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Abstract—Significant advances in robotics and machine learn-
ing have resulted in many datasets designed to support research
into autonomous vehicle technology. However, these datasets
are rarely suitable for a wide variety of navigation tasks. For
example, datasets that include multiple cameras often have short
trajectories without loops that are unsuitable for the evaluation
of longer-range SLAM or odometry systems, and datasets with a
single camera often lack other sensors, making them unsuitable
for sensor fusion approaches. Furthermore, alternative environ-
mental representations such as semantic Bird’s Eye View (BEV)
maps are growing in popularity, but datasets often lack accurate
ground truth and are not flexible enough to adapt to new research
trends.

To address this gap, we introduce Campus Map, a novel large-
scale multi-camera dataset with 2M images from 6 mounted
cameras that includes GPS data and 64-beam, 125k point LiDAR
scans totalling 8M points (raw packets also provided). The dataset
consists of 16 sequences in a large car park and 6 long-term
trajectories around a university campus that provide data to
support research into a variety of autonomous driving and
parking tasks. Long trajectories (average 10 min) and many loops
make the dataset ideal for the evaluation of SLAM, odometry and
loop closure algorithms, and we provide several state-of-the-art
baselines.

We also include 40k semantic BEV maps rendered from a
digital twin. This novel approach to ground truth generation
allows us to produce more accurate and crisp semantic maps than
are currently available. We make the simulation environment
available to allow researchers to adapt the dataset to their specific
needs. Dataset available at: cvssp.org/data/twizy data

I. INTRODUCTION

The unpredictability of real-world driving scenarios has led
to an explosion of learning-based approaches to tackle scene
understanding, odometry, navigation and mapping tasks. Each
new approach requires a substantial quantity of data to train
and evaluate effectively, so advances must be accompanied by
datasets optimised for the application and to reflect new trends.

One such trend is the production of top-down semantic
maps (BEV maps) from images. These maps provide an envi-
ronmental representation that preserves the essential features
and overall layout of the scene, making them very useful
for downstream navigation tasks. However, training learning-
based BEV predictors is challenging because of the lack of
public datasets with suitable ground truth. Typically, BEV
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Fig. 1. Complete point cloud of university campus and car park with trajectory
shown, and forward-looking sample images from the dataset.

ground truth maps are generated using other data (for example,
by projecting NuScenes bounding boxes onto the ground plane
[1]). However, this approach is not ideal because it relies
upon accurate manual annotation of 3D bounding boxes and
requires significant manipulation of existing datasets for every
evaluation. This is the first issue that this dataset aims to
address.

Secondly, while there are an abundance of image datasets
available for autonomous driving in general, there are few that
are suitable for a wide variety of navigation tasks. For exam-
ple, NuScenes [2] sequences are short (20 s) and lack loops,
making them unsuitable for SLAM or odometry evaluation,
and KITTI [3] sequences only contain a single stereo camera,
so cannot be used to evaluate multi-view camera approaches.

Lastly, datasets that contain paired or unpaired simulated
data (such as Virtual KITTI) are useful for domain transfer
and image translation tasks, but the code used to produce the
images is rarely provided. This means that the simulated data
cannot be easily extended or adapted to cater to new research
trends.



In this work, we introduce a new dataset and related tools to
address these drawbacks and provide data that is immediately
useful for a wide variety of navigation tasks. The dataset
comprises 16 sequences in a car park and 6 around a university
campus. Each sequence contains a variety of general driving
and parking manoeuvres.

We use an NVIDIA Drive PX2 with 6 cameras mounted
around the ego vehicle, capturing RGB images at 28fps.
LiDAR packets, point clouds and GPS measurements are
included. Ground truth trajectories have been reconstructed
and are also provided. Long trajectories with loops make the
data ideal for the evaluation of single and multicamera SLAM
and odometry systems - Fig. 1 shows an example of a LiDAR
point cloud constructed from just one of the 22 sequences.

To address the challenge of producing BEV ground truth
maps, we present a purpose-built simulation environment
to match the real-world layout of the car park. From this
environment, we can render a digital double — paired sim-
ulated and real data — and also detailed top-down semantic
maps for BEV prediction. We make the simulator publicly
available alongside the dataset and provide tools to render the
simulated counterparts of real sequences. Currently, it is able
to render RGB images, depth maps, optical flow and BEV
maps. Researchers can use these tools to adapt and extend the
provided data to meet their own needs.

The dataset is immediately useful for SLAM, odometry,
BEV estimation and domain transfer, and the provided tools
make it notably more flexible and future-proof than existing
offerings.

The main contributions of this work are:
1) The use of multi-view cameras capturing long trajec-

tories with many loops, making the dataset ideal for
the evaluation of multi-camera SLAM and odometry
systems, or other approaches requiring revisitation.

2) The inclusion of semantic top-down Bird’s Eye View
maps, rendered using a novel simulation-based approach
for accurate and crisp ground truth.

3) The addition of simulation tools and a digital twin, so
researchers can add to the dataset and adapt it to their
own specific needs.

4) A benchmark evaluation of techniques for SLAM and
BEV estimation to support research in autonomous
driving and parking.

The dataset and related tools are licensed under CC BY-
NC-SA 4.0.

II. RELATED WORK

There are multiple popular automotive datasets used by
the community to develop and evaluate autonomous driving
technologies. Early autonomous driving datasets, such as
Cityscapes [4], included collections of thousands of images to
improve semantic understanding. However, more recent large-
scale datasets, such as RobotCar [5] and NuScenes [2] include
driving sequences to enable the evaluation of a greater range
of systems.

A. SLAM and Visual Odometry

KITTI [3] and Nuscenes [2] are among the most widely
used, but have limitations. KITTI was primarily intended for
SLAM and odometry development, and therefore includes
long trajectories with loops for evaluating such systems.
However, it lacks images from multiple cameras, making it
unsuitable for the evaluation of modern multi-view SLAM
and odometry systems. KITTI’s reliance on GPS and IMU
for ground truth trajectory creation also makes it susceptible
to GPS outages.

Conversely, Nuscenes, which is intended for object de-
tection and tracking, includes multiple cameras and resolves
GPS issues by incorporating LiDAR, but contains short 20 s
sequences with no loops. Similarly, Lyft Level 5 [6], a smaller
autonomous driving dataset aimed at motion prediction, con-
sists of short sequences (25 s). None of these offerings are
therefore suited to supporting modern autonomous driving re-
search, where long sequences with multiple loops are essential.

Some datasets do attempt to meet this need. Oxford’s
Robotcar [5] is one example that breaks the short-sequence
trend, but follows the same trajectory repeatedly. This is useful
for some tasks, such as generalising over seasonal changes and
weather conditions, but not for evaluating visual odometry or
SLAM systems, since the trajectory is always identical.

Yang et al. [7] introduce a dataset with a focus on multi-
camera SLAM with loops that could also fill this gap, but the
focus is on distance driven rather than sequence duration, and
the data is not yet available. Lastly, the EU Long-term dataset
[8] includes long (approx. 16 min) sequences, but focuses
on the inclusion of a variety of sensor types rather than large
quantities of data for training learning-based approaches. To
our knowledge, there is no modern, large-scale dataset that
includes long sequences, loops and multiple sensors and views
for evaluation of modern learning-based SLAM and odometry
systems.

All of these datasets also focus on general driving; recent
commercial interest in autonomous parking has resulted in
parking data being used to train localisation systems (such
as in [9]), but no parking dataset is publicly available. The
only public car park datasets include static overhead views
[10], [11], making them unsuitable for SLAM.

B. BEV

The production of top-down Bird’s Eye View semantic maps
from monocular images has received significant interest in
recent years, and geometry-based Inverse Perspective Mapping
(IPM) approaches [16], [17] have been superseded by modern
learning-based techniques [18]–[20]. Yuexin et al. [21] provide
a comprehensive summary of recent advances in vision-based
BEV prediction.

However, obtaining suitable ground truth for training these
systems presents a significant logistical challenge, and, as a
result, very few datasets are available. Typically, BEV systems
are evaluated by augmenting existing datasets. For example,
Rashed et al. [22] created a moving-object BEV dataset with
12.9k samples by projecting KITTI bounding box annotations



TABLE I
COMPARISON OF PUBLIC DATASETS: NUMBER OF SEQUENCES AND IMAGES, SEQUENCE LENGTHS, AND INCLUDED FEATURES.

Feature
Dataset Seqs RGB Imgs Seq Len LiDAR Loops Multi-View Digi Double BEV GT Parking
Cityscapes [4] N/A 25k N/A - - - - - -
KITTI [3] 22 15k 2 min 30 sc Y Y - - - -
Virtual KITTI [12] 50a 21ka 2 min 30 sc - Y - Y - -
Argoverseb [13] 113 490k 15-30 s Y - Y - - -
Lyft Perception [6] 366 323k 60 min Y - Y - - -
Waymo Open [14] 1k 1.4M 20 s Y - Y - - -
nuScenes [2] 1k 1.4M 20 s Y - Y - - -
Ford Multi-AV [15] 18 ? ? Y Y Y - - -
RobotCar [5] 100 3M ? Y Y Y - - -
EU Long-Term [8] 13 ? 16 minc Y Y Y - - -
Campus Map (Ours) 22 2M avg. 10 min Y Y Y Y Y Y
a35 sequences with 17k images at time of original paper publication. b3D tracking dataset. cApproximate. ? = unpublished.

from the top-down (although this is not currently publicly
available), and KITTI now provides a BEV benchmark with
7481 training samples. Roddick [18] provides scripts to pro-
duce labels from NuScenes and Argoverse data.

However, this approach suffers from two significant issues.
Firstly, it is reliant on the accuracy of bounding box anno-
tation. One of the key motivators of BEV research is the
ability to predict occluded or partially-occluded objects, which
are very difficult to accurately annotate on image frames.
Secondly, this approach limits the types of classes that can be
rendered in the BEV semantic map. Vehicles and sidewalks,
for example, are easy to annotate, but road markings are
significantly more challenging, especially when occlusions are
taken into account. As a result, the Caltech Lanes Dataset
[23] only contains 1224 images, the Road Marking Dataset
[24] has 1443 images, and neither has top-down annotation.
BEV ground truth is therefore typically dominated by different
vehicle classes, which is useful but does not capture the entire
geometry of the scene.

Although perception of other features is clearly essential for
future autonomous driving systems, to our knowledge, there
is no large-scale BEV dataset available that attempts to tackle
these issues. A selection of public datasets that attempt to meet
similar needs to ours is presented in Table I, with a comparison
of the available data types and quantity.

III. DATASET

The sequences were collected in daylight between August-
November 2022, focusing on scenarios that are rare or un-
available in other autonomous driving datasets. Each sequence
includes a ground truth trajectory for SLAM and odometry
evaluation. A simulation environment was also developed to
match the car park area. This simulator is capable of producing
paired data, including top-down semantic BEV maps for real
images. Approximately 40k BEV maps are provided across 3
different scales, and the simulator code is included to render
more at arbitrary scales.

The overall dataset statistics are presented in Table II,
demonstrating the scale of the dataset and the types of data
available. The presented camera acquisition frequency reflects
the hardware-defined rate. The remainder of this section de-
scribes the data collection process and the methodology that

Fig. 2. Sensor configuration around real-world ego vehicle for data collection.
An IMU was also present.

was used to produce ground truth trajectories, BEV maps and
paired simulated data.

A. Vehicle Configuration

The real-world portion of the dataset includes images from 6
Sekonix AR0231 RGB cameras surrounding a Renault Twizy,
scans from a 64-beam Ouster OS-1-64 LiDAR, and GPS data
from a GlobalSat BU-353S4 5 Hz receiver. IMU data is also
included.

Six Sekonix cameras each with 120 degree field-of-view
provide 360 video around the vehicle. The front camera is
mounted horizontally, whereas the side and back cameras
are mounted with an inclination of 45 degrees downward. In
addition, a front left and front right camera are configured as a
stereo pair, and have a 9 degree inclination. The configuration
of sensors around the ego vehicle is outlined schematically
in Fig. 2. We use an NVIDIA PX2 Drive to capture and
synchronise all data and include rosbags with ROS timestamps
in the dataset. IMU data is included in the rosbags.

The simulator model provided with the dataset includes
front, left, right and rear cameras with intrinsic and extrinsic
calibration to match the real configuration. More cameras can
be added to the simulator as required.

B. Camera Calibration

We provide intrinsic and extrinsic calibration matrices for all
cameras. Intrinsic calibrations were obtained using a standard
checkerboard pattern. Extrinsic calibrations were obtained
using fiducial markers and a bundle-adjustment operation with



TABLE II
CAMPUS MAP INITIAL RELEASE STATISTICS.

Data Type Occurrences Acquisition Frequency
RGB Images 2 115 741 28.24 Hz
GPS Fixes 12 684 2 Hz - 5 Hz
LiDAR Packets 7 995 033 -
Point Clouds 124 941 -
BEV Maps 40 818 -

Fig. 3. Examples of two Campus Map car park ground truth trajectories
(sequences T and U), showing loops and multiple parking manoeuvres.

COLMAP [25], [26], and verified by overlaying the LiDAR
point cloud on the images. These qualitative overlays can be
found alongside the dataset. The calibration parameters are
provided as YAML files and can be accessed and used via the
provided development kit.

C. Trajectory Planning

A key goal of the Campus Map dataset was to provide long
sequences with more loops than are available in existing offer-
ings. Trajectories are split into two groups: driving sequences
around a car park with multiple parking manoeuvres, and
long driving sequences around the university campus. 16 car
parking sequences and 6 campus driving sequences are present
in the initial release, for a total of 22 trajectories.

All trajectories include multiple loops. Fig. 1 shows a
reconstructed LiDAR map of the campus from the sequences.
Details of the collected sequences are presented in Table III.
Two of the sequences are shown as examples in Fig. 3.

D. Ground Truth Trajectories

The ground truth trajectories are produced using a SLAM
algorithm [27] employing LiDAR and GPS data. The optimi-
sation was conducted offline to provide accurate trajectories.
We publish the ground-truth trajectories for the LiDAR times-
tamps. Not that, given the trajectories were produced using
LiDAR data, the dataset is not intended for LiDAR odometry
evaluation. The ground-truth poses for the cameras can be
produced with the development kit we provide.

E. Top-Down Semantic Ground Truth

Bird’s Eye View ground truth is challenging to obtain using
conventional methods. As previously discussed, most existing
work relies on projecting manually-annotated 3D bounding
boxes from the top-down. While this can be effective, it
relies heavily on the accuracy of the manual annotations,
and often means that occluded objects are not shown in the
BEV map, forgoing one of the key advantages of BEV over

TABLE III
BREAKDOWN OF CAMPUS MAP SEQUENCES. SPLIT OF CAR PARK AND

CAMPUS DATA, SCENARIO, TIME OF DAY AND DURATION.

Sequence Scenarioa Timeb Duration
Campus

A D A 9 m 31 s
B D A 5 m 35 s
C D A 6 m 52 s
D D A 10 m 40 s
E D A 6 m 44 s

Campus & Car Park
F D M 13 m 5 s

Car Park
G D, P A 49 m 22 s
H D, P A 38 m 41 s
I P M 6 m 25 s
J P M 2 m 30 s

K P M 4 m 32 s
L P M 5 m 42 s

M P M 2 m 2 s
N P M 2 m 13 s
O P M 5 m 25 s
P P M 3 m 12 s
Q P M 5 m 25 s
R D, P A 9 m 43 s
S P A 4 m 59 s
T P A 4 m 46 s
U P A 5 m 24 s
V P A 5 m 21 s

Total 3 h 28 m 8 s
aD = Driving, P = Parking. bM = Morning, A = Afternoon.

semantic segmentation in the image plane. To avoid these
issues, we adopt a novel solution: we developed a virtual car
park matching the dimensions of its real counterpart. High-
fidelity ground truth at many scales can then be generated
very quickly.

Parking spaces and road markings in the virtual car park are
positioned according to satellite imagery and considered static.
To produce BEV ground truth for real sequences, we must
populate the car park according to the real-world arrangement
of vehicles and reconstruct the real trajectory in the simulator.
It is useful to have automated means to achieve both tasks, as
this process must be repeated for each data capture session.

To achieve this, we begin by using hdl-slam [27] to generate
a large point cloud for the real-world car park and the
trajectory followed by the ego vehicle. Sequence G was chosen
for this, as the whole car park is fully covered. We define Xl as
poses in the resulting coordinate system such that Xl ∈ SE(2)
represents the trajectory of the vehicle through the car park.

Since the ego vehicle was fitted with a GPS receiver, we
have known lat-lon coordinates in Cartesian space Xg . We can
then determine the transformation

gTl = argmin
gTl

∑
|Xg − gTlXl| (1)

to map poses Xl to Cartesian GPS coordinates Xg . We
then define xg, xs ∈ R2, a set of manual correspondences
between Xg and points in the simulation environment’s global
coordinate frame Xs, and compute the transformation

sTg = argmin
sTg

∑
|xs − sTgxg|. (2)



Fig. 4. Top-down view of car park simulator model populated with vehicles in
bays matching their real-world counterparts. Real trajectory shown in green.

We can now define P ′
l ∈ R2 as the points in the simulation

coordinate frame such that

P ′
l =

sTg
gTl Pl (3)

where Pl are points along the trajectory interpolated to match
mounted camera image timestamps. This allows us to recreate
the original trajectory in simulation.

To produce paired data, the simulator must also be populated
to match the real-world arrangement of parked vehicles, which
requires automatically determining which spaces are occupied.
To do this, we define a non-rigid transform pTs between points
in the simulation environment’s global coordinate frame Xs

and each parking bay’s local coordinate system.
In practice, parking bays vary in length, and we accounted

for this by scaling the transformation accordingly, but here we
show the unscaled transformation without loss of generality.
We can then test each point to determine if it is in a parking
bay using

pTsP
′
l <

(
W
D

)
(4)

where the width W and depth D of the parking bay are
known. A simple point threshold is used to determine which
bays are occupied, and the simulation environment populated
accordingly.

By moving the virtual ego vehicle to each point in the
trajectory in turn, we can create a digital double of the real
data. This includes mounted camera images and top-down
BEV ground truth. The simulator is implemented in the Unity
engine, and code is provided, including tools to populate the
car park both automatically and manually as well as load
trajectories or plot them by hand. Additional implementation
details and suggestions for extensions and modifications are
available in a readme file with the dataset. The advantage
of this novel approach to BEV ground truth production is
that maps are correct, temporally consistent and can include
smaller classes that would be difficult to annotate (such as
road markings).

BEV ground truth is provided at 3 different scales to
test BEV prediction at different ranges. The provided scales
are short (0.04 m/pixel), medium (0.08 m/pixel) and long
(0.12 m/pixel). All maps are rendered at 200x200 resolution,
so the perception distances are 8 m, 16 m and 24 m respec-
tively. Approximately 40k of these maps are provided, split

Fig. 5. Examples of BEV semantic maps rendered from simulation at multiple
scales and paired with real-world car park images. Additional scales can be
rendered using the provided simulation kit.

TABLE IV
COVERAGE OF LABELS INCLUDED IN BEV GROUND TRUTH (PERCENTAGE

OF SEMANTIC MAPS COVERED FOR EACH PROVIDED SCALE).

Percentage across split (%)
Class Training Validation

S M L S M L
Driveable 71.4 39.3 30.8 76.7 42.4 33.2

Bay 14.9 32.1 35.3 12.1 32.6 36.0
Vehicle 3.2 7.7 8.4 1.4 5.4 6.0
Foliage 0.2 6.2 7.7 0.1 3.8 4.1
Marking 7.7 9.4 9.4 6.4 8.8 9.1

Null 2.6 5.3 8.4 3.3 7.0 11.6

into a 36k training set and 4k validation. Five semantic classes
are rendered by default (although this can be changed with the
provided tools). A “null” class is also added to encapsulate any
area that falls outside of the simulation environment; this is
used when the vehicle is positioned close to the edge of the car
park. It is suggested that this class should not be supervised
when training BEV predictors.

A top-down view of the simulation environment is shown
in Fig. 4. See Fig. 5 for example semantic maps. Table IV
shows the percentage of the dataset occupied by each semantic
label across the different splits. Notice that the percentage of
driveable area decreases with larger scales; this is because
the area immediately around the vehicle is typically driveable.
The validation statistics also approximately match the training
statistics, justifying the choice of split.

F. Development Kit

We provide a Python Development Kit for easy download-
ing, pre-processing and manipulation of the dataset, accessing
calibration data and processing the raw sensor data. Details
are included in the dataset’s readme file.

G. Release

The dataset and Python Development Kit are available at
cvssp.org/data/twizy data. Rosbags, split into sequences, are
available for those interested in using, for example, raw Li-
DAR packets and IMU data. For ease of use, RGB images have
been extracted, undistorted and stored in databases, and Python
tools are provided to extract them. Ground truth trajectories
are also provided.



TABLE V
SLAM AND VISUAL ODOMETRY BASELINES FOR CAMPUS MAP FOR SELECTED SEQUENCES.

Seq A Seq B Seq C Seq D Seq E
RPE ATE RPE ATE RPE ATE RPE ATE RPE ATE

ORB-SLAM 2 [28] 4.199 142.979 0.818 1.632 1.253 154.813 0.742 78.638 0.790 31.305
ORB-SLAM 3 [29] 0.718 64.567 1.387 92.127 1.232 98.876 1.095 82.355 0.547 186.601
COLMAP [25], [26] 1.620 148.98 2.834 51.780 2.095 95.886 1.354 78.637 1.393 70.356

PySLAM [30] 0.381 18.214 1.706 75.070 0.958 8.076 1.282 33.603 1.264 95.549
Single-Cam BEV-SLAM [31] 0.826 28.041 1.800 76.329 1.477 15.946 1.128 38.994 1.451 70.220
Multi-Cam BEV-SLAM [31] 0.403 21.366 1.657 57.630 1.012 8.065 0.889 33.211 0.947 56.931

TABLE VI
BASELINE PER-CLASS IOU(%) ON BEV VALIDATION SPLIT AT MULTIPLE SCALES. S = 8 M, M = 16 M, L = 24 M PERCEPTION DISTANCE.

Driveable Bay Vehicle Foliage Marking Mean
S M L S M L S M L S M L S M L S M L

PON [18] 56.7 58.9 60.2 23.3 32.4 24.2 12.4 18.3 16.9 6.8 7.1 6.9 18.4 26.3 24.1 23.5 28.6 26.5
Saha [1] 69.5 69.9 70.1 27.1 37.4 33.6 8.6 23.7 18.7 6.9 7.6 7.0 19.9 30.6 23.0 26.4 33.8 30.5

The simulation environment is available separately at
gitlab.surrey.ac.uk/cogvis/automotive-sim, and can be used to
produce additional semantic segmentation, depth maps etc.,
and to render entirely new sequences.

IV. BASELINES

To improve the usefulness of the dataset, we present base-
lines for SLAM and BEV estimation tasks.

A. SLAM & Visual Odometry

We use ORB-SLAM [28], [29] to produce SLAM and visual
odometry baselines for Campus Map. In addition, we produce
trajectories using COLMAP [25], [26] and PySLAM [30].
Front-camera images are used in the experiments. BEV-SLAM
[31] is also evaluated to demonstrate the utility of including
BEV maps alongside trajectories. The medium (16 m) BEV
scale was used for this evaluation. We use the evo evaluation
toolkit [32] and calculate the RMSE of the Relative Pose Error
(RPE) and Absolute Trajectory Error (ATE) to evaluate the
performance of the baseline methods.

B. BEV

For the Bird’s Eye View prediction tasks, we train two
learning-based BEV predictors: a Pyramid Occupancy Net-
work [18] and a spatial transformer network [1]. We train for
120 epochs and present results on the BEV validation split for
the three scales provided in the initial release of the dataset.

V. RESULTS

The results of the baseline methods are shown in Table
V. ORB-SLAM performs well for sections of the sequences;
however, it frequently loses track and creates a new map
from scratch. In general, ORB-SLAM3 outperforms ORB-
SLAM2, which can be expected. PySLAM and COLMAP
offer additional baselines with comparable performance.

A. BEV

We evaluate the two baselines across the 3 BEV vali-
dation splits provided in the dataset: S (0.04 m/pixel), M
(0.08 m/pixel) and L (0.12 m/pixel). The per-class IoUs are
presented in Table VI. We observe that the approaches perform
comparably to results on the NuScenes validation split, with

Fig. 6. Qualitative BEV validation results on the Campus Map dataset. Input
images, prediction (logits > 0.5) and ground truth.

some improvement; we suggest that this is due to the accuracy
of the BEV maps produced by our novel simulation method,
rather than the use of bounding boxes projected from the top-
down. We also observe that the networks perform best at the
medium scale. We suggest this is due to lack of context at the
small scale, and a greater number of occlusions at the large
scale, making the BEV prediction task challenging.

Lastly, we present a selection of qualitative examples of
BEV prediction on the Campus Map dataset in Fig. 6. Notice
the benefit to overall scene understanding and qualitative map
quality obtained by predicting road markings in addition to
vehicle placements.

VI. CONCLUSION

We have introduced Campus Map, a new dataset with a
focus on SLAM, Visual Odometry and BEV prediction. Its
long trajectories with multiple loops and parking sequences
are unique, and we have adopted a novel approach to produce
BEV ground truth to match real-world images, resulting in
more accurate and higher-fidelity BEV maps than are available
in other datasets.

We hope that the introduction of this dataset and related
tools will encourage research in learning-based navigation
systems for autonomous driving, and we look forward to
seeing the dataset used by the community.
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