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Abstract

This work presents a piecewise linear approximation to non-linear Point Distribution Models for modelling the human hand. The work

utilises the natural segmentation of shape space, inherent to the technique, to apply temporal constraints, which can be used with

CONDENSATION to support multiple hypotheses and discontinuous jumps within shape space. This paper presents a novel method by

which the one-state transitions of the English Language are projected into shape space for tracking and model prediction using an HMM like

approach. The paper demonstrates that this model of motion provides superior results to that of other tracking approaches. q 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Sign language is the natural language of the deaf

community. It is a rich and expressive language that has

its own rules of grammar, structure and composition.

Different geographic regions have their own sign language

due to the isolation, history and requirements of that

community. However, they often reflect the language of the

hearing society in which they live. As a product of this, sign

languages typically consist of 2 main elements:

B a simple signed alphabet which mimics the letters of

the native spoken language;

B a higher level signed language which conceptualises

pronouns, verbs, nouns and adjectives as meaningful

gestures often using actions to mimic the meaning or

description of the sign.

The purpose of the signed alphabet, termed finger-

spelling, is that it allows names or words to be spelt when no

sign is either known or present. It is also integrated within

the sign vocabulary, e.g. in British Sign Language, tapping

the letter ‘M’ twice is the sign for mother. Two sign

languages, which have a common underlying spoken

language, are American Sign Language (ASL) and British

Sign Language (BSL), the major difference between the two

being a one- or two-handed system, respectively. Of course,

the major sign vocabulary varies immensely between them.

ASL provides a more suitable problem domain over British

Sign Language, as the BSL finger spelt alphabet is a two-

handed system. This presents added difficulty for computer

vision approaches due to the problems associated with

occlusion. Fig. 1 shows the ASL alphabet with the

corresponding hand pose for each letter of the alphabet.

Systems such as Simon the virtual signer [16] have been

developed which allow a human avatar to convert written

text into a multimedia BSL video stream. However, to-date

no system exists which has sufficient reliability and

vocabulary to convert sign to speech at the level required

for translation. It is obvious that any system that can visually

interpret sign would provide a significant tool for deaf-

hearing communication.

Gesture recognition in computer vision is an extensive

area of research that encompasses anything from static pose

estimation of hands or body to dynamic movements such as

a wave or a shoulder shrug. Such an extensive review is

beyond the scope of this paper and the interested reading is

directed to a number of both online1 and published surveys
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[15]. Gesture recognition systems typically involve

extremely small vocabularies selected for easily distinguish-

able characteristics. Sign language recognition, by default,

requires a large vocabulary proving a more difficult research

task and hence has attracted less attention.

Few authors have attempted system using the major

vocabulary of sign. Starner and Pentland [11] developed a

system capable of recognising a subset of 40 ASL signs

using a Hidden Markov Model (HMM) and a course

representation of hand shape, orientation and trajectory.

Vogler and Metaxas [10] extended tracking to 3D for a

vocabulary of 53 signs again using an HMM for recognition.

Other authors [12–14,17] have investigated systems for

finger spelt sign recognition. Gao used [12] a chain code

based representation and a neural network to achieve the

recognition of thirteen pre-defined hand postures. Freeman

[17] describes a system to recognise 15 postures using

orientation histograms and nearest neighbour classification.

Recently a number of authors have proposed size functions

as a method to represent the sign alphabet [13,14]. However,

for finger spelling, these techniques are floored in that they

only recognise static poses of the hand.

This paper is less concerned with classification, but with

the robust tracking of the hand during signing. Without the

ability to track robustly, classification is not possible. To

enable tracking we construct a temporal model of shape and

motion.

Previous work by the author and other researchers have

investigated statistical models of deformation [1–8]. These

deformable models have been used to learn a priori shape

and deformation from a training set of examples which

represent the shape and deformation of an object or a class

of objects. Statistical models of deformation are typically

constructed with prior knowledge about deformation but the

temporal context of this deformation is ignored. This

constraint is beneficial in disambiguating model pose during

tracking.

A large body of work has been performed on the

temporal mechanics of tracking. Many researchers have

attempted to use predictive methods such as those based

within a Kalman filter framework [1]. Hill et al. [6,7]

proposed using genetic algorithms to model the discontinu-

ous changes in shape space2/model parameters. Of particu-

lar interest to the work presented here is the

CONDENSATION algorithm [1,8] (also known as particle

filtering), which is a method for stochastic tracking, where a

population of model hypotheses are generated at each

iteration. These populations are generated from Probability

Density Functions (PDFs) generated over the model

parameter space to provide a hypothesis-and-test approach

to model prediction and tracking.

The key to this approach is an a priori model of motion

from which populations are generated. Where motion is

relatively uniform, such as the motion of an object within an

image, the learning stage can be bootstrapped to the tracking

process [8]. However, for the movement of the model within

shape space (the deformation parameter space) this is not

possible [4]. This is due to the inherently high dimension-

ality and complex dynamics of shape spaces and the

computational limitations of the CONDENSATION algor-

ithm. Instead, motion models must be learnt in much the

same way as deformable models; the temporal model

augments that of deformation and provides an indication of

where in shape space the object may move to next given its

preceding shape. Unfortunately, as we will see in Section 4,

although a relatively small sample of training data can be

used to construct a model of deformation, considerably

more examples are required to achieve an accurate

representation of motion over the entire parameter space.

This paper addresses the problem of constructing a non-

linear deformable model of the human hand for sign

language recognition. It is demonstrated that the temporal

model cannot be constructed from training data alone and a

method which, allows temporal information about the

English language to be projected into shape space is

presented. This generates a first order temporal model,

which incorporates both information about shape space and

the English Language.

Section 2 discusses the construction of a non-linear

Constrained Shape Space Point Distribution Model

(CSSPDM [4]) using a piecewise linear approximation.

Section 3 demonstrates how the CSSPDM naturally lends

itself to a CONDENSATION like approach to tracking.

Section 4 presents a method by which the first order

transitions of the English Language are propagated into

shape space using a Hidden Markov Model like approach.

Finally, the approaches are compared and conclusions

drawn.

Fig. 1. The American sign language finger spelling alphabet.

2 Shape space refers to the model parameter space where changes in those

parameters result in a deformation of the original model, i.e. a change in

shape.
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2. Constructing a CSSPDM for sign language

2.1. Constructing a linear Point Distribution Model

A Point Distribution Model (PDM) is generated by

performing principal component analysis upon a training set

to form a linear model of deformation [5]. PDMs have

proven themselves an invaluable tool in image processing.

The classic formulation combines local edge feature

detection and a model-based approach to provide a fast,

simple method of representing an object and how its

structure can deform.

To construct a PDM a 2D contour is described by a

vector xi [ R
2n ¼ ðx1; y1;…; xn; ynÞ

T; representing a set of n

points specifying the path of the contour. A training set E of

N vectors is then assembled for a particular model class. The

training set is aligned (using translation, rotation and

scaling) and the mean shape calculated. To represent the

deviation within the shape of the training set, Principal

Component Analysis (PCA) is performed on the deviation

of the example vectors from the mean using an eigenvector

decomposition on the covariance matrix S of E [5], where

S ¼
1

N

XN
i¼1

ðxi 2 �xÞðxi 2 �xÞT; �x ¼
1

N

XN
i¼1

xi

PCA projects the data into a linear subspace with a

minimum loss of information by multiplying the data by

the eigenvectors of the covariance matrix (S). By analysing

the magnitude of the corresponding eigenvalues the

minimum dimensionality of the space on which the data

lies can be calculated and the information loss estimated [2].

The t unit eigenvectors of S corresponding to the t largest

eigenvalues supply the variation modes; t will generally be

much smaller than N, thus giving a very compact model and

it is this dimensional reduction that will facilitate non-linear

analysis. A deformed shape x is generated by adding

weighted combinations of vj to the mean shape,

x ¼ �x þ
Xt

j¼1

bjvj

where bj is the weighting for the jth variation vector.

Suitable limits for bj are ^3
ffiffiffi
lj

p
; where lj is the jth largest

eigenvalue of S [13] and
ffiffiffi
lj

p
; sj; the standard deviation of

the distribution along the eigenvector. This provides a

compact mathematical model of how the shape deforms.

The formulation of the PDM can also be expressed in

matrix form [5]:

x ¼ �x þ Pb

where P ¼ ðv1; v2;…; vtÞ
T is a matrix of the first t

eigenvectors and b ¼ ðb1; b2;…; btÞ
T is a vector of weights.

This mathematical model is used to constrain the shape

of the PDM when applied to an image. To locate and track

an object the Active Shape Model algorithm [5] is used. A

contour is placed near to the desired feature in the image

plane. The fitting process is an iterative one, whereby the

contour makes small steps within the image to find a natural

resting-place and is effectively a gradient descent method.

The model uses suggested movements from control points

(using edge detection or grey level matching). Movement of

the model is then allowed through the relocation of the

model within the image plane using translation, rotation,

and scaling. Deformation of the model is also permitted by

finding the closest allowable shape as determined by the

bounds of the mathematical model of deformation. Given a

new shape x0, the closest allowable shape from the model is

constructed by finding b0 such that

b0 ¼ P21ðx0 2 �xÞ; 23
ffiffiffi
li

p
# b0

i # 3
ffiffiffi
li

p
The closest allowable shape can then be reconstructed as

x ¼ �x þ Pb0

2.2. The linear ASL PDM

Several image sequences were recorded of a subject

signing. These consisted of numerous occurrences of each

of the letters of the alphabet. The sequences included three

‘runs’ through the alphabet, along with a small selection of

simple sentences and words. Once these sequences had been

extracted, the hand was segmented to produce a binary

image, and a contour-tracing algorithm initiated to extract

the external contour of the hand for each image frame. After

standard alignment and resampling of the contour to 200

Fig. 2. First and second primary modes of the ASL model.
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points (as described in Ref. [4]) a training set of 7441

examples (approximately 250 per signed letter) was

produced where each pose is described by a vector xi [
R

400 ¼ ðx1; y1;…; x200; y200Þ
T: Once assembled the pro-

cedure outlined in Section 2.1 is performed to produce the

linear ASL PDM.

Fig. 2 shows the two primary modes of deformation for

the linear ASL PDM. These modes (eigenvectors) corre-

spond to the largest eigenvalues of the training set and

deform the model from the mean shape. By analysing the

eigenvalues of the covariance matrix it can be determined

that the first 30 eigenvectors (corresponding to the 30 largest

eigenvalues) encompass 99.6% of the deformation within

the model.

2.3. Applying non-linear constraints to shape space

To further constrain the model the approach presented in

Refs. [2–4] is applied. Non-linear constraints to the model

are added by performing cluster analysis on the dimension-

ally reduced data set after it has been projected down into

PCA space. From the linear model it has been determined

that the 30 primary modes encompass 99.6% of the

deformation, by projecting each of the training vectors

down into this lower dimensional space, a dimensional

reduction of 400–30 is achieved. Cluster analysis is now

performed upon the dimensionally reduced data set.

Fig. 3 shows the PCA space for the model as an

orthographic projection into 3 dimensions for visualisation

purposes, with the constraints shown as the bounding boxes

(first two primary modes) of the linear patches (clusters)

extracted via PCA. The bounded boxes are derived from the

two most significant eigenvectors of the patch scaled to 3

standard deviations and represent the statistical bounds of

that patch. The skew of the bounding boxes is due to the

projection from 30 dimensions to 3. By constraining the

model to lie within a linear patch the non-linearity of the

shape space is estimated and a robust model produced.

Fig. 4 shows random shapes generated from within the

allowable shape space of the linear ASL Model and the

results of projecting these shapes into the allowable shape

space of the CSSPDM. It can be clearly seen that the

constrained model contains far less invalid deformation, and

therefore, results in a more reliable model for tracking. Each

random shape is also very close to a natural gesture in ASL

and it is this correlation between cluster and gesture that can

be used to perform gesture recognition.

3. A hybrid PDF for CONDENSATION

3.1. Least squares gradient descent tracking

From Fig. 3 it can be seen that shape space is segregated

into at least two separate regions due to the movement of

landmark points. Furthermore, connected patches of the

model may not represent consistent movement of the model

in the image frame. This leads to the model jumping

between patches, even when within region 2. Under these

circumstances it is not possible for the iterative refinement

Fig. 3. Visualisation of constrains applied within shape space for the ASL

CSSPDM.

Fig. 4. Random shapes generated from within the ASL Models. (a) valid shapes generated from the Linear ASL PDM. (b) Valid shapes generated from the non-

linear ASL CSSPDM.
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Fig. 5. ASM attempting to track an image sequence of the hand.

Fig. 6. Graph of distance moved at each iteration for least squares solution and optimum solution.
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algorithm used for the classic PDM/ASM [5] to provide the

‘jump’ between regions.

An image sequence was recorded of a hand signing the

word ‘gesture’ which consisted of 170 frames. Throughout

the remainder of this paper this sequence will be used for

comparative evaluation. Fig. 5 shows the model attempting

to track the image sequence through the transition from

letters ‘e’ to ‘u’. The model successfully tracks the letter ‘e’

but when the image sequence reaches the letter ‘u’ and the

fingers elongate, the model is unable to make the jump to the

new cluster responsible for modelling this letter. This

problem is fundamental to the operation of the least squares

iterative refinement algorithm and is due to two reasons:

1. Only a small section of the contour (marked in frame ‘u’)

is responsible for ‘pulling’ the contour up to follow the

elongated fingers. As this section is relatively small,

compared to the remainder of the contour, it has less

influence over the overall movement.

2. The maximum movement of the contour per iteration is

governed by the length of the normal used to search

around the contour. Hence this factor limits the distance

the model can move through shape space at each

iteration.

An obvious solution to these problems is to increase the

search length along normals. However, larger normal

searches allow the contour to affix to incorrect features in

the image and hence results in degradation to tracking

performance and additional computational complexity.

3.2. Finding the optimal ground truth for tracking

To locate the optimum solution (i.e. the closest

allowable shape from the CSSPDM) for each iteration

of the model, the space was exhaustively searched. If

the assumption is made that any local patch of the

CSSPDM can indeed be treated as a linear model, then

the iterative refinement procedure can be used to move

locally within that patch to the closest possible shape.

Therefore, if the best match within each patch (cluster)

is located for each frame, the resulting lowest cost

solution must be the (near) optimum. This exhaustive

search was performed on the ‘gesture’ image sequence.

For every frame, each of the 150 clusters was assessed

in turn. The mean shape of the cluster was used as a

starting shape and the iterative refinement of the model,

within the cluster, performed until the model converged

(typically 40 iterations).

By analysing the optimum path through shape space and

comparing this with the path taken by the least squares

approach, the notion of discontinuity within shape shape can

be confirmed.

Fig. 6 shows the distance moved through shape space at

each iteration for both the optimum trajectory and the

iterative refinement algorithm. The corresponding letters of

the sequence are shown with the vertical lines denoting the

approximate transition between letters. From this it can be

clearly seen that the least squares iterative refinement

algorithm makes small incremental movements at each

iteration, whereas the optimum trajectory makes large

‘jumps’ at every frame. During the letters ‘e’ and ‘t’ the

least squares approach almost stops moving, which

demonstrates that the model has converged upon a stable

solution. However, the lack of such trends for other letters

shows that the model is constantly struggling to better refine

itself. Fig. 7 shows distance from the centre of shape space

for the two trajectories. Again this demonstrates that the

optimum path jumps violently within the space whereas the

least squares approach makes small movements.

Note that in Fig. 7, the letter ‘e’ occurs twice during the

sequence. However, during the first occurrence the least

squares approach is at a distance of around 200 units from

the mean whereas during the second occurrence it is at

around 500. This demonstrates that there are at least two

areas of shape space responsible for modelling the letter ‘e’

and these are distinctly separated in shape space. It also

shows that the least squares approach can only use the local

‘e’ part of shape space and is incapable of jumping between

them.

This confirms that not only is the non-linear shape space

discontinuous but the least squares iterative refinement

approach is incapable of providing a robust method for

tracking. Instead a new method of applying the CSSPDM

must be devised.

3.3. Supporting multiple hypotheses

Due to the discrete nature of the CSSPDM and the

piecewise linear method of modelling non-linearity, the

approach directly lends itself to a discrete PDF with the

addition of a Markovian assumption. A first order model of

temporal dynamics can be derived where the conditional

probability PðCtþ1
i lCt

jÞ provides the probability that the

model will move to cluster Ci given it was at Cj at the

last time step. This conditional probability can be

calculated from the training sequence and produces a

2D PDF of motion within shape space. The major

discontinuities of the shape space occur when landmark

points jump around the boundary and hence result in a

jump in shape space (Figs. 6 and 7). However, within

each patch, the model still makes small iterative

movements. This can be confirmed by visualising the

resulting PDF as a grey scale image.

Fig. 8 shows the ASL PDF, which has a heavy diagonal

dominance. This dominance is when argmaxiðPðC
tþ1
i lCt

jÞÞ

and i ¼ j; i.e. the highest probability is that the PDM will

stay within the present cluster. The assumption can,

therefore, be made that within any local patch the model

can iterate to a local solution. This confirms the assumption

used when calculating the optimum model trajectory. This

assumption also provides two benefits:

R. Bowden, M. Sarhadi / Image and Vision Computing 20 (2002) 597–607602



1. The iteration to convergence of any global optimisation

technique can be enhanced by allowing each hypothesis

to iterate to a better solution within the present cluster.

2. A smaller population is required, as only global

differences in hypotheses need to be supported.

From the ‘learnt’ probability density function, a sample

population can be generated at each iteration of the model.

Given a good initialisation of the model and the associated

cluster Ct¼0; this can then be used to predict the future

movement.

However, this approach, unlike condensation, does not

recover well from failures. As the new population is solely

based upon the current best-fit cluster, the approach is

highly sensitive to both an accurate PDF and a good fit to the

current object pose. To help overcome this drawback less

emphasis must be placed upon the current best-fit

hypothesis being the optimum (and hence correct) solution,

thus providing more robustness to failure. This can be

addressed by creating a new population of hypotheses, not

from the current best fit model, but from the weighted sum

of the best n hypotheses, described thus:

Algorithm 1. Weighted condensation

† From the PDF PðCt
i lCt21

j Þ; extract the probability vector

PðCt¼1
i Þ; which is the probability distribution of the first

iteration, given Ct21
j ¼ Ct¼0:

† Generate a randomly sampled distribution of k hypoth-

eses xr½r ¼ 1;…; k�; where xr is the mean shape of

cluster Ci and PðCiÞ ¼ PðCt¼1
i Þ

* While still tracking, i.e. while best hypothesis cost

function is below a threshold t,

– Fit k hypotheses, applying CSSPDM constraints

and assess fitness using error metric

– Sort hypotheses into descending order according to

error

– Iteratively refine first n hypotheses and resort

– Apply the CSSPDM constraints and determine the

n clusters Ct21
h ; where h ¼ 1;…; n which produce

the lowest error

– From the PDF PðCt
i lCt21

j Þ; extract the vector

PðCt
iÞh using the n extracted clusters. Take the

weighted sum using a Gaussian weighting to form

a new distribution P0ðCt
iÞ; where

P0ðCt
iÞ ¼

Xn

h¼1

vhPðCt
iÞh;

and vh ¼ exp
29ð1 2 hÞ2

2n2

" #

Fig. 7. Graph of distance from mean of shape space at each frame for least squares solution and optimum solution.
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– Normalise the probability distribution P0ðCt
iÞ

– Generate a new random population of k hypotheses

from the distribution P0ðCt
iÞ:

4. Extending temporal dynamics

It has been described how, with the addition of a first

order Markov chain to the CSSPDM, a variation on the

condensation algorithm can be used to provide robust

tracking where either:

† The non-linearity of the PDM along with the discrete

representation of the non-linear approximation leads to a

discontinuous shape space.

† Rapid movement of the object within the image can

produce large changes in the model parameters and

hence large movements in shape space.

This Markovian model of dynamics can be used to

explicitly constrain the movement of the model within

shape space, or implicitly, using the variation on the

CONDENSATION approach as previously shown. How-

ever, the use of temporal constraints relies upon the

assumption that the training set from which the model is

built, contains a thorough representation of all-possible

deformation and movement. For simple models this is often

true. However, for ASL it is not, and it is important to ask

the question, ‘What exactly is the temporal model

representing?’

The ASL PDF represents two aspects of motion:

1. The non-linear representation of shape space, how the

individual clusters relate and how the model moves

throughout the space to form letters.

2. It also contains information about the English language

and how letters relate to form words and sentences.

As the PDF encodes both of these attributes it must be

constructed from a training set which has a good

representation of how the model deforms and be represen-

tative of the English language. This is, however, infeasible.

If the ASL image sequence used previously is considered, it

took 165 frames to record the seven letter word ‘gesture’.

Konheim reported a statistical study where the 1-state

transition probabilities of the English Language were

determined using 67,320 transitions between two successive

letters [9]. As the 165 frames previously used produced an

average of 20 frames per letter, this would constitute a

training set in excess of 1.3 million frames not including

transitional shapes between letters. As each frame produces

a training shape this results in a training set which is of

infeasible size.

The current ASL PDF (see Fig. 8) contains valuable

information about how the model moves within shape

space, but due to the deficiency in training it does not

contain sufficient information to accurately model the

transitions between the letters of the English language.

Fortunately, it is relatively simple to gain a transition matrix

for the English language by analysing large samples of

electronic text and calculating the 1-state transitions. What

is required is a method of combining this knowledge of

English into the ASL PDF, producing a more generic and

accurate model for tracking and classification.

4.1. The temporal model

The ASL PDF PðCt
i lCt21

j Þ; constructed from the training

set, provides the probability that the model will move to

cluster Ci given it was at cluster Cj at the last time step.

Similarly a first order Markov Chain can be constructed for

the English language which provides a new PDF PðLt
ilLt21

j Þ:
Fig. 9 shows the PDF gained from this Markov Chain as

taken from Konheim and shows the 1-state transitions

calculated from a sample text of over 67 thousand letters [9].

Fig. 9 does not demonstrate a diagonal dominance,

unlike Fig. 8. This is because the English language has few

occurrences of repetitive letters in words whereas the

previous PDF resulted from operations involving a high

degree of repetition. The main trend that can be seen are the

vertical stripes that occur for many of the letters. This shows

letters, which have a high occurrence and are preceded by

almost any other letter in the alphabet. The highest

probabilities occur for the letter ‘e’ confirming that ‘e’ is

the most commonly used letter in the English language.

Another observation is the single transition from the row ‘q’

to the column ‘u’ as ‘q’ is always followed by a ‘u’ in

standard English.

In order to incorporate this additional information learnt

from sample text, a new ASL PDF must be constructed

P0ðCt
i lCt21

j Þ: To do this a mapping must be achieved which

allows shape space to relate to gesture space.

Fig. 8. Discrete probability density function for ASL Model.
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4.2. Mapping between spaces

By labelling each training example with an associated

letter a PDF can be generated which relates clusters in shape

space to gestures. Here the conditional probability PðLt
ilCt

jÞ

provides a probability of the occurrence of a letter L given

the model is in cluster C in shape space at any time. This

conditional probability provides a mechanism to relate

shape space to the gesture space where the constraints of the

English language (as learnt) can be applied. However, for

this to be of use, a method that allows this information to be

mapped back into the shape space must be provided. This

can be done using the common form of Bayes theorem

where

P Ct
i

� ��Lt
jÞ ¼

P Ct
i

� �
P Lt

j

	 ���Ct
iÞ

P Lt
j

	 


However, where PðCt
i lLt

jÞ and PðCt
iÞ can both be gained from

the training set, PðLt
jÞ (the probability of the occurrence of a

letter) can only be gained from analysing English text. As it

is known that the training set does not fully represent the

English Language this equation would lead to biasing of the

final conditional probabilities. Instead, a variation of Bayes

Theorem can be used, where

P Ct
i

� ��Lt
jÞ ¼

P Ct
i

� �
P Lt

j

	 ���Ct
iÞP

P Ct
i

� �
P Lt

j

	 ���Ct
iÞ

Using this form,
P

PðCt
iÞPðL

t
jlCt

iÞ ; PðLt
jÞ but all probabil-

ities are gained from the training set, and hence no bias

occurs from mixing unrelated probabilities. This is possible

as, although the training set does not contain a thorough

representation of English, it does provide an accurate

representation of the mapping between the two spaces.

4.3. The hybrid ASL PDF

A new ASL PDF can now be constructed which

incorporates the 1-State transitions of the English language

by treating the system like a Hidden Markov Model and

projecting the transitions of the observation layer down into

the Hidden (parameter space). Taking the current cluster of

the model, the corresponding letter(s) associated with this

cluster are determined and the 1-state transition matrix

applied to extract the most likely next letter. The cluster(s)

associated with this transition are then calculated,where

P0 Ct
i

� ��Ct21
j Þ ¼ P Lt

i

� ��Ct
jÞP Lt

i

� ��Lt21
j ÞP Ct

i

� ��Lt
jÞ

This produces a new ASL PDF which is shown in Fig. 10.

Fig. 10 demonstrates the same characteristic vertical

strips seen from the English Language PDF, which it has

inherited, and as such differs from the original ASL PDF in

two ways:

1. Each cluster exhibits far more transitions to other

clusters.

2. The diagonal dominance that is important to tracking, is

missing.

Diagonal dominance can be forced upon the PDF by

imposing diagonal dominance on either PðLt
ilLt21

j Þ or

P0ðCt
i lCt21

j Þ: However, this is haphazard and risks over-

biasing the hypothesis generated at each frame. An

alternative is to simply ensure that the population generated

at each step always includes at least one hypothesis from the

current cluster.

Fig. 11 shows the results of three of the techniques

discussed, namely that of the least squares gradient descent

(ASM, algorithm [5]) the optimal solution gained through

an exhaustive search of shape space and that of the hybrid

condensation approach. The cost at each iteration is the sum

of the pixel difference between the desired movement of the

Fig. 9. Discrete probability density function for the English Language.

Fig. 10. Discrete probability density function for hybrid ASL Model.
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Fig. 11. Comparison of optimum and least squares solutions against hybrid CONDENSATION.

Fig. 12. Comparison of optimum and least squares solutions against hybrid CONDENSATION approaches using a rolling average.
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model (gained from the assessment of the normals) and the

final shape (after the constraints of the model have been

applied) where low cost denotes a good model fit. Where

multiple iterations per frame were performed, these are

displayed as fractions of a frame to visualise the resulting

error cost of iteration. It can clearly be seen that the

optimum solution does indeed give the lowest results with

the hybrid condensation producing only slightly higher error

rates, both of which are significantly lower than those from

the Least squares appraoch which fails catastophically.

Due to the clutered nature of the graph it is dificult to

make any distinction as to the subtle differences between the

use of PðCt
i lCt21

j Þ (gained from the training set) and

P0ðCt
i lCt21

j Þ (calculated in the pervious section). Using the

same cost function as Fig. 11, Fig. 12 shows all four of the

resulting error rates using a running mean of 10 samples to

smooth out the plots and help simplify the graph so a visual

comparison can be made. Here it can be seen that the

CONDENSATION approach does indeed provide superior

performance to that of the gradient descent method.

Furthermore, it can clearly be seen that the adapted

CONDENSATION approach based upon the newly for-

mulated PDF that incorporates the English Language

provides increased performance to that of the PDF

generated from the training set alone.

5. Conclusions

This paper has presented the augmentation of statistical

models with temporal dynamics gained through the

probabilistic analysis of the training set and how this relates

to movement within shape space. It has been shown how the

discrete segregation of shape space used in the CSSPDM

directly lends itself to a Markov chain approach to

modelling temporal dynamics. It has been shown that the

nature of shape space is often complex and discontinuous

and how, using these additional learnt temporal constraints,

tracking can be improved by supporting a population of

multiple hypotheses. However, the key to this paper is the

ability to project observation probabilities into a hidden

shape space using an approach akin to a Hidden Markov

Model where the simple acquisition of observation layer

transitions can be propagated into the hidden parameter

space to overcome the inadequacies of training. It has been

shown how, using a hybrid CONDENSATION tracker,

successful tracking can be achieved while maintaining a

considerable lower population size to that of standard

CONDENSATION. This approach has been aplied to a

number of other image sequences and has demonstrated that

it consistently produces better reults than either standard

condensation using the pdf gained from the training set or

the ASM algorithm.
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