
Learning Adaptive Neighborhoods for Graph Neural Networks

Avishkar Saha1, Oscar Mendez1, Chris Russell2, Richard Bowden1

1Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, UK
2 Amazon, Tubingen, Germany

{a.saha, o.mendez, r.bowden}@surrey.ac.uk, cmruss@amazon.com

Abstract

Graph convolutional networks (GCNs) enable end-to-end
learning on graph structured data. However, many works
assume a given graph structure. When the input graph is
noisy or unavailable, one approach is to construct or learn a
latent graph structure. These methods typically fix the choice
of node degree for the entire graph, which is suboptimal.
Instead, we propose a novel end-to-end differentiable graph
generator which builds graph topologies where each node
selects both its neighborhood and its size. Our module can
be readily integrated into existing pipelines involving graph
convolution operations, replacing the predetermined or exist-
ing adjacency matrix with one that is learned, and optimized,
as part of the general objective. As such it is applicable to
any GCN. We integrate our module into trajectory prediction,
point cloud classification and node classification pipelines
resulting in improved accuracy over other structure-learning
methods across a wide range of datasets and GCN backbones.
We will release the code.

1. Introduction
The success of Graph Neural Networks (GNNs) [6, 1, 24],

has led to a surge in graph-based representation learning.
GNNs provide an efficient framework to learn from graph-
structured data, making them widely applicable where data
can be represented as a relation or interaction system. They
have been effectively applied in a wide range of tasks [25],
[33] including particle physics [4] and protein science [10].

In a GNN, each node iteratively updates its state by inter-
acting with its neighbors, typically through message passing.
However, a fundamental limitation of such architectures is
the assumption that the underlying graph is provided. While
node or edge features may be updated during message pass-
ing, the graph topology remains fixed, and its choice may be
suboptimal for various reasons. For instance, when classify-
ing nodes on a citation network, an edge connecting nodes of
different classes can diminish classification accuracy. These
edges can degrade performance by propagating irrelevant

information across the graph. When no graph is explicitly
provided, such domain knowledge can be exploited to learn
structures optimized for the task at hand [8, 3, 9, 7]. However,
in tasks where knowledge of the optimal graph structure is
unknown, one common practice is to generate a k-nearest
neighbor (k-NN) graph. In such cases, k is a hyperparameter
and tuned to find the model with the best performance. For
many applications, fixing k is overly restrictive as the opti-
mal choice of k may vary for each node in the graph. While
there has been an emergence of approaches which learn the
graph structure for use in downstream GNNs [43, 13, 15],
all of them treat the node degree k as a fixed hyperparameter.

We propose a general differentiable graph-generator
(DGG) module for learning graph topology with or with-
out an initial edge structure. Rather than learning graphs
with fixed node degrees k, our module generates local topolo-
gies with an adaptive neighborhood size. This module can be
placed within any graph convolutional network, and jointly
optimized with the rest of the network’s parameters, learning
topologies which favor the downstream task without hyper-
parameter selection or indeed any additional training signal.
The primary contributions of this paper are as follows:

1. We propose a novel, differentiable graph-generator
(DGG) module which jointly optimizes both the neigh-
borhood size, and the edges that should belong to each
neighborhood. Note a key limitation of existing ap-
proaches [43, 15, 13, 8, 3, 7, 37] is their inability to
learn neighborhood sizes.

2. Our DGG module is directly integrable into any pipeline
involving graph convolutions, where either the given
adjacency matrix is noisy, or unavailable and must be
determined heuristically. In both cases, our DGG gener-
ates the adjacency matrix as part of the GNN training
and can be trained end-to-end to optimize performance
on the downstream task. Should a good graph struc-
ture be known, the generated adjacency matrix can be
learned to remain close to it while optimizing perfor-
mance.

3. To demonstrate the power of the approach, we integrate
our DGG into a range of SOTA pipelines — without



modification — across different datasets in trajectory
prediction, point cloud classification and node classifi-
cation and show improvements in model accuracy.

2. Related work
Graph Representation Learning: GNNs [1] are a broad

class of neural architectures for modelling data which can be
represented as a set of nodes and relations (edges). Most use
message-passing to build node representations by aggregat-
ing neighborhood information. A common formulation is
the Graph Convolution Network (GCNs) which generalizes
the convolution operation to graphs [16, 5, 38, 11]. More
recently, the Graph Attention Network (GAT) [35] utilizes a
self-attention mechanism to aggregate neighborhood infor-
mation. However, these works assumed that the underlying
graph structure is fixed in advance, with the graph convolu-
tions learning features that describe pre-existing nodes and
edges. In contrast, we simultaneously learn the graph struc-
ture while using our generated adjacency matrix in down-
stream graph convolutions. The generated graph topology
of our module is jointly optimized alongside other network
parameters with feedback signals from the downstream task.

Graph Structure Learning: In many applications, the
optimal graph is unknown, and a graph is constructed be-
fore training a GNN. One question to ask is: “Why isn’t
a fully-connected graph suitable?” Constructing adjacency
matrices weighted by distance or even an attention mecha-
nism [35] over a fully-connected graph incorporates many
task-irrelevant edges, even if their weights are small. While
an attention mechanism can zero these out — i.e., discover
a subgraph within the complete graph — discovering this
subgraph is challenging given the combinatorial complex-
ity of graphs. A common remedy is to sparsify a complete
graph by selecting the k-nearest neighbors (k-NN). Although
this can prevent the propagation of irrelevant information
between nodes, the topology of the constructed graph may
have no relation to the downstream task. Not only can irrele-
vant edges still exist, but pairs of relevant nodes may remain
unconnected and can lead GCNs to learn representations
with poor generalization [43].

To overcome this, recent works constructed bespoke
frameworks which learn the graph’s adjacency matrix for
specific tasks. For instance, in human pose estimation, some
methods [31, 20] treat the elements of the adjacency matrix
as a set of learnable weights. However, as each element
is treated as a learnable parameter, the learned adjacency
matrix is unlinked to the representation space and can only
be used in tasks where there is a known correspondence be-
tween training and test nodes. This is not the case for many
vision and graph tasks. Others have [15, 7, 17] employed
variational inference frameworks to sample the entire adja-
cency matrix. Franceschi et al. [9] jointly learned the graph
structure and the parameters of a GCN by approximately

solving a bilevel program. NodeFormer [37] and IDGL [3]
instead learned latent topologies using multi-head attention
[34]. There are two key differences between these methods
and ours. First, we simplify optimization by factorizing the
adjacency matrix distribution from which we sample the
neighborhood for each node, as opposed to sampling the en-
tire matrix. Second, these methods are bespoke frameworks
specifically designed for node and graph classification. They
leverage knowledge of the task in their loss functions, such
as graph smoothness and sparsity [3]. As these methods are
tailored to graph-based tasks only, they cannot be dropped
into any GCN without modification, limiting their applicabil-
ity to non-graph tasks like vision. In contrast, our module is
both GCN and task-agnostic, and can be integrated into any
GCN pipeline and trained using the downstream task loss.

In contrast to the bespoke frameworks above, recent meth-
ods [43, 21, 13] took a more module-based approach similar
to ours. As these approaches learned the graph structure
entirely from the downstream task loss, there is less domain
knowledge to leverage compared to methods constructed
for specific tasks. Consequently, sparsity is often induced
through a k-NN graph. Here, k is a scalar hyperparameter
selected to control the learned graph’s node degree.

Unlike these works, we generate neighborhoods of vary-
ing size by learning a distribution over the edges and over the
node degree k. Each node samples its top-k neighbors (where
k is now a continuous variable), allowing it to individually
select its neighborhood and the edges that should belong to
it, in a differentiable manner. Additionally, a known ‘ideal’
graph structure can be used as intermediate supervision to
further constrain the latent space.

3. Method
Here, we provide details of our differentiable graph gen-

eration (DGG) module. We begin with notation and the
statistical learning framework guiding its design, before de-
scribing the module, and how it is combined with graph
convolutional backbone architectures.

Notation We represent a graph of N nodes as G =
(V,E): where V is the set of nodes or vertices, and E the
edge set. A graph’s structure can be described by its adja-
cency matrix A, with aij = 1 if an edge connects nodes i
and j and aij = 0 otherwise. This binary adjacency matrix
A is directed, and potentially asymmetrical.

Problem definition We reformulate the baseline predic-
tion task based on a fixed graph with an adaptive variant
where the graph is learned. Typically, such baseline tasks
make learned predictions Y given a set of input features X
and a graph structure A of node degree k:

Y = Qϕ(X,A(k)), (1)

where Qϕ is an end-to-end neural network parameterized
by learnable weights ϕ. These formulations require a pre-
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Figure 1. (Left) A typical prediction task using graphs Y =
Qϕ(X,A) where A and k are predetermined. (Right) Our refor-
mulation P (Y |X) ≈

∑
A

∑
k Qϕ(X,A)Qθ(A|X, k)Qρ(k|X)

which learns a distribution over A and k alongside the downstream
task.

determined graph-structure A(k), typically based on choice
of node degree k, and take A(k) as additional input to the
model. In contrast, we learn both A and k in an end-to-end
manner, and use them to make predictions Y . As graphs are
inherently binary, with edges either present or absent, they
are not directly optimizable using gradient descent. Instead,
we consider a distribution of graphs, G, which then induce
a distribution of labels, Y , in the downstream task. This
distribution takes the factorized form:

P (Y |X) =
∑
A∈G

∑
k∈N|V |

Qϕ(X,A)P (A|X, k)P (k|X), (2)

where P (k|X) is the distribution of node degree k given X
(i.e., the choice of k in k−NN), P (A|X, k) the distribution
of graph structures A conditioned on the learned k and input
X , and P (Y |X) is the downstream distribution of labels
conditioned on data X . For clarity, the adjacency A repre-
sents a subgraph of a complete graph over X , and k is a
multidimensional variable controlling the number of top-k
neighbors for each node individually. To avoid learning
individual probabilities for each possible graph A in an expo-
nential state space, we further assume that P (A|X, k) has a
factorized distribution where each neighborhood is sampled
independently, i.e. P (A|X, k) =

∏
i∈V P (ai|X, k).

We model the distributions over adjacencies A and k with
tractable functions:

P (Y |X) ≈
∑
A

∑
k

Qϕ(X,A)Qθ(A|X, k)Qρ(k|X), (3)

where Qθ and Qρ are functions parameterized by θ and ρ to
approximate P (A|X, k) and P (k|X), respectively. In Fig.
1, we illustrate the functions of our method compared to the
typical prediction task in Eq. 1.

Using this formulation, we train the entire system end-
to-end to minimize the expected loss when sampling Y .
This can be efficiently performed using stochastic gradient
descent. In the forward pass, we first sample a subgraph/set
of nodes X from the space of datapoints, and conditioning
on X we sample A and compute the associated label Y .
When computing the gradient step, we update Qϕ(X,A)
as normal and update the distributions using two standard
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Figure 2. Our differentiable graph-generator (DGG) takes input
nodes X and generates an adjacency matrix A. It consists of: (1)
Degree-estimator: generates samples of ki for each node, (2)
Edge-ranker: generates edge samples ei for each node and (3)
Top-k selector: takes ki and edge samples ei and selects top-k
elements in a differentiable manner to output a final adjacency A.

reparametrization tricks: one for discrete variables [12] such
that Qθ(A|X, k) can generate differentiable graph samples
A′, and another for continuous variables [14] of k′ drawn
from Qρ(k|X):

P (Y |X) ≈
∑
A′

∑
k′

Qϕ(X,A′),

where A′ ∼ Qθ(A|X, k′) and k′ ∼ Qρ(k|X).

(4)

As both the graph structure A′ and variable k′ samplers
are differentiable, our DGG module can be readily inte-
grated into pipelines involving graph convolutions and jointly
trained end-to-end.

3.1. Differentiable Graph Generation

Our differentiable graph-generator (DGG) takes a set of
nodes V = {v1, ..., vN} with d-dimensional features X ∈
RN×d and generates a (potentially) asymmetric adjacency
matrix A ∈ RN×N . This adjacency matrix can be used
directly in any downstream graph convolution operation (see
Module Instantiation below). As illustrated by Fig. 2, the
DGG module consists of four components:

1. Node encoding: this component projects the input
node features X ∈ RN×d to a latent representation
X̂ ∈ RN×d′

, which forms the primary representation
space of the model.

2. Edge ranking: this takes the latent node features
X̂ ∈ RN×d′

and generates a matrix representing
a stochastic ordering of edges E ∈ RN×N drawn
from a learned distribution over the edge-probabilities
(A′ ∼ Qθ(A|X, k′) from Eq. 4).

3. Degree estimation: this component estimates the
number of neighbors each individual node is con-
nected to. It takes as input the latent node features
X̂ ∈ RN×d′

and generates random samples k ∈ RN

drawn from a learned distribution over the node degree
(k′ ∼ Qρ(k|X) from Eq. 4).

4. Differentiable top-k edge selector: takes k and the
edge-samples e and performs a soft thresholding that
probabilistically selects the most important elements,



based on the output of the Edge-ranking to output an
adjacency matrix A ∈ RN×N .

We now explain these steps in more detail:
Node encoding We construct a single latent space from the
input node features, and use it for edge ranking and degree
estimation. We first map input node features X ∈ RN×d

into latent features X̂ ∈ RN×d′
using a multi-layer percep-

tron (MLP) Nϕ with weights ϕ: X̂ = Nϕ(X). These latent
features form the input for the rest of the DGG. Further-
more, they are output by the DGG and passed to the GCN
downstream to prevent vanishing gradients.
Edge ranking The edge ranking returns an implicit distribu-
tion of edge orderings, from which we sample the neighbor-
hood for each node. For each node vi, it draws a set of scores
ei = {eij}Nj quantifying its relevance to all nodes vj ∈ V ,
including itself. To generate differentiable edge samples ei,
we use the Gumbel-Softmax [12].

Before locally scoring each edge embedding eij ∈ ei for
node vi, we implement a global stage which constructs edge
embeddings with both local and global dependencies:

1. Using latent node features x̂i ∈ X̂, determine local
edge embeddings ĉij ∈ Rd′

by passing each pair of
node features through an MLP lϕ: ĉij = lϕ(x̂i, x̂j).
These embeddings now form a complete graph G over
the nodes, with each edge attributed ĉij .

2. As each edge embedding ĉij ∈ C is calculated inde-
pendently of the others, we refine it to account for its
dependencies to adjacent edges. We do this through
edge-to-edge message passing. However, we avoid com-
puting dependencies between all edges of the complete
graph for two reasons: first, some edges may not have
any common nodes, so passing messages between them
could propagate irrelevant information, and secondly,
it could be prohibitely expensive. To restrict message-
passing between adjacent edges only, we first compute
the adjoint graph H of the complete graph G. In the
adjoint H, each edge is associated with a node, and
two nodes are connected if and only if their correspond-
ing edges in G have a node in common. The adjoint’s
adjacency AH can be calculated using its incidence
matrix L, AH = LTL− 2I . In the adjoint, each node
embedding ĉi is then updated using an average of its
neighboring nodes ĉj and passed through an MLP hϕ:

ĉ′i =
∑

j∈N (i)

hϕ(ĉi ∥ ci − cj) (5)

Having computed edge embeddings C ∈ RN×N×d′
with

global dependencies, we rank these edges for each node.
Without loss of generality, we focus on a single node vi ∈ V ,
with latent features x̂i ∈ Rd. We implement the approxi-
mation function Qθ(A|X, k) of the Edge-ranker as follows:

1. Using edge embeddings ĉij ∈ Rd′
, calculate edge prob-

abilities pi ∈ RN for node vi using an MLP mθ:

pi = {mθ(ĉij)|∀j ∈ N}. (6)

Each element pij ∈ pi represents a similarity mea-
sure between the latent features of node vi and vj . In
practice, any distance measure can be used here.

2. Using Gumbel-Softmax over the edge probabilities
pi ∈ RN , we generate differentiable samples ei ∈ RN

with Gumbel noise g:

ei =

{
exp((log(pij) + gi) + τ)∑
j exp((log(pij) + gi) + τ)

∣∣∣∣∀j ∈ N

}
,

gi ∼ Gumbel(0, 1)

(7)

where τ is a temperature hyperparameter controlling
the interpolation between a discrete one-hot categorical
distribution and a continuous categorical density. When
τ → 0, the edge energies eij ∈ ei approach a degen-
erate distribution. The temperature τ is important for
inducing sparsity, but given the exponential function,
this results in a single element in ei given much more
weighting than the rest, i.e., it approaches a one-hot
argmax over ei. As we want a variable number of edges
to be given higher importance and others to be close to
zero, we select a higher temperature and use the top-k
selection procedure (detailed below) to induce sparsity.
This additionally avoids the high-variance gradients
induced by lower temperatures.

Degree estimation A key limitation of existing graph gen-
eration methods [13, 15, 43] is their use of a fixed node
degree k across the entire graph. This can be suboptimal as
mentioned previously. In our approach, rather than fixing k
for the entire graph, we sample it per node from a learned
distribution. Focusing on a single node as before, the approx-
imation function Qρ(k|X) of the Degree-estimator works as
follows:

1. We approximate the distribution of latent node features
x̂i ∈ Rd following a VAE-like formulation [14]. We
encode its mean µi ∈ Rd and variance σi ∈ Rd using
two MLPs Mρ and Sρ, and then reparametrize with
noise ϵ to obtain latent variable zi ∈ Rd:

µi,σi = Mρ(x̂i), Sρ(x̂i),

zi = µi + ϵiσi, ϵi ∼ N (0, 1).
(8)

2. Finally, we concatenate each latent variable zi ∈ Rd

with the L1-norm of the edge samples hi = ||ei||1 and
decode it into a scalar ki ∈ R with another MLP Dρ,
representing a continuous relaxation of the neighbor-
hood size for node vi:

ki = Dρ(zi) + hi. (9)



Since hi is a summation of a node’s edge probabilities,
it can be understood as representing an initial estimate
of the node degree which is then improved by combin-
ing with a second node representation zi based entirely
on the node’s features. Using the edge samples to esti-
mate the node degree links these representation spaces
back to the primary latent space of node features X̂.

Top-k Edge-Selector Having sampled edge weights, and
node degrees k, this function selects the top-k edges for
each node. The top-k operation, i.e. finding the indices
corresponding to the k largest elements in a set of values, is
a piecewise constant function and cannot be directly used in
gradient-based optimization. Previous work [40] framed the
top-k operation as an optimal transport problem, providing a
smoothed top-k approximator. However, as their function is
only defined for discrete values of k it cannot be optimized
with gradient descent. As an alternative that is differentiable
with respect to k, we relax the discrete constraint on k, and
instead use it to control the x-axis value of the inflection
point on a smoothed-Heaviside function (Fig. 3). For a node
vi ∈ V , of smoothed degree ki ∈ R and edges ei ∈ RN , our
Top-k Edge Selector outputs an adjacency vector ai ∈ RN

where the k largest elements from ei are close to 1, and the
rest close to 0. Focusing on a single node vi as before, the
implementation is as follows:

1. Draw 1D input points di = {1, ..., N} where N is the
number of nodes in V .

2. Pass di through a hyperbolic tangent (tanh) which
serves as a smooth approximation of the Heaviside
function:

hi = 1− 0.5 ∗
{
1 + tanh(λ−1di − λ−1ki)

}
, (10)

here λ > 0 is a temperature parameter controlling the
gradient of the function’s inflection point. As λ →
0, the smooth function approaches the Heaviside step
function. The first-k values in hi = {hij}Nj will now
be closer to 1, while the rest closer to 0.

3. Finally, for each node i we sort its edge-energies ei =
{eij}Nj in descending order, multiply by hi = {hij}Nj
and then restore the original order to obtain the final
adjacency vector ai = {aij}Nj . Stacking ai over all
nodes vi ∈ V creates the final adjacency matrix A ∈
RN×N .

Symmetric adjacency matrix If the adjacency matrix A
must be symmetric, this can be enforced by replacing it with
Asym where: Asym = (A+AT )/2.
Straight through Top-k Edge Selector To make our final
adjacency matrix A ∈ RN×N discrete, we follow the trick
used in the Straight-Through Gumbel Softmax [12]: we out-
put the discretized version of A in the forward pass and the
continuous version in the backwards pass. For the discretized
version in the forward pass, we replace the smooth-Heaviside
function in Eq. 10 with a step function.

Module Instantiation: The DGG module can be easily
combined with any graph convolution operation. A typ-
ical graph convolution [16] is defined as follows: X′ =
D̂−1/2ÂD̂−1/2XΘ. Here, Â = A + I denotes the adja-
cency matrix with inserted self-loops, D̂ its diagonal degree
matrix and Θ its weights. To use this graph convolution
with the DGG, we simply use our module to generate the
adjacency matrix Â.

4. Experiments
We evaluate our DGG on node classification, point cloud

classification and trajectory prediction. We chose these tasks
as they demonstrate the wide applicability of our module:
(1) graphs for node classification require models that can
generate edge structures from noisy input graphs, (2) point
cloud classification tasks have no input graph structures
and (3) trajectory prediction additionally requires models
which can handle a variable number of nodes per batch. We
compare against state-of-the-art structure learning methods
in each domain. As far as we know, our structure-learning
approach is the only one that can be easily applied without
modification to any GCN pipeline in such a range of tasks.

4.1. Node classification

Beginning with node classification, we conduct ablations
examining the behavior of different parts of the DGG, fol-
lowed by comparisons to other state-of-the-art structure
learning approaches. In the supplementary we include exper-
iments investigating the effect of the DGG on downstream
models under the addition of noisy edges to input graphs.
We perform these experiments under both transductive and
inductive scenarios, as well as semi-supervised and fully-
supervised settings.

Datasets In the transductive setting, we evaluate on three
citation benchmark datasets Cora, Citeseer and Pubmed [26]
introduced by [41]. In an inductive setting, we evaluate on
Reddit [42] and PPI [11]. Further dataset details can be found
in the supplementary. Baselines and Implementation As
our DGG is a GCN-agnostic module that can be integrated
alongside any graph convolution operation, we compare its
performance to both other GCN-agnostic approaches and
bespoke structure-learning architectures. To compare against
other GCN-agnostic methods, we int egrate our DGG into
four representative GCN backbones: GCN [16], GraphSage
[11], GAT [35] and GCNII [2]. On these backbones, we com-
pare against other GCN-agnostic structure learning methods:
DropEdge [29], NeuralSparse [43], PTDNet [21]. Then we
compare against bespoke architectures IDGL [3], LDS [9],
SLAPS [8], NodeFormer [37] and VGCN [7]. To make our
comparison fair against these bespoke architectures which
learn the structure specifically for node classification, we
integrate our DGG into a GCN backbone that is compara-
ble to the bespoke architecture in design. Please see the
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Figure 3. The differentiable Top-k Edge Selector. This component uses the node degree ki output by the Degree Estimator to control the
inflection point on a smooth-Heaviside function and uses it to select the top edges from ei output by the Edge Ranker. This produces an
adjacency vector ai for each node, and stacking ai across all nodes produces the final adjacency matrix A.

supplementary for implementation details.
Training details A node classification model partitions

the latent space of node embeddings into separate classes.
However, when message-passing, there is one phenomenon
of the input graph that can limit classification accuracy: two
nodes with different classes but similar features and an edge
connecting them. Classifying these nodes is challenging
as their feature similarity can be compounded by passing
messages between them. The goal of the DGG is to move
such nodes apart in the latent space such that there is no edge
and communication between them. However, traversing
the loss landscape from the initial random initialization of
the network to one where the model is able to discriminate
between these nodes can take several iterations using only the
downstream classification loss. To speed up training, we add
an intermediate loss to further partition the latent space. We
do this by supervising the adjacency matrix generated by the
DGG to remove all edges between classes and only maintain
those within a class. We then anneal this loss over the training
cycle, eventually leaving only the downstream classification
loss. We provide more details in the supplementary.

4.1.1 Ablations

In Table 1, we explore the effect of disabling different com-
ponents of our DGG module when integrated into a GCN
[16] for node classification: 1. DGG without Degree Estima-
tion and Differentiable Top-k Edge Selection — we remove
the Degree Estimator and instead fix k to select the top-k
stochastically ordered edges. 2. DGG with deterministic
Edge Ranking — we remove the noise in Eq. 7 of the Edge
Ranker. 3. DGG with deterministic Degree Estimation — we
remove the noise in Eq. 8 of the Degree Estimator. We per-
form these on Cora [41] and omit the annealed intermediate
loss during training.

Table 1 shows the benefit of learning a distribution over
the node degree. When learning it deterministically, the
accuracy decreases by 0.5%. This becomes significantly
worse when the node degree is fixed for the entire graph

Table 1. Ablation study. DGG integrated into a GCN for node
classification on Cora [41].

Model Accuracy
Fixed node degree, k = {1, 5, 10, 100} {49.7, 78.9, 55.0, 37.0}

With deterministic Edge Ranking and Degree Estimation 82.4
With deterministic Edge Ranking 82.7

With deterministic Degree Estimation 82.8
DGG 83.2

rather than learned per node. Note also, the sensitivity with
respect to choice of k. A fixed node degree of k = 10 or
k = 1 reduces accuracy by almost 30% vs a graph of 5.
This is due to the graph convolution operation: as it has no
adaptive weighting mechanism for a node’s neighborhood,
each of the neighbors is given the same weight. Naturally,
this leads to information sharing between unrelated nodes,
reducing the quality of node representation after message-
passing. In contrast, by learning a distribution over the
node degree we are able to select only the most relevant
neighbors, even though these are then weighted equally in
the graph convolution. Finally, the inclusion of noise in any
of the DGG components does increase accuracy, but only by
approximately 0.5% — demonstrating both its benefit and
the robustness of the DGG without it.

4.1.2 Results

Comparison to GCN-agnostic modules In Table 2 we
compare against GCN-agnostic structure learning methods.
For fair comparison , we present two versions of our method:
DGG-wl trained with the downstream loss only and DGG*
trained with both the downstream and intermediate loss.

DGG improves performance across all baselines and
datasets. Against other approaches, DGG-wl generally out-
performs the state-of-the-art NeuralSparse and PTDNet-wl
(both trained with only the downstream loss). This can be
attributed to our method for modelling sparsity, which ex-
plicitly lets each node to select the size of its neighborhood
based on the downstream training signal. This training sig-
nal helps partition the node representation space, while the
estimated node-degree additionally prevents communication



Table 2. Semi-supervised node classification compared to other
architecture agnostic SOTA structure learning methods. We com-
pare against prior methods reported in [21, 43, 2], using the official
results where available. Those with ‘-’ have no official results or
we ran into out-of-memory errors.

Backbone Method Cora Citeseer Pubmed Reddit PPI

G
C

N

Original 81.1 70.3 79.0 92.2 53.2
DropEdge 80.9 72.2 78.5 96.1 54.8
NeuralSparse 82.1 71.5 78.8 96.6 65.1
PTDNet-wl 82.4 71.7 79.1 - 75.2
DGG-wl 83.2 72.6 80.2 96.8 77.1
PTDNet-wl + low rank 82.8 72.7 79.8 - 80.3
DGG* 84.1 74.9 84.0 97.3 81.6

G
ra

ph
Sa

ge

Original 79.2 67.6 76.7 93.8 61.8
NeuralSparse 79.3 67.4 75.1 96.7 62.6
PTDNet-wl 79.4 67.8 77.0 - 64.5
DGG-wl 79.4 68.2 77.6 96.6 65.3
PTDNet-wl + low rank 80.3 67.9 77.1 - 64.8
DGG* 80.5 70.8 80.2 96.9 67.3

G
A

T

Original 83.0 72.1 79.0 - 97.3
DropEdge 83.2 70.9 77.9 - 85.1
NeuralSparse 83.4 72.4 78.0 - 92.1
PTDNet-wl 83.7 72.3 79.2 - 97.8
DGG-wl 84.6 73.2 79.7 - 97.4
PTDNet-wl + low rank 84.4 73.7 79.3 - 98.0
DGG* 85.3 76.4 82.0 - 97.6

G
C

N
II

Original 85.3 73.2 80.2 - 99.5
DropEdge 84.9 73.4 79.4 - 99.0
DGG-wl 86.9 74.5 81.5 - 99.6
DGG* 87.8 75.7 81.9 - 99.7

between distant nodes. Although PTDNet-wl does this im-
plicitly through its attention mechanism, discovering this
sparse subgraph of the input graph is challenging given its
complexity. NeuralSparse on the other hand selects k for
its entire generated subgraph, which is both suboptimal and
requires additional hyperparameter tuning.

Table 3. Adjacency matrix constraints: our intermediate annealed
loss vs. PTDNet’s low rank regularizer [21] for semi-supervised
node classification with a GCN backbone.

Method Cora Citeseer Pubmed PPI
DGG-wl 86.8 74.4 81.2 99.5
DGG-wl + low rank 87.1 75.3 81.4 99.5
DGG-wl + int. loss (aka DGG*) 87.7 75.8 81.9 99.7
DGG-wl + int. loss + low rank 87.8 76.2 82.1 99.7

Comparing methods which enforce additional constraints
on the adjacency matrix, DGG* demonstrates larger accu-
racy gains than PTDNet*. PTDNet* regularizes its adjacency
matrix to be of low-rank, as previous work [30] has shown
that the rank of an adjacency matrix can reflect the number of
clusters. This regularizer reasons about the graph’s topology
globally. While this may aid generalization, the accuracy
difference may then be attributed to our intermediate loss pro-
viding stronger signals to discriminate between nodes with
similar features but different classes (and therefore remove
the edges between them). Furthermore, their regularizer uses
the sum of the top-k singular values during training, where k
again is a hyperparameter tuned to each dataset individually.
Our method requires no additional parameters to be chosen.

Finally in Table 3 we compare the low-rank constraint of
PTDNet with our intermediate annealed loss. Our interme-

Table 4. Node classification results against bespoke SOTA architec-
tures which learn the graph structure.

Model Cora Citeseer
Setting 1 IDGL [3] 84.5 74.1
original DGG* + GAT 85.4 76.4
Setting 2 LDS [9] 71.5 73.3
Input graph = none SLAPS [8] 74.2 73.1
train split = {train + 1/2 val} DGG* + GCN 82.4 74.0
Setting 3 NodeFormer [37] 88.7 76.2
split = 0.5/0.25/0.25 DGG* + GAT 90.1 77.8
Setting 4 VGCN [7] 85.9 76.5
train split = {train + 1/2 val} DGG* + GAT 87.6 77.1

Table 5. ADE/FDE on the ETH & UCY datasets using Social-
STGCNN (first table), and Stanford Drone Dataset (SDD) using
DAGNet (second table). For DGM [13], k = 2 for both datasets.

Dataset Original DGM [13] Gain (%) DGG Gain (%)
ADE↓ FDE ↓ ADE ↑ FDE↑ ADE ↑ FDE ↑

ETH 0.64 1.11 2.4% 6.4% 7.8% 21.4%
Hotel 0.49 0.85 14.2% 18.9% 22.7% 37.5%
Univ 0.44 0.79 6.2% 3.5% 11.8% 14.9%
Zara1 0.34 0.53 3.8% 13.7% 7.7% 23.8%
Zara2 0.30 0.48 5.0% 5.0% 12.8% 17.3%
Mean 0.44 0.75 6.3% 10.6% 12.6% 23.0%
SDD 0.53 1.04 1.9% 3.0% 10.9% 9.5%

diate loss (‘DGG-wl + int. loss’) outperforms the low-rank
constraint (‘DGG-wl + low rank’). However, using both
constraints (‘DGG-wl + int. loss + low rank’) increases
classification accuracy further, suggesting the edges removed
by both methods are complementary.

Comparison with bespoke architectures In Table 4 we
compare against bespoke architectures specifically designed
for node classification. As each of these methods uses dif-
ferent experiment settings, we train our DGG-integrated
architecture separately for each. See the supplementary for
details on each setting and reasons for our choice of back-
bone. Our performance gains here can generally be attributed
to factors: (1) our intermediate loss on the adjacency matrix
and (2) our adjacency matrix factorizations where we learn
the neighborhood for each node. Our intermediate loss par-
ticularly benefits from the experimental settings adopted by
the other methods as they use larger training splits involving
half the validation graph. Additionally, constructing the adja-
cency matrix by learning nodewise neighborhoods restricts
the graph search space, making optimization easier. However,
we note that some of these other methods are designed for
node-classification on graphs which are orders of magnitude
larger than Cora and Citeseer. In such cases, factorizing the
adjacency per node, as we do, may be unfeasible.

4.2. Trajectory prediction

We evaluate on trajectory prediction tasks as these have
neither an input or ground truth graph structure, thus the
ideal structure has to be generated entirely from the data. We



Table 6. ADE/FDE metrics on the SportVU Basketball dataset using
DAGNet. For DGM [13], k = 3.

Original DGM [13] Gain (%) DGG Gain (%)
Split Team ADE FDE ADE FDE ADE FDE

10-40 ATK 2.74 4.29 -0.4% -0.2% 6.7% 5.1%
DEF 2.09 2.97 -0.5% -0.1% 9.7% 6.4%

20-30 ATK 2.03 3.98 0.1% 0.1% 7.2% 8.2%
DEF 1.53 3.07 0.2% 0.3% 21.4% 19.1%

40-10 ATK 0.81 1.71 1.3% 0.9% 15.5% 17.0%
DEF 0.72 1.49 0.8% 0.8% 10.9% 16.2%

Mean — 1.65 2.92 0.3% 0.3% 11.9% 12.0%

consider four datasets covering a range of scenarios from
basketball to crowded urban environments. On each, we
integrate our DGG into a SOTA GCN trajectory prediction
pipeline and compare results to another task-agnostic struc-
ture learning approach, DGM [13].

Datasets We evaluate on four trajectory prediction bench-
marks. 1. ETH [27] and UCY [18] — 5 subsets of widely
used real-world pedestrian trajectories. 2. STATS SportVU
[32] — multiple NBA seasons tracking trajectories of bas-
ketball players over a game. Stanford Drone Dataset (SDD)
[28] — top-down scenes across multiple areas at Stanford
University. Further details on these datasets can be found in
the supplementary. Baselines and Implementation We inte-
grate our DGG module into two state-of-the-art trajectory
prediction pipelines: Social-STGCNN [22] and DAGNet
[23]. Our DGG is placed within both networks to generate
the adjacency matrix on the fly and forms part of its forward
and backward pass. Please see the supplementary for imple-
mentation details. Evaluation metrics. Model performance
is measured with Average Displacement Error (ADE) and
Final Displacement Error (FDE). ADE measures the aver-
age Euclidean distance along the entire predicted trajectory,
while the FDE is that of the last timestep only.

4.2.1 Results

In Table 5, the integration of our DGG into Social-STGCNN
reduces ADE/FDE compared to both the baseline and the
integration of DGM. In Table 5 and 6 we demonstrate sim-
ilar gains over DGM when integrated into DAGNet. First,
this shows the benefit of inducing sparsity when message-
passing over a distance weighted adjacency matrix like
Social-STGCNN or even an attention-mechanism like DAG-
Net. The larger error reduction of our DGG compared to
DGM may be attributed to DGM’s use of a fixed node-degree
k across its learned graph. While this can prevent the prop-
agation of irrelevant information across the graph in some
cases, in others it might limit the context available to certain
nodes. We provide qualitative analysis in the supplementary.

4.3. Point Cloud Classification

We evaluate on another vision task of point cloud classifi-
cation for models which use GCNs. This task differs from
the previous two as predictions are made for the entire graph

Table 7. Point Cloud classification on ModelNet40 with our module
and DGM [13] integrated into two different point cloud labelling
architectures.

Baseline Method Mean degree S.D. degree Accuracy
ResGCN [19] Original 9 0 93.3

DGM [13] 20 0 93.5
DGG 14.8 7.4 94.4

DGCNN [36] Original 40 0 92.9
DGM [13] 20 0 93.3
DGG 19.3 5.2 93.8

as opposed to node-wise. As with our trajectory prediction
experiments, we integrate our DGG into SOTA classification
architectures and compare against the other task-agnostic
graph-learning module DGM [13].

Datasets We evaluate on ModelNet40 [39], consisting of
CAD models for a variety of object categories. Baselines
and Implementation We integrate our DGG into a SOTA
ResGCN [19] and DGCNN [36]. Both models use a k-NN
sampling scheme to construct its graph. We simply replace
this sampler with our DGG and keep the rest of the network
and training protocol the same.

4.3.1 Results

Our results in Table 7 demonstrate the benefits of learning
an adaptive neighborhood size across the latent graph. DGM
[13] learns a fully-connected latent graph and then imposes a
fixed node degree of k = 20 across it (i.e. selecting the top 20
neighbors for each node). This marginally improves upon the
baselines ResGCN [19] and DGCNN[36], which both also
used fixed node-degrees k. In contrast, we learn a distribution
over the node degree from which we sample each node’s
neighborhood size. As shown in Table 7, the node degree
varies in our models with a standard deviation of around 5-7
across both baselines. Our accuracy gains over the baseline
and DGM can be attributed to this variance in neighborhood
sizes across the graph. These gains can be understood when
viewing an input point cloud as a composition of object parts.
Building semantic representations for different parts may
naturally require varying amounts of contextual points. For
instance, the wheels of a car might be identifiable with a
smaller neighborhood than the car’s body. This may suggest
why an adaptive neighborhood size is helpful in this case.

5. Conclusion
We have presented a novel approach for learning graph

topologies, and shown how it obtains state-of-the-art perfor-
mance across multiple baselines and datasets for trajectory
prediction, point cloud classification and node classification.
The principal advantage of our approach is that it can be
combined with any existing graph convolution layer, under
the presence of noisy, incomplete or unavailable input edge
structures.



References
[1] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam,

and Pierre Vandergheynst. Geometric deep learning: going
beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

[2] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and
Yaliang Li. Simple and deep graph convolutional networks.
In International Conference on Machine Learning, pages
1725–1735. PMLR, 2020.

[3] Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep
graph learning for graph neural networks: Better and robust
node embeddings. Advances in neural information processing
systems, 33:19314–19326, 2020.

[4] Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz
Palczewski, Zahra Ronaghi, Prabhat Prabhat, Wahid Bhimji,
Michael M Bronstein, Spencer R Klein, and Joan Bruna.
Graph neural networks for icecube signal classification. In
2018 17th IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), pages 386–391. IEEE, 2018.
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