the sense
of time averaging:

(1.6)

∥∥∥∥1t
∫ t

0

(ρQ, uQ)dτ

∥∥∥∥
Hm(Ω)

≤ Cε

(
1 +

1

t

)
for t ∈ (0, T ].

1In this article,
( ·
·
)⊥

denotes a left multiplication by
(
0 −1
1 0

)
, e.g.,

( u1
u2

)⊥
and, in two dimensions,

∇⊥.
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Proof (sketch of proof). The key ingredients are the following. For (1.6), see
Theorem 2.5, which is based on Lemmas 2.4 and 2.6. For (1.4) and (1.5), see Theorem
3.1, which is based on Lemmas 3.2 and 3.3.

Remark 1.2. In the compatibility condition, “∂kt u0” is obtained from expressing
∂kt u in terms of spatial derivatives via (1.2) and then substituting (ρ0, u0) into the
expression. This condition is crucial in obtaining Hm(Ω) regularity in short time,
although well-posedness is not the issue of focus in our result. We also note in passing
that it is proved in [19] that this condition is indeed necessary for the well-posedness
of certain linear hyperbolic PDEs.

We also remark that, in this theorem and the one below, the (ρP , uP ) component
is slow, as its time derivative can be bounded independent of ε. On the other hand,
the fast component (ρQ, uQ) has a time derivative of order O(ε−1).

Theorem 1.3 (RSW equations). Consider the RSW equations (1.2) with F =
−u⊥ and constraints (1.3) in domain Ω ⊂ R2. Under the same assumptions as
in Theorem 1.1, there exists a projection of the solution onto slow and fast manifolds
(detailed definition given in section 5), (ρ, u) = (ρP , uP )+(ρQ, uQ), so that for general
constants C, T dependent only on m,Ω, p(·), and ‖(ρ0, u0)‖Hm ,

(1.7) (ρQ, uQ) vanishes at order O(ε) in the same sense as (1.6)

and

(1.8) max
0≤t≤T

‖(ρP , uP )− (ρ, u)‖Hm−3(Ω) ≤ Cε.

Here, (ρ, u) is uniquely determined from

(1.9) ρ = (1−Δ)−1
QGθ, u = ∇⊥(1−Δ)−1

QGθ,

with θ solving the quasi-geostrophic equations

(1.10)
∂tθ + u·∇θ = 0,

θ0 = ρ0 −∇⊥ · u0.

Here, the definition of (1−Δ)−1
QG is given in section 5. It basically enforces a certain

type of boundary condition on (1−Δ)−1, suited for the quasi-geostrophic equations.
Proof (sketch of proof). Section 5 is devoted to RSW equations. The key ingredi-

ents are the following. For (1.7), see Theorem 5.3, which is based on Lemmas 5.2 and
2.6. For (1.8)–(1.10), see Theorem 5.4, which is based on Lemmas 5.5 and 5.6.

We note in passing that local-in-time existence of classical solutions to the incom-
pressible Euler equations (1.5) (resp., the quasi-geostrophic equations (1.9), (1.10))
can be proved following techniques of [14] (resp., [4]). The boundary conditions in
our systems do not require extra treatment as far as solution regularity is concerned.

The above theorems confirm that, with solid-wall boundary condition, the com-
pressible fluid dynamics are approximated by their incompressible counterparts upon
time averaging. Such an approximation is therefore in some sense of weak convergence.
One of its theoretical implications is regarding the transport of passive scalars.2

Corollary 1.4. Let s(t, x) solve the linear transport equation

∂ts+ u·∇s = 0,

2For simplicity, we focus only on advective form (6.1). The conservative form ∂ts+ ∇·(us) = 0
can be treated similarly.
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SINGULAR LIMITS AND CONVERGENCE RATES 1053

subject to initial data s0(·) ∈ Hm(Ω). The velocity field u is determined by the solution
to the Euler equations as in Theorem 1.1 (resp., RSW equations as in Theorem 1.3).
Then, by replacing u with its incompressible counterpart u as defined in Theorem 1.1
(resp., Theorem 1.3),

∂ts+ u·∇s = 0, s0(·) = s0(·),
we establish that, for some finite time T ,

max
0≤t≤T

‖s− s‖Hm−3(Ω) ≤ Cε.

The proof will be given in section 6.
There have been numerous results regarding the singular limits of compress-

ible Euler equations and other fluid equations in various settings. We point to two
survey papers for some comprehensive lists of references: Schochet [24] with em-
phases on hyperbolic PDEs and homogenization in space-time, and Masmoudi [18]
with emphases on viscous fluids and weak solutions. To mention only a few earlier
works, we note papers by Ebin [8, 9, 10], Beirão da Veiga [3], and Klainerman and
Majda [15] for inviscid fluid equations, and papers by Kreiss [16] and Tadmor [25]
for general hyperbolic PDEs. In a closely related paper [6], Browning, Kasahara, and
Kreiss applied the bounded derivative method in numerical schemes to gain control
on time derivatives and thus to get rid of fast gravity waves. These results, in terms
of (1.2), confirmed that compressible flow (ρ, u) converges to (0, u) strongly at order
O(ε) with u solving (1.5) provided the initial data (ρ0, u0) also converge to (0, u0)
strongly at order O(ε):

(1.11) ‖ρ0‖+ ‖u0 − u0‖ � ε for some div-free u0.

Here, ‖·‖ denotes some suitable spatial norm. Note that condition (1.11) implies that
perturbation in the total density ρ̂ vanishes at order O(ε2)—consult (1.1).

This family of well-prepared initial data (1.11) directly implies uniform bound on
the size of ∂t(ρ, u) at t = 0, independent of ε, by virtue of (1.2). Therefore, the
so-called initial layer is suppressed. Then, one obtains uniform control on the size of
∂t(ρ, u) for finite times, which allows passing of limits by the Arzelà–Ascoli lemma.
Well-prepared conditions on initial data were later removed for problems in the whole
space (Ukai [27]), in an exterior domain (Isozaki [11, 12]), and in a torus (Schochet
[23]). These arguments more or less rely on the use of Fourier analysis and/or the
dispersive nature of the underlying wave equations.

Singular limit problems in a bounded spatial domain, on the other hand, remain
much less studied. Schochet proved in [21] the same low-Mach-number limit with
solid-wall boundary condition and, again, well-prepared initial data. A main challenge
in this setting is the presence of characteristic boundary. It is elaborated in Rauch’s
work [19] for linear systems that, in general, only estimates along tangential directions
are available near the boundary. We also note that there were also preceding results
in, e.g., [10, 3], all of which required well-prepared initial data. In [20], Secchi proved
the strong convergence of uP and weak* convergence of uQ for three-dimensional Euler
equations with ill-prepared initial data. This result did not prove convergence rates
or the case of RSW equations. Jones proved in [13] a convergence theorem for the
RSW equations with well-prepared initial data and solid-wall boundary conditions.

The key argument of our paper is that, even with ill-prepared initial data and
solid-wall boundary condition that entraps acoustic waves, nonlinear resonance of
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fast acoustic waves does not enter the slow dynamics at all (Lemma 3.2) and interac-
tion of fast-slow dynamics vanishes at order O(ε) upon integrating in time (Lemma
3.3). Smallness condition (1.11) is no longer assumed, and thus the setting is more
physically relevant. The key ideas used in this paper were partially originated in
Cheng [7] for studying the RSW equations with two fast scales in the whole space. It
recently came to our knowledge that similar approaches have occasionally appeared in
the literature—cf. equations after (7) in Lions and Masmoudi [17] for weak limit prob-
lems, and cf. equations (4.27), (4.28) in Schochet [24] for problems without boundary.
We also tackle the boundary condition carefully and present a clear calculation of a
priori estimates independent of ε. Here, the vorticity equation plays a crucial role,
which was argued in, e.g., Schochet [22]. Throughout our analysis (not just a pri-
ori estimates), we employ elliptic estimates for PDE systems with certain boundary
conditions (Agmon, Douglis, and Nirenberg [1, 2]).

The organization of the rest of this article is as follows. Section 2 through 4 are
devoted to the main ingredients listed in the sketched proof of Theorem 1.1 regarding
the Euler equations. In particular, we establish a series of lemmas for a somewhat
general family of hyperbolic PDEs. Next, in section 5, we study the RSW equa-
tions under the same framework as for the Euler’s equations, but we focus more on
the differences of these two systems, i.e., the elliptic operator with factor 1/ε and
the associated projection operators. We then prove the main ingredients listed in
the sketched proof of Theorem 1.3. In section 6, we show that the transportation
properties of the compressible and incompressible flows differ only by O(ε).

In more detail, in section 2, we introduce elliptic estimates particularly for the
Euler equations and present a precise characterization for the projection operators
associated with Helmholtz decomposition. These projection operators will be applied
to decompose the solution as well as the system into “slow” and “fast” components.
Moving on to section 3, we conduct a thorough study on nonlinear interactions of fast-
fast and fast-slow types. In section 4, we give an elementary proof of ε-independent
energy estimates that are necessary for all the convergence results to work.

We will repeatedly use some well-known inequalities of Sobolev norms without
making references. They are all based on the Hölder inequality, the Gargliardo–
Nirenberg inequality, and the Sobolev inequality. For the most part, it is sufficient to
accept the following estimates:

(1.12) ‖∂j1x g1∂j2x g2 . . . ∂jkx gk‖L2(Ω) ≤ c‖g1‖Hm‖g2‖Hm . . . ‖gk‖Hm ,

where m > D/2 + 1, 0 ≤ j1 ≤ · · · ≤ jk ≤ m, and j1 + · · ·+ jk ≤ m+ 1.

2. Elliptic estimates and Helmholtz decomposition. In section 2, 3, and
4, we study the Euler equations (1.2) with F ≡ 0. Rewrite it in a more compact form
in terms of U =

(
ρ
u

)
as

(2.1) ∂tU +N (U,∇U ; ε) = −1

ε
L[U ], u · n∣∣

∂Ω
= 0,

∫
Ω

ρ = 0,

where the nonlinear term

(2.2) N (U1,∇U2; ε) :=

(
u1 ·∇ρ2 + ρ1∇·u2

u1 ·∇u2 + g(ρ1; ε)∇ρ2
)
,

(2.3) with g(ρ; ε) :=

(
p′(1 + ερ)

1 + ερ
− 1

)
1

ε
,
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and the elliptic operator associated with the singular parameter 1/ε

(2.4) L
[(
ρ
u

)]
:=

(∇·u
∇ρ

)
.

There is a “vorticity operator”

(2.5) K
[(
ρ
u

)]
:= ∇×u

that cancels out L, i.e.,
(2.6) KL ≡ 0.

This is why the singular 1/ε term does not appear in the vorticity equations as follows:

(2.7) ∂t(∇×u) +∇·(u∇×u) = 0 in two dimensions

and

(2.8) ∂t(∇×u) +∇·(u∇×u) + (∇×u)·∇u = 0 in three dimensions.

The papers of Agmon, Douglis, and Nirenberg [1, 2] establish a complementing
boundary condition that is necessary and sufficient for the solution operator of an sth
order elliptic PDE system to be Cm → Cm+s and Hm → Hm+s. To treat the Euler
equations, only a particular case is used: for any velocity field u with a trace subject
to the solid-wall boundary condition u · n∣∣

∂Ω
= 0,

(2.9) ‖u‖Hm(Ω) ≤ C
(‖∇·u‖Hm−1(Ω) + ‖∇×u‖Hm−1(Ω) + ‖u‖L2(Ω)

)
.

Here and below, we always assume m is a positive integer so that the trace u
∣∣
∂Ω

is
well defined. See, e.g., [5] for application of this estimate.

For the ρ component of the solution, under the zero mean condition in (1.3), one
has ‖ρ‖L2(Ω) ≤ C‖∇ρ‖L2(Ω) by the Poincaré inequality and therefore

(2.10) ‖ρ‖Hm(Ω) ≤ C‖∇ρ‖Hm−1(Ω).

Now, define a solution space Xm ⊂ Hm(Ω) as

Xm :=

{
U =

(
ρ
u

)
∈ Hm(Ω)

∣∣∣ u · n = 0 on ∂Ω and

∫
Ω

ρ dx = 0

}
.

Then, with elliptic operators defined in (2.4), (2.5), the above estimates (2.9), (2.10)
lead to

(2.11) ‖U‖Hm(Ω) ≤ C(‖L[U ]‖Hm−1(Ω) + ‖K[U ]‖Hm−1(Ω) + ‖u‖L2(Ω)) for U ∈ Xm.

2.1. Helmholtz decomposition. Define P as the L2 projection onto the L2

closure of KerL ∩Xm, and define Q as its orthogonal complement,

(2.12) P := L2−Proj{KerL ∩XmL
2

}, Q := I − P .
Note that KerL ∩Xm =

{(
0
u

) ∈ Hm
∣∣u · n|∂Ω = 0, ∇·u = 0

}
.

These projections can be characterized conveniently by an elliptic PDE.
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Lemma 2.1. Operators defined in (2.12) satisfy

(2.13) for any U =

(
ρ
u

)
∈ Hm, Q[U ] =

(
ρ
∇φ

)
,

with φ solving

(2.14)

{
Δφ = ∇·u,

∇φ · n∣∣
∂Ω

= u · n∣∣
∂Ω
.

Proof. Solvability (unique module a constant) and regularity of (2.14) follow from
standard elliptic PDE theory (see, e.g., [26, Chap. 5, Prop. 7.7]). It suffices to verify
that Q defined in (2.13) is identical to I − P defined in (2.12).

By definition,

L(I − Q)[U ] = L
[(

0
u−∇φ

)]
=

(
0

∇·u−Δφ

)
= 0

and ∇(u−∇φ) · n∣∣
∂Ω

= 0.

Therefore,

(I − Q)[U ] ∈ KerL ∩Xm.

It remains to show that Q[U ] is L2-orthogonal to ImgP , i.e., KerL ∩Xm. Take any
function U1 =

(
ρ1
u1

) ∈ KerL ∩Xm so that ρ1 = 0 and ∇·u1 = 0 with u1 · n
∣∣
∂Ω

= 0.
Then,∫

Ω

U1 · Q[U ] dx =

∫
Ω

ρ1ρ+ u1 · ∇φdx =

∫
Ω

∇·(u1φ) dx =

∫
∂Ω

n · u1φds = 0.

Thus, Q[U ] is L2-orthogonal to KerL ∩Xm and therefore its L2 closure.
Now that P , Q are well defined, for simplicity, we will use UP for P [U ] and UQ

for Q[U ] whenever it is not ambiguous. We will also use lowercase uP , uQ for the
associated velocity components. The density component of P [U ] is always zero.

The following property of P will be a key element in estimating nonlinear reso-
nances of acoustic waves. For example, it is necessary to have PL∣∣

Xm+1 = 0 so that
applying P on (2.1) eliminates the 1/ε term.

Lemma 2.2. A duality relation holds true,

KerP
∣∣∣
Hm

= ImgL
∣∣∣
Xm+1

,(2.15)

ImgQ
∣∣∣
Hm

= ImgL
∣∣∣
Xm+1

.(2.16)

Proof. Since

U ∈ KerP ⇐⇒ P [U ] = 0 ⇐⇒ Q[U ] = U ⇐⇒ U ∈ ImgQ,

it suffices to prove (2.16).
Take any UQ =

( ρ

uQ

) ∈ Hm. By (2.13), (2.14), uQ = ∇φ for some φ ∈ Hm+1

with
∫
Ω
φ = 0. Also, since

∫
Ω
ρ = 0, the Poisson equation Δψ = ρ with ∇ψ · n∣∣

∂Ω
= 0
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admits (at least) a solution in Hm+2. Thus, we set U1 =
( φ
∇ψ

) ∈ Xm+1 and clearly

UQ = L[U1]. Therefore, LHS(2.16)⊂ RHS(2.16).
Assume U =

(
ρ
u

)
= L[U2] for some U2 =

(
ρ2
u2

) ∈ Xm+1. Since u = ∇ρ2, by
(2.13), (2.14) and its unique solvability, we have uQ = u. Thus, U = UQ ∈ ImgQ.
Therefore, RHS(2.16)⊂ LHS(2.16).

Remark 2.3. The above duality relation has an analogue in linear algebra: if
L is identified with a (skew)-symmetric n × n matrix, then KerP = ImgL. What’s
more, if KL = 0 and rankK+rankL = n, then KerK = ImgL. In fact, in our case, if
Ω is contractible, one can use the Poincaré lemma to show that indeed KerK = ImgL
in proper regularity spaces.

2.2. Boundedness of projection operators. We claim that P , Q are both
bounded operators in Xm. Indeed, definitions (2.12)–(2.14) lead to the Pythagorean
theorem ‖u‖L2 = ‖uP‖L2 + ‖uQ‖L2 . Then, apply elliptic estimate (2.11) on P [U ]
together with LP = 0 (by definition) as well as KP = K (since Lemma 2.2 =⇒
ImgQ = ImgL ⊂ KerK =⇒ KQ = 0) to obtain

‖P [U ]‖Hm ≤C(‖K[U ]‖Hm−1 + ‖uP‖L2) ≤ C′‖U‖Hm for U ∈ Hm.(2.17)

Thanks to duality,

‖Q[U ]‖Hm ≤C(‖L[U ]‖Hm−1 + ‖uQ‖L2) ≤ C′‖U‖Hm for U ∈ Xm.(2.18)

But we will need a stronger version of (2.18) which is stated and proved in Lemma
2.4. A heuristic argument is the following: in the linear algebra setting given in
Remark 2.3, the restriction of L onto the image of Q is invertible and thus ‖UQ‖ ≤
C‖L[UQ]‖ in proper norms. In the same spirit, for our elliptic operators, we have the
following lemma.

Lemma 2.4. For any U ∈ Xm (m ≥ 1),

‖Q[U ]‖Hm ≤ C‖L[U ]‖Hm−1 .

Proof. The first part of (2.18) is established; it remains to estimate ‖uQ‖L2 .
By Lemma 2.2, uQ = ∇φ with φ chosen to have zero mean. By definition (2.13),

(2.14) and U ∈ Xm,

uQ · n∣∣
∂Ω

= u · n∣∣
∂Ω

= 0,

and thus ∫
Ω

|uQ|2 =

∫
Ω

uQ ·∇φ =

∫
Ω

∇·uQφ

≤ ‖∇·uQ‖L2‖φ‖L2 ≤ C‖∇·uQ‖L2‖∇φ‖L2.

Since uQ = ∇φ, we deduce ‖uQ‖L2 ≤ C‖∇ · uQ‖L2 , which obviously is bounded by
C‖L[UQ]‖Hm−1 .

This estimate immediately leads to the proof of (1.6) regarding the time average
of UQ, the fast acoustic component of the dynamics.

Theorem 2.5. Consider the Euler equations (2.1)–(2.4) under the same assump-
tions as in Theorem 1.1. Then, (1.6) holds true, that is,∥∥∥∥1t

∫ t

0

UQdτ

∥∥∥∥
Hm(Ω)

≤ Cε

(
1 +

1

t

)
for t ∈ (0, T ].
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Here, C depends only on maxt∈[0,T ] ‖U‖Hm(Ω) and m, and it is independent of ε and
t otherwise.

The proof is a straightforward application of Lemma 2.4 and the following lemma.
Lemma 2.6. Consider time-dependent equation

Ut =
1

ε
L[U ] + f(t, q)

over certain spatial domain Ω. Here, ε > 0 is a scaling constant, f(t, q) a source term,
and L a linear operator independent of time. Let operator P denote (some) projection
onto the null space of L. Assume a priori U, f(t, q),L[U ],P [U ] have enough regularity
as needed.

Then, under the assumption

(2.19) ‖U − P [U ]‖Hk1(Ω) ≤ C‖L[U ]‖Hk2 (Ω)

for some constant C, the following estimate on the time average of U holds true:∥∥∥∥∥ 1T
∫ T

0

U dt− 1

T

∫ T

0

P [U ] dt

∥∥∥∥∥
Hk1

≤ εC

(
2M

T
+M ′

)
,

where constants M := maxt∈[0,T ] ‖U(t, ·)‖Hk2 and M ′ := maxt∈[0,T ] ‖f(t, ·)‖Hk2 .
Proof. First, transform the original equation into

Ut =
1

ε
L[U − P [U ]] + f

and apply time averaging 1
T

∫ T
0 · dt on both sides:

1

T
(U(T, ·)− U(0, ·)) = 1

εT

∫ T

0

L[U − P [U ]]dt+
1

T

∫ T

0

f(t, ·)dt.

Since all necessary regularities were assumed available and L was assumed to be linear

and independent of time, we argue that
∫ T
0 · dt and L[·] commute so that the above

equation becomes

1

T
(U(T, ·)− U(0, ·)) = 1

ε
L
[
1

T

∫ T

0

U dt− 1

T

∫ T

0

P [U ] dt

]
+

1

T

∫ T

0

f(t, ·) dt.

Due to the factor 1
ε in the first term on the right-hand side (RHS), we have∥∥∥∥∥L
[
1

T

∫ T

0

U dt− 1

T

∫ T

0

P [U ] dt

]∥∥∥∥∥
Hk2

≤ ε

(
2M

T
+M ′

)
.

Finally, apply estimate (2.19) to arrive at the conclusion.

3. Estimates on nonlinear interaction and strong convergence. In this
section, we always assume the solution to the above system exists and satisfies U ∈ Xm

for some m > D/2 + 4. It then follows that ∂tU ∈ Xm−1,
∫
U dt ∈ Xm, etc.

Theorem 3.1. Consider the D-dimensional barotropic compressible Euler equa-
tions (2.1). Assume a solution exists classically: U(t, x) ∈ ∩mj=0C

j([0, T ];Hm−j(Ω))
with m > D/2+4. Also assume a nonvacuum condition ‖ερ‖C([0,T ];Hm) ≤ 1/2. Then,
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with projection P defined in (2.12), there exists an incompressible flow U =
(
0
u

)
so

that

max
t∈[0,T ]

‖P [U ]− U‖m−3 ≤ εC.

Here, C depends only on maxt∈[0,T ] ‖U‖Hm(Ω), m, and T , and it is independent of ε.
In particular, u can be chosen as the unique Hm solution to the incompressible

Euler equations {
∂tu+ u·∇u+∇q = 0,

∇·u = 0,
(3.1)

u · n∣∣
∂Ω

= 0, u(0, ·) = uP0 .

In other words, U solves

(3.2) ∂tU + PN (U,∇U ; 0) = 0.

The key to proving this theorem is contained in two lemmas. They have been
used in [7] for the RSW equations without boundary constraints. We now migrate
them to bounded domains using the properly defined projection operators P , Q.

Apply P to (2.1). By Lemma 2.2, PL∣∣
Xm+1 = 0. Thus,

(3.3) ∂tU
P + PN (U,∇U ; ε) = 0.

Although N defined in (2.2) is not entirely bilinear, we take advantage of the fact
that p′(1) = 1 and ρP = 0 to rewrite

(3.4)

∂tU
P + P

(
0

uP ·∇uP
)
+ PN (UQ,∇UQ; ε)

+ P
( ∇·(uPρQ)
uP ·∇uQ + uQ ·∇uP

)
= 0.

In comparison with (3.2), there are two types of nonlinear interactions to be studied,

“fast-fast” PN (UQ, UQ; ε),

“fast-slow” P
( ∇·(uPρQ)
uP ·∇uQ + uQ ·∇uP

)
.

At first glance, one expects the nonlinearity of N to generate resonance from all
kinds of interaction between UP and UQ. However, the following lemma excludes the
contribution of “fast-fast” interaction from ImgP .

Lemma 3.2. For any UQ ∈ ImgQ with sufficient regularity,

PN (UQ,∇UQ; ε) = 0.

Proof. The density component of ImgP is always zero. By Lemma 2.2, it suffices
to show that

uQ = ∇φ implies uQ ·∇uQ + g(ρ; ε)∇ρ is also a gradient.
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This is true due to the calculus identity

(∇φ)·∇(∇φ) = 1

2
∇|∇φ|2

and the fact g(ρ; ε) is a function of ρ only.

Next, move on to the “fast-slow” interaction: P( ∇·(uP ρQ)

uP·∇uQ+uQ·∇uP

)
. Although it

does not have the same cancellation property as the “fast-fast” interaction, the next
lemma reveals that, upon averaging in time, it vanishes at order O(ε). In other words,
the “fast-slow” interaction is asymptotically negligible when averaged in time.

Lemma 3.3. For any U = UQ + UP ∈ Xm with m > D/2 + 3 that solves (2.1),∥∥∥∥∫ t

0

P
( ∇·(uPρQ)
uP ·∇uQ + uQ ·∇uP

)
dτ

∥∥∥∥
Hm−2

≤ εC(t+ 1)2 .

Here, C depends only on maxt∈[0,T ] ‖U‖Hm(Ω) and m, and it is independent of ε and
t otherwise.

Proof. Since the definition of P is independent of the density component, it
suffices to estimate ∫ T

0

P
[(

0
uP ·∇uQ + uQ ·∇uP

)]
dt.

Due to the assumption of Hm regularity with m > D/2 + 3, we have U,UP , UQ in
C2 and therefore, by repeatedly applying the Fubini theorem, the time integral

∫ · dt
and operator P above can be switched:∫ T

0

P
[(

0
uP ·∇uQ + uQ ·∇uP

)]
dt = P

[∫ T

0

(
0

uP ·∇uQ + uQ ·∇uP
)
dt

]
.

Then, by (2.17), which is not restricted by the solid-wall boundary condition, P can
be dropped from the estimate,∥∥∥∥∥
∫ T

0

P
[(

0
uP ·∇uQ + uQ ·∇uP

)]
dt

∥∥∥∥∥
Hm−2

≤ C

∥∥∥∥∥
∫ T

0

(
0

uP ·∇uQ + uQ ·∇uP
)
dt

∥∥∥∥∥
Hm−2

.

To illustrate the steps in estimating the RHS above, we explain in details on
uQ ·∇uP , the other part being very similar.

The key idea is to utilize the time average of uQ which has been estimated in
Theorem 2.5,

‖w(t, ·)‖Hm(Ω) ≤ εC(t+ 1),

where we define

w(t, ·) :=
∫ t

0

uQ(τ, ·)dτ.

Now, integrate by parts in time,∫ t

0

uQ ·∇uP dτ = w·∇uP
∣∣∣t
0
−
∫ t

0

w·∇∂tuP dτ.
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Then, estimate the time derivative of the slow dynamics ∂tu
P by using (3.3) and the

fact that N depends on ε via positive powers of ερ,

‖∂tuP ‖Hm−1 ≤ C.

Therefore, we combine the above four (in)equalities to conclude that∥∥∥∥∫ t

0

uQ ·∇uP dt
∥∥∥∥
Hm−2

≤
∥∥∥∥w·∇uP

∣∣∣t
0

∥∥∥∥
Hm−2

+

∫ t

0

∥∥w·∇∂tuP dτ
∥∥
Hm−2 dτ

≤ εC(t+ 1)2.

To close this section, we prove Theorem 3.1.
Proof of Theorem 3.1. In this proof, we assume the existence time of classical

solutions to the compressible and incompressible Euler equations depends solely on
the size of initial data and is otherwise independent of ε. For a detailed proof on
uniform energy estimates, consult section 4.

Lemmas 3.2 and 3.3 together with (3.4) lead to

for − ξ(t, ·) :=
∫ t

0

∂tu
P + P [uP ·∇uP ] dτ,(3.5)

‖ξ‖Hm−2(Ω) ≤εC(t+ 1)2.(3.6)

Here, one can regard −ξ as the time integral of the “residual” that results from
approximating uP using the incompressible Euler equations (3.1). Thus, we subtract
the time derivative of (3.5) from (3.1) to obtain an equation

(3.7) ∂tξ =∂tδ + P [u·∇δ + δ ·∇uP ] ,
where we define an error term

δ := u− uP .

Take spatial derivative ∂α with |α| ≤ m− 3 on (3.7), and obtain

∂tξ
α = ∂tδ

α + P [u·∇δα] + fα,(3.8)

where δα := ∂αδ, ξα := ∂αξ

and fα := P [∂α (u·∇δ)− u·∇(∂αδ)] + P [∂α(δ ·∇uP )] .
Since |α| ≤ m− 3, by the boundedness of P in (2.17) and calculus inequalities (1.12),
we have

(3.9) ‖fα‖L2 ≤ C‖δ‖Hm−3 .

Note that, in (3.8), the ∂tξ is an O(1) term. So we further need to further rewrite
it as

(3.10) 0 = ∂t(δ
α − ξα) + P [u·∇(δα − ξα)] + fα1 + fα,

where

fα1 := P [u·∇ξα] ,
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and by (3.6) and also |α| ≤ m− 3, we estimate

(3.11) ‖fα1 ‖L2 ≤ Cε.

Now, we are ready to perform energy estimates. Take the L2(Ω)-inner product
of (3.10) with δα − ξα, and use the fact that δα − ξα is div-free and therefore L2-
orthogonal to ImgQ:

0 =
1

2
∂t

〈
δα − ξα, δα − ξα

〉
+
〈
u·∇(δα − ξα), (δα − ξα)

〉
+
〈
fα1 + fα, δα − ξα

〉
.

Then, apply the Stokes theorem to the second term on the RHS,〈
u·∇(δα − ξα), (δα − ξα)

〉
L2(Ω)

=
1

2

∫
∂Ω

(u · n)|δα − ξα|2 = 0,

where the last equality is due to the solid-wall boundary condition.

Combining the above two equalities with estimates (3.9), (3.11), we arrive at

1

2
∂t〈δα − ξα, δα − ξα〉 ≤ C‖δα − ξα‖L2(‖δ‖Hm−3 + ε).

Sum all such inequalities over all α with |α| ≤ m− 3 to obtain

1

2
∂t‖δ − ξ‖2Hm−3 ≤ C‖δ − ξ‖Hm−3(‖δ‖Hm−3 + ε).

Finally, solve this Gronwall inequality with initial conditions δ(0, ·) = ξ(0, ·) ≡ 0 and
estimate (3.6) to complete the proof.

4. A priori energy estimates, independent of ε. Recall the equation of
state, pressure = p(1 + ερ) with p(1) = 0, p′(1) = 1, and introduce a new unknown

r := p(1+ερ)
ε so that the Euler equations (1.2) with F ≡ 0 (resp., the RSW equations

with F = −u⊥) are reformulated as

(4.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1[

p−1(εr)
]2
p′(p−1(εr))

(∂tr + u·∇r) + 1

p−1(εr)

∇·u
ε

= 0,

∂tu+ u·∇u+ 1

p−1(εr)

∇r
ε

=
1

ε
F.

Then, rescale this system by replacing

(4.2) u = ŭ/ε, r = r̆/ε, t = t̆ε, F = F̆ /ε,

and arrive at ⎧⎪⎪⎨⎪⎪⎩
1[

p−1(r̆)
]2
p′(p−1(r̆))

(∂t̆r̆ + ŭ·∇r̆) + 1

p−1(r̆)
∇·ŭ = 0,

∂t̆ŭ+ ŭ·∇ŭ+
1

p−1(r̆)
∇r̆ = F̆ .
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Finally, rewrite it as a symmetric hyperbolic PDE system for the rescaled variable
V :=

(
r̆
ŭ

)
,

(4.3) A0(V )∂tV +
D∑
j=1

Aj(V )∂xjV + L[V ] = 0,

with the obvious definitions of A0, Aj which are all symmetric matrices. In particular,
A1, . . . , AD and first spatial/time derivatives of A0 vanish at order O(‖V ‖Hm) about
V ≡ 0.

This rescaled system will be the main subject of this section, for it offers the
convenience of being free of any ε terms.

Theorem 4.1. Let m > D/2 + 1. There exist ε-independent constants C∗, C∗∗,
C∗∗∗ dependent only on m,Ω, and the pressure law so that the rescaled compressible
Euler equations (4.3) (resp., the rescaled RSW equations) with initial data V0 satisfy-
ing the compatibility condition (cf. Remark 1.2) admit a unique solution in the class
of

m∑
j=0

Cj

([
0,

C∗

‖V0‖Hm

]
; Hm−j(Ω)

)
if ‖V0‖Hm ≤ C∗∗.

The solution is uniformly bounded ‖V ‖Hm(Ω) ≤ C∗∗∗‖V0‖Hm on this finite time in-
terval.

Consequently, the original compressible Euler equations (4.1) (resp., the RSW
equations) with ε � 1 and initial data (r0, u0) satisfying the compatibility condition
admit a unique solution in the class of

m∑
j=0

Cj

([
0,

C∗

‖(r0, u0)‖Hm

]
; Hm−j(Ω)

)
if ‖(r0, u0)‖Hm ≤ C∗∗/ε.

The solution is uniformly bounded ‖(r, u)‖Hm(Ω) ≤ C∗∗∗‖(r0, u0)‖Hm on this finite
time interval.

Proof. Let’s first explain the key parts of the proof.

First, short-time existence of classical solutions is established in Rauch [19] for
linear systems and in Schochet [21, 22] for certain nonlinear systems including our
(1.2). To prove an ε-independent life span of Hm solutions, it suffices to establish
ε-independent a priori estimates and then simply apply the continuation principle.

To this end, for the 1/ε terms to vanish in the estimates, we start with the
vortical component K[V ] based on the ε-free vorticity equation. We also estimate the
time derivatives using the skew-self-adjointness of 1

εL w.r.t. the still-valid boundary
condition. Estimation of the acoustic part L[V ] is based on the hyperbolic PDE
system itself. The details of this framework are given in the proof of Theorem 4.2.
We now apply the result of Theorem 4.2 to the nonlinear system (4.3).

Set Bj = Aj(V ) (j = 0, 1, . . . ,D) in Theorem 4.2. All conditions are satisfied,
especially the structural assumption (4.8) due to the existence of an actual vorticity
equation for the compressible Euler equations. Next, replace all the time derivatives in
(4.10) with spatial derivatives based on the system itself (4.3). Then, the definitions of
Aj , calculus inequalities (1.12), and the fact that zeroth order derivative of B0 = A0 is
excluded from estimate (4.10) imply that all the nonlinear products in (4.10) vanish at
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order O(‖V ‖2Hm) around V ≡ 0. Therefore, there exist two smooth functions g(·), h(·)
that are strictly increasing and vanish at 0 so that, for a(t) := ‖V ‖Hm

x
(t),

(4.4) a(t) ≤ h(a0) + ag(a) +

∫ t

0

ag(a) dτ.

By assumptions on h, g, we have that g ◦ h is an automorphism of [0,∞]. Thus,
let γ be the only positive root of

g ◦ h(γ) = 0.5,

and let T be the latest time so that

a(t) ≤ h(γ) for t ∈ [0, T ].

Then, in such a setting g(a(t)) ≤ g(h(γ)) = 0.5 for t ∈ [0, T ], and (4.4) implies

a(t) ≤ h(a0) +
1

2
a+

∫ t

0

1

2
a dτ for t ∈ [0, T ],

i.e., a(t) ≤ 2h(a0) +

∫ t

0

a dτ for t ∈ [0, T ].

This Gronwall’s inequality implies

a(t) ≤ 2h(a0)e
t for t ∈ [0, T ].

Finally, the theorem is proved by setting, e.g.,

C∗ = ln 2, C∗∗ = h−1
(γ
4

)
, C∗∗∗ = max

a0∈[0,C∗∗]

h(a0)

a0
.

Our Theorems 4.1 and 4.2 and their proofs provide clear evidence that the contin-
uation principle can be performed on a uniform time interval independent of ε. The
uniform estimates still remain valid even after, as a standard procedure, we add a
vanishing ε1n · ∇u term to the system to create a nonsingular boundary matrix. The
reasons are the following: 1. the boundary matrix is still dissipative; 2. a vorticity
equation still exists.

We also note in passing that a crucial “maximal positivity” condition on the
boundary matrix and boundary condition is needed for all these existence theories
to work (cf. Rauch [19] and Schochet [22]), but our system (4.1) is a canonical case
satisfying this condition for sufficiently small ε.

Theorem 4.2. Consider the linear symmetric hyperbolic system

B0∂tV +

D∑
j=1

Bj∂xjV + L[V ] = 0,(4.5)

M[u]
∣∣
∂Ω

= 0,(4.6)

with all the eigenvalues of B0 located in [1/2, 2] and M being a time-independent
operator defined on ∂Ω. Assume L is nonnegative w.r.t. the boundary condition above:

(4.7) M[u]
∣∣
∂Ω

= 0 =⇒ 〈V,L[V ]〉L2
x
≥ 0.
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In addition, impose a structural assumption that there exists a “vorticity” operator
K of first order differentiation so that applying K to this system results in a “vorticity
equation”

(4.8) ∂tK[V ] +

D∑
j=1

∂xj (B̃jK[V ]) = 0.

Assume both {Bj} and {B̃j} are symmetric matrices; also assume they are con-
servative or dissipative on ∂Ω:

(4.9) Bn

∣∣
∂Ω

≥ 0, B̃n

∣∣
∂Ω

≥ 0,

where the boundary matrix is defined as Bn

∣∣
∂Ω

:=
∑D

j=1 νjBj for {νj} being the
coordinates of the outward norm n on ∂Ω.

Then, for system (4.5)–(4.9) with solution V ∈ ∑m
j=0 C

j([0, T ]; Hm−j(Ω)) for
m > D/2 + 1, we have estimates
(4.10)

‖V (t, ·)‖Hm
x

�
m∑
n=0

‖∂nt V (0, ·)‖Hm−n
x

+
∑

(j,α,β)∈Am

∥∥∥(∂αt,xBj)(∂βt,xV )
∥∥∥
L2

x

+
∥∥∥(∂αt,xB̃j)(∂βt,xV )

∥∥∥
L2

x

+
∑

(j,α,β)∈Am

∫ t

0

∥∥∥(∂αt,xBj)(∂βt,xV )
∥∥∥
L2

x

+
∥∥∥(∂αt,xB̃j)(∂βt,xV )

∥∥∥
L2

x

dτ =: S,

where

Am :=
{
(j, α, β)

∣∣∣ j ∈ [0,m], |α|+ j > 0, |α+ β| ≤ m+ 1, |α| ≤ m, |β| ≤ m
}

is the admissible set of 3-tuples (j, α, β) with α, β being multi-indices for the orders of
space-time derivatives. In particular, the constraint |α| + j > 0 excludes such terms
as
∥∥(B0)(∂

βV )
∥∥
L2 from the sum.

Remark 4.3. In two dimensions, the compressible Euler equations naturally
satisfy the structural assumption regarding the vorticity equation (4.8)—consult (2.7).
In three dimensions, the vorticity equation (2.8) is a lower order perturbation of (4.8)
and our argument remains essentially valid.

Similarly, one can manipulate the two-dimensional (2D) RSW equations to obtain

∂t(ρ−∇×u) +∇·(u(ρ−∇×u)) = 0.

Due to change of variables εr = p(1 + ερ), this is equivalent to

∂t(r −∇×u) +∇·(u(r −∇×u)) + [
p−1(εr)p′(p−1(εr)) − 1

]1
ε
∇·u = 0.

Upon rescaling (4.2), it leads to

∂t(r̆ −∇×ŭ) +∇·(ŭ(r̆ −∇×ŭ)) + [
p−1(r̆)p′(p−1(r̆))− 1

]∇·ŭ = 0,

which is again a lower order perturbation of (4.8).
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Therefore, for simplicity, we focus only on a “vorticity equation” in the form of
(4.8) while omitting any extra terms containing lower order derivatives whose Hm−1

norms vanish at order O(‖V ‖2Hm) around V ≡ 0. Such a simplification leads only to
nonessential changes in the energy estimate (4.10).

Proof. We establish the following estimates:
• Hm−1 norm of vorticity K[V ], i.e.,

(4.11) ‖K[V ]‖Hm−1 � S.

For simplicity, define

ω := K[V ].

Take spatial derivative ∂αx with |α| ≤ m− 1 on (4.8),

∂t∂
α
xω +

D∑
j=1

B̃j∂xj∂
α
xω +

D∑
j=1

(
∂αx ∂xj (B̃jω)− B̃j∂

α
x ∂xjω

)
= 0.

Then, take the L2
x-inner product with ∂

α
xω,

(4.12)

0 =
1

2
∂t‖∂αxω‖2L2

x
+

〈
∂αxω,

D∑
j=1

B̃j∂xj∂
α
xω

〉
L2

x

+

〈
∂αxω,

D∑
j=1

(
∂αx ∂xj (B̃jω)− B̃j∂

α
x ∂xjω

)〉
L2

x

=:
1

2
∂t‖∂αxω‖2L2

x
+I1 + I2.

Apply the Stokes theorem on the I1 term above, using the assumptions that all Bj
are symmetric matrices and B̃n

∣∣
∂Ω

≥ 0,

I1 ≥ −1

2

〈
∂αxω,

⎛⎝ D∑
j=1

∂xj B̃j

⎞⎠ ∂αxω

〉
L2

x

.

Apply the Hölder inequality to the RHS above and the II term in (4.12),

−I1 − I2 � ‖∂αxω‖L2
x

∑
(j,α,β)∈Am

∥∥∥(∂αt,xB̃j)(∂βt,xV )
∥∥∥
L2

x

.

Therefore, upon integrating (4.12) in time and summing over all |α| ≤ m − 1, we
obtain (4.11).

• L2 norms of time derivatives ∂nt V (n = 0, 1, . . . ,m), i.e.,

(4.13) ‖∂nt V ‖L2 � S, n = 0, 1, . . . ,m.

For simplicity, define

Vn := ∂nt V.

Take time derivative ∂nt on (4.5),

B0∂tVn +

D∑
j=1

Bj∂xjVn

+
D∑
j=0

(
∂nt (Bj∂xjV )−Bj∂

n
t ∂xjV

)
+ L[Vn] = 0.
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Then, take the L2
x-inner product with Vn,

(4.14)

0 =
1

2
∂t‖Vn‖2L2

x,B0

− 1

2

〈
Vn, ∂tB0Vn

〉
L2

x

+

〈
Vn,

D∑
j=1

Bj∂xjVn

〉
L2

x

+

〈
Vn,

D∑
j=0

(
∂nt (Bj∂xjV )−Bj∂

n
t ∂xjV

)〉
L2

x

+ 〈Vn,L[Vn]〉L2
x

=:
1

2
∂t‖Vn‖2L2

x,B0

+ I3 + I4 + I5 + 〈Vn,L[Vn]〉L2
x
.

Here, ‖ · ‖L2
x,B0

indicates a B0-weighted L
2
x norm.

Since the boundary condition is time-independent, we obtain that Vn satisfies the
same boundary condition (4.6) and in particular, by (4.7), makes the last term above
nonnegative:

〈Vn,L[Vn]〉L2
x
≥ 0.

The I3, I4, I5 terms are estimated in the same fashion as that of estimating I1, I2 in
(4.12). In particular, the zeroth derivative of B0 does not appear in the estimate.

Therefore, upon integrating (4.14) in time and using the fact that all eigenvalues
of B0 are located on [1/2, 2], we obtain (4.13).

We remark that, for the highest time derivative ∂mt V , it is only in L2(Ω), and
thus more care is needed to perform the above estimates: first perform the energy
method to get an upper bound for

∂t
∥∥∂m−1

t V (t+ τ, ·)− ∂m−1
t V (t, ·)∥∥2

L2
x

with just enough regularity and, in particular, with the boundary integral well defined;
then integrate in time to get an estimate for

∥∥∂m−1
t V (t+ τ, ·)− ∂m−1

t V (t, ·)∥∥
L2

x
; and

finally divide it by τ and let τ → 0 to obtain an estimate on ‖∂mt V ‖L2
x
.

• Finally, the solution’s Hm
x norm

‖V ‖Hm
x

� S.

We will repeatedly use elliptic estimates (2.11) for U = V, ∂tV, ∂
2
t V, . . . , ∂

m−1
t . We

will also repeatedly use estimate (4.13) and estimate

(4.15) ‖K[∂nt V ]‖Hm−1−n
x

� S, n = 0, 1, . . . ,m− 1,

as a direct consequence of (4.11) and (4.8).

‖V ‖Hm
x

�‖L[V ]‖Hm−1
x

+ ‖K[V ]‖Hm−1
x

+ ‖V ‖L2
x

by (2.11)

�‖L[V ]‖Hm−1
x

+ S by (4.13), (4.15)

�‖∂tV ‖Hm−1
x

+ S,

where the last inequality is due to (4.5) and B0 ∈ [1/2, 2] with the nonlinear terms
absorbed into S; continuing,

. . . �‖L[∂tV ]‖Hm−2
x

+ ‖K[∂tV ]‖Hm−2
x

+ ‖∂tV ‖L2
x
+ S by (2.11)

�‖L[∂tV ]‖Hm−2
x

+ S by (4.13), (4.15)

�‖∂2t V ‖Hm−2
x

+ S,
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where the last inequality is due to (4.5) and B0 ∈ [1/2, 2] with the nonlinear terms
absorbed into S; continuing,

. . . �‖∂3t V ‖Hm−3
x

+ S

. . . �‖∂4t V ‖Hm−4
x

+ S

......... inductively

. . . �‖∂mt V ‖H0
x
+ S

�S by (4.13).

5. Extension to the RSW equations. We extend the above framework to
the 2D RSW equations in a very natural way. Recall the RSW equations (1.2) with
F = −u⊥ and constraints (1.3), i.e.,

∂tρ+∇·(ρu) + 1

ε
∇·u = 0,(5.1)

∂tu+ u·∇u+ 1

ε
∇ρ+ 1

ε
u⊥ = 0,(5.2)

u · n∣∣
∂Ω

= 0,

∫
Ω

ρ = 0.(5.3)

The analogue between the above system and the compressible Euler equations is as
follows. The pressure law for the RSW equations is p(ρ) = 1

2ρ
2, which is due to the

gravitational force. The singular parameter ε is the 2D Froude number and plays the
same role as the Mach number. The Rossby is also set to scale at the same order of
ε.

The elliptic operators differ from their counterparts (2.4), (2.5) by lower order
perturbations,

L̃[U ] :=

( ∇·u
∇ρ+ u⊥

)
,

K̃[U ] :=ρ− (∂xu2 − ∂yu1) = ρ−∇⊥ · u,

so that an analogue of (2.6) still holds true:

K̃L̃ = 0.

The RSW system is therefore endowed with a ε-free vorticity equation, similar to
(2.7),

(5.4) ∂tK̃[U ] +∇·(u K̃[U ]) = 0.

We can rewrite the RSW system in a more compact form,

(5.5) ∂tU + Ñ (U,∇U) = −1

ε
L̃[U ], u · n∣∣

∂Ω
= 0,

∫
Ω

ρ = 0,

where the nonlinear term

(5.6) Ñ (U1,∇U2) :=

(
u1 ·∇ρ2 + ρ1∇·u2

u1 ·∇u2
)
.
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5.1. Analogue to section 2: Elliptic estimates and projections. The ana-
logue of elliptic estimates (2.11) is quite straightforward since L̃, K̃ defined here are
only lower order perturbations of their counterparts in section 2:

(5.7) ‖U‖Hm(Ω) ≤ C
(
‖L̃[U ]‖Hm−1(Ω) + ‖K̃[U ]‖Hm−1(Ω) + ‖u‖L2(Ω)

)
for U ∈ Xm

with the solution space Xm defined in section 2.

For the projection operators, we essentially need to find an elliptic PDE to define
P̃ , Q̃ which is as convenient as (2.14). Indeed, since (ρ, u) ∈ KerL̃ iff u = (∇ρ)⊥, we
characterize P̃ in the following way: for U ∈ Hm (not necessarily in Xm),

P̃[U ] :=

(
φ

∇⊥φ

)
with φ := (1 −Δ)−1

QG(ρ−∇⊥ · u).

Here and below, subscript QG indicates constraints of constant boundary value and
zero mean associated with (1−Δ)−1. Indeed, the definition of (1−Δ)−1

QG is based on
the following lemma.

Lemma 5.1. For any f ∈ Hn(Ω), there exists a unique solution w, denoted by
w = (1 −Δ)−1

QG[f ], to the elliptic PDE,

(1 −Δ)w = f,

w
∣∣∣
∂Ω

= constant,

∫
Ω

w = 0,

with w satisfying estimate

‖w‖Hn+2(Ω) ≤ C‖f‖Hn(Ω).

Proof. By standard elliptic PDE theory, the following equation with Dirichlet
boundary condition

(1 −Δ)w1 = f,

w1

∣∣∣
∂Ω

= 0

admits a unique solution w1 with estimates

‖w1‖Hn+2(Ω) ≤ C‖f‖Hn(Ω).

Thus, define

w := w1 − 1

|Ω|
∫
Ω

w1

to be the solution to the original PDE. It is obvious that the Hn+2 estimate of w
follows that of w1 and the Poincaré inequalities. This estimate also guarantees the
uniqueness of w.

In a more compact and essential form, the projections are given as

(5.8) P̃ := K̃∗(K̃K̃∗)−1
QGK̃, Q̃ := I − P̃ ,
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where K̃∗ is the formal adjoint of K̃ so that for scalar-valued function φ

K̃∗[φ] =
(

φ
(∇φ)⊥

)
and

K̃K̃∗[φ] =(1−Δ)φ.

The identities (5.8) suggest a parallel argument in linear algebra and, in particular,
the method of least squares. Indeed, by definition, we have

(5.9)

{
L̃P̃ = P̃L̃ = 0, L̃Q̃ = Q̃L̃ = L̃,

K̃P̃ = K̃, P̃K̃∗ = K̃∗, K̃Q̃ = 0, Q̃K̃∗ = 0.
(note: L̃∗ = −L̃)

As to the boundedness of P̃ and Q̃, let us point out a technique detail: due to
the rather unusual constraints put on (1−Δ)−1

QG, we cannot prove a clean version of

the Pythagorean theorem ‖U‖L2 = ‖P̃[U ]‖L2 + ‖Q̃[U ]‖L2; however, for the mere sake
of elliptic estimates, it suffices to use Lemma 5.1 to deduce the following analogue of
(2.17):

(5.10) ‖P̃[U ]‖Hm ≤ C‖U‖Hm for U ∈ Hm.

Thanks to duality, applying (5.7), (5.9) on Q̃[U ], we have the analogue of (2.18),

(5.11) ‖Q̃[U ]‖Hm ≤ C(‖L̃[U ]‖Hm−1 + ‖Q̃[U ]‖L2) ≤ C′‖U‖Hm for U ∈ Xm.

But we will need the following lemma as a stronger version of (5.11) and an
analogue of Lemma 2.4.

Lemma 5.2. For any U ∈ Xm (m ≥ 1),

‖Q̃[U ]‖Hm ≤ C‖L̃[U ]‖Hm−1 .

Proof. The first inequality of (5.11) being established, it suffices to show that

‖Q̃[U ]‖L2 ≤ C‖L̃[U ]‖Hm−1 for U ∈ Xm.

Suppose not. Then, there exists a sequence of functions {UN}∞N=1 in Xm so that

‖Q̃[UN ]‖L2 ≥ N‖L̃[UN ]‖Hm−1 , N = 1, 2, 3, . . . .

Upon rescaling, we can choose to have

‖Q̃[UN ]‖L2 = 1, ‖L̃[UN ]‖Hm−1 ≤ 1

N
, N = 1, 2, 3, . . . .

Combined with (5.11), this implies

{Q̃[UN ]}∞N=1 is a bounded sequence in Hm,

and by weak compactness of Hm and compact imbedding of Hm into L2, there exists
a U∞ ∈ Hm (actually also in Xm) that is the weak limit of {Q̃[UN ]} in Hm and the
strong limit in L2. Then, respectively,

weak limit in Hm =⇒

⎧⎪⎨⎪⎩
‖L̃[U∞]‖Hm−1 ≤ lim inf

N→∞
‖L̃Q̃[UN ]‖Hm−1 = lim inf

N→∞
1

N
= 0,

‖K̃[U∞]‖Hm−1 ≤ lim inf
N→∞

‖K̃Q̃[UN ]‖Hm−1 = 0,

strong limit in L2 =⇒ ‖U∞‖L2 = lim
N→∞

‖Q̃[UN ]‖L2 = 1.
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In other words,

(5.12) U∞ ∈ KerK̃ ∩KerL̃ ∩Xm and ‖U∞‖L2 = 1.

This would be a contradiction. In fact, let U∞ =
(
ρ∞
u∞

)
. Then,

U∞ ∈ KerK̃ =⇒ ρ∞ = ∇⊥ · u∞,
U∞ ∈ KerL̃ =⇒ ∇ρ∞ + u⊥∞ = 0,

which imply the Helmholtz equation (1 −Δ)ρ∞ = 0. Meanwhile, U∞ ∈ Xm implies∫
Ω
ρ∞ = 0 and, together with the second equation above, implies ∇⊥ρ∞ · n∣∣

∂Ω
=

0 =⇒ ρ∞
∣∣
∂Ω

=constant. In other words, ρ∞ is in the image of (1 −Δ)−1
QG,

ρ∞ = (1 −Δ)−1
QG0 = 0.

Then, we have U∞ = 0, which contradicts ‖U‖L2 = 1 in (5.12)!
Combine this lemma with Lemma 2.6, and easily prove the following analogue of

Theorem 2.5.
Theorem 5.3. Consider the RSW equations (5.1)–(5.3) under the same assump-

tions as in Theorem 1.3. Then, (1.7) holds true, that is,∥∥∥∥1t
∫ t

0

UQdτ

∥∥∥∥
Hm(Ω)

≤ Cε

(
1 +

1

t

)
for t ∈ (0, T ].

Here, C depends only on maxt∈[0,T ] ‖U‖Hm(Ω) and m, and it is independent of ε and
t otherwise.

5.2. Analogue to section 3: Estimates on nonlinear interaction and
strong convergence. The goal of this subsection is to prove the following analogue
of Theorem 3.1.

Theorem 5.4. Consider the 2D RSW equations (5.5). Assume a solution exists
classically: U(t, x) ∈ ∩mj=0C

j([0, T ];Hm−j(Ω)) with m > 5. Also assume a nonvac-

uum condition ‖ερ‖C([0,T ];Hm) ≤ 1/2. Then, with projection P̃ defined in (5.8), there

exists a quasi-geostrophic flow U so that

max
t∈[0,T ]

‖P̃[U ]− U‖m−3 ≤ εC.

Here, C depends only on maxt∈[0,T ] ‖U‖Hm(Ω), m, and T , and it is independent of ε.

In particular, U =
(
ρ
u

)
is uniquely determined from

(5.13) ρ = (1−Δ)−1
QGθ, u = ∇⊥(1−Δ)−1

QGθ,

with θ solving the quasi-geostrophic equations

∂tθ + u·∇θ = 0,(5.14)

θ0 = ρ0 −∇⊥ · u0.(5.15)

To prepare for the proof of this theorem, we apply P̃ on (5.5). By duality relations

(5.9) and the bilinearity of Ñ , we have

(5.16)
∂tU

P + P̃Ñ (UP ,∇UP ) + P̃Ñ (UQ,∇UQ)
+ P̃Ñ (UQ,∇UP ) + P̃Ñ (UP ,∇UQ) = 0.
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Thus, there are two types of nonlinear interactions to be studied,

“fast-fast” P̃Ñ (UQ, UQ),

“fast-slow” P̃Ñ (UQ, UP ) + PN (UP , UQ).

Lemma 3.2 regarding cancellation of the “fast-fast” interaction under the pro-
jection P is still valid for RSW equations due to a simple observation: the vorticity
equation (5.4) results from applying K̃ to (5.5) and using K̃L̃ = 0. In other words,
the identity

(5.17) K̃Ñ (U,∇U) = ∇·(u K̃[U ]) with Ñ defined in (5.6)

is true regardless of the equation. Now, let U = UQ be the fast part of a solution.
Then, by the duality relations (5.9), K̃[UQ] = 0. Thus, the above identity implies

K̃Ñ (UQ,∇UQ) = ∇·(uQ K̃[UQ]) ≡ 0.

Together with (5.8), it leads to the following lemma,

Lemma 5.5. For any UQ ∈ ImgQ̃ with sufficient regularity,

P̃Ñ (UQ,∇UQ) ≡ 0.

The following lemma regarding the O(ε) estimate of the “fast-slow” interaction
upon time averaging follows exactly the same proof as its counterpart for Euler equa-
tions, Lemma 3.3. We skip its proof, highlighting only that the key estimate necessary
for the proof

‖W (t, ·)‖Hm(Ω) ≤ εC(t+ 1),

where W (t, ·) :=
∫ t

0

UQ(τ, ·)dτ,

is still valid thanks to Theorem 5.3.
Lemma 5.6. For any U = UQ + UP ∈ Xm with m > D/2 + 3 that solves (5.5),∥∥∥∥∫ t

0

P̃Ñ (UP ,∇UQ) + P̃Ñ (UQ,∇UP ) dτ
∥∥∥∥
Hm−2

≤ εC(t+ 1)2.

Here, C depends only on maxt∈[0,T ] ‖U‖Hm(Ω) and m, and it is independent of ε and
t otherwise.

Now we are ready to prove Theorem 5.4.
Proof of Theorem 5.4. In this proof, we assume the existence time of classical

solutions to the RSW and quasi-geostrophic equations depends solely on the size of
initial data and is otherwise independent of ε. For a detailed proof on uniform energy
estimates, consult section 4.

Apply Lemmas 5.5 and 5.6 on the time integral of (5.16) to obtain,

for − ξ1(t, ·) :=
∫ t

0

∂tU
P + P̃Ñ (UP ,∇UP ) dτ,

‖ξ1‖Hm−2(Ω) ≤ εC(t+ 1)2.
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Apply K̃ on the time derivative of the above equation and employ (5.9), (5.17), and
∇·uP = 0 to obtain

−∂tξ = ∂tK̃[UP ] + uP ·∇K̃[UP ],(5.18)

where ξ := K̃[ξ1] so that ‖ξ‖Hm−3(Ω) ≤ Cε.(5.19)

Now, define

δ := θ − K̃[UP ].

Note that, by U = ∇⊥(1−Δ)−1
QG[θ] and U

P = ∇⊥(1 −Δ)−1
QGK̃[UP ], we have

U − UP = ∇⊥(1 −Δ)−1
QG[δ],

and thus, by Lemma 5.1,

(5.20) ‖U − UP ‖Hm−3 ≤ C‖δ‖Hm−4 .

We subtract (5.18) from (5.14) to obtain an equation for δ,

∂tξ = ∂tδ + uP ·∇δ + (u− uP )·∇θ.
Then, take spatial derivative ∂α with |α| ≤ m− 4 on the above equation and obtain

∂tξ
α = ∂tδ

α + uP ·∇δα + fα,(5.21)

where ξα := ∂αξ, δα := ∂αδ

and fα := ∂α(uP ·∇δ)− uP ·∇δα + ∂α
(
(u− uP )·∇θ).

Since |α| ≤ m− 4, by the calculus inequalities (1.12) and estimate (5.20), we obtain

(5.22) ‖fα‖L2 ≤ C‖δ‖Hm−4 .

Since ∂tξ is an O(1) term, we further rewrite (5.21) as

(5.23) 0 = ∂t(δ
α − ξα) + uP ·∇(δα − ξα) + uP ·∇ξα + fα,

where, by (5.19) and |α| ≤ m− 4, it holds true that

(5.24) ‖uP ·∇ξα‖L2 ≤ Cε.

Now, we are ready to perform energy estimates. Take the L2(Ω)-inner product
of (5.23) with δα − ξα,

0 =
1

2
∂t

〈
δα − ξα, δα − ξα

〉
+
〈
uP ·∇(δα − ξα), (δα − ξα)

〉
+
〈
uP ·∇ξα + fα, δα − ξα

〉
.

Since uP is div-free, we apply the Stokes theorem to the second term on the RHS,〈
uP ·∇(δα − ξα), (δα − ξα)

〉
L2(Ω)

=
1

2

∫
∂Ω

(uP · n)|δα − ξα|2 = 0,

where the last equality is due to the solid-wall boundary condition.
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Combining the above two equalities with estimates (5.22), (5.24), we arrive at

1

2
∂t〈δα − ξα, δα − ξα〉 ≤ C‖δ − ξα‖Hm−4(‖δ − ξα‖Hm−4 + ε).

Sum all such inequalities over all α with |α| ≤ m− 4 to obtain

∂t‖δ − ξ‖2Hm−4 ≤ C‖δ − ξ‖Hm−4(‖δ − ξ‖Hm−4 + ε).

Finally, apply the Gronwall inequality together with the initial conditions δ(0, ·) =
ξ(0, ·) ≡ 0 to arrive at

max
t∈[0,T ]

‖δ − ξ‖m−4 ≤ Cε.

Together with estimates (5.19), (5.20), this proves the theorem.

6. Effects on transport of passive scalars. We now prove Corollary 1.4.
Let’s recall that we aim to estimate the difference of the solution to

(6.1) ∂ts+ u·∇s = 0

from the solution to

(6.2) ∂ts+ u·∇s = 0,

both subject to the same initial data s0(·) = s0(·).
Subtract these two equations, and rewrite in terms of δ := s− s as

(6.3) ∂tδ + u·∇δ + (u− u)·∇s = 0.

Then, following the same time-integral technique, we define

w(t, ·) :=
∫ t

0

(u− u) dτ and

ξ(t, ·) :=
∫ t

0

(u− u)·∇s dτ.

Upon integrating by parts,

(6.4) ξ(t, ·) = w·∇s
∣∣∣t
0
−
∫ t

0

w·∇(∂ts) dτ.

To estimate w terms on the RHS, we split it using u = uQ + uP :

w(t, ·) =
∫ t

0

uQ dτ +

∫ t

0

(uP − u) dτ.

Apply (1.6) (resp., (1.7)) on the first term, and apply (1.4) (resp., (1.8)) on the second
term. Then, we show that, on some finite time interval [0, T ],

‖w‖Hm ≤ Cε.

For s terms in (6.4), perform straightforward estimation using (6.1). Thus, locally
in time,

‖∂t∇s‖Hm−2 ≤ C, ‖∇s‖Hm−1 ≤ C.
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Plug the above two estimates into (6.4) to obtain, on some finite time interval [0, T ],

(6.5) ‖ξ‖Hm−2 ≤ Cε.

Now, use ξ to rewrite (6.3) as

∂tδ + u·∇δ + ∂tξ = 0

and further

∂t(δ + ξ) + u·∇(δ + ξ)− u·∇ξ = 0.

Then, we can perform energy estimates on the above equation for (δ + ξ) up to
(m − 3)rd order spatial derivatives. Note that the boundary condition u · n∣∣

∂Ω
= 0

will make the boundary integral vanish; and also note that, by (6.5), the −u·∇ξ term
is bounded by Cε in the Hm−3 norm. So, a routine work of energy method together
with δ

∣∣
t=0

= ξ
∣∣
t=0

≡ 0 will imply, on some finite time interval [0, T ],

‖δ + ξ‖Hm−3 ≤ Cε.

Together with (6.5), this leads to the conclusion of Corollary 1.4.
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