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Abstract— Across a wide range of applications, from au-
tonomous vehicles to medical imaging, multi-spectral images
provide an opportunity to extract additional information not
present in color images. One of the most important steps
in making this information readily available is the accurate
estimation of dense correspondences between different spectra.

Due to the nature of cross-spectral images, most correspon-
dence solving techniques for the visual domain are simply not
applicable. Furthermore, most cross-spectral techniques utilize
spectra-specific characteristics to perform the alignment. In this
work, we aim to address the dense correspondence estimation
problem in a way that generalizes to more than one spectrum.
We do this by introducing a novel cycle-consistency metric that
allows us to self-supervise. This, combined with our spectra-
agnostic loss functions, allows us to train the same network
across multiple spectra.

We demonstrate our approach on the challenging task of
dense RGB-FIR correspondence estimation. We also show the
performance of our unmodified network on the cases of RGB-
NIR and RGB-RGB, where we achieve higher accuracy than
similar self-supervised approaches. Our work shows that cross-
spectral correspondence estimation can be solved in a common
framework that learns to generalize alignment across spectra.

I . I N T RO D U C T I O N

Solving the correspondence problem between two images
is a fundamental problem in computer vision. Its applications
are widespread, including 3D reconstruction [1], motion
estimation [2] and image registration [3]. Correspondence
estimation from RGB to RGB is well understood, with many
solutions using correlation [4], optimisation [5], hand-crafted
feature descriptors [3], [6], [7] or machine learning [8]–[11].
However, in some use-cases, relying on the visible spectrum
alone is insufficient. For example, in areas such as autonomous
navigation and visual surveillance, approaches using RGB
cameras often fail at night, in poor weather, or due to extreme
variability in lighting. Using alternative spectra, such as
Infrared (IR), is a commonly used technique to address these
concerns. Near Infra-Red (NIR), considering its similarities to
RGB, may utilize vision algorithms developed for the visible
spectrum. Far Infra-Red (FIR) gives much stronger thermal
cues but requires specialized techniques. Bridging this gap
will lead to more capable applications.

Thermal sensors tend to be low resolution and lack fine
detail at the far range, and high resolution thermal sensors are
expensive. Multispectral fusion can overcome the deficiencies
of each individual sensor by combining their complementary
properties. However, most traditional applications require the
images to be registered.
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Relative to RGB, cross-spectral correspondence estimation
approaches are scarce in the literature. This is partially
due to the availability and cost of sensors, in addition to
the complications of solving the correspondence problem
when photometric consistency between sensors does not hold
true. Most multispectral datasets/methods purposefully avoid
tackling stereo disparity, by either focusing on scenes at long
range, where disparity is assumed to be negligible [12], or by
using a beam splitter to ensure coaxial camera centres [13]–
[15]. Unfortunately both approaches ignore possible stereo
cues. We argue that there is benefit in correctly modelling
disparity as it provides more accurate sensor fusion while
providing additional stereo cues. Furthermore, neither high-
resolution thermal cameras nor beam splitters are commodity
items, and are therefore unlikely to be incorporated into
consumer products.

Perhaps one of the most limiting factors behind research
into multispectral correspondence is the poor availability of
datasets. As cross-spectral research is relatively unexplored,
few annotated datasets are available and ground truth annota-
tion is time-consuming and expensive. Automatic annotation
is an unsolved problem, and requires expensive precision
equipment such as a laser scanner. Due to unfamiliarity with
the appearance differences, human annotators find annotation
difficult. Therefore, most provide sparse point annotation or
weak labels such as bounding boxes [13], [16]–[19]. This
motivates our proposed self-supervised approach which learns
how to recover a dense flow field between RGB and IR, and
vice-versa. We make the following contributions:

1) Dense flow fields between spectra: We present a
spectrum-agnostic method to obtain cross-spectral flow
fields at full image resolution as a way to solve the
correspondence problem between different spectra.

2) Self-supervised training: We use a dual-spectrum
siamese-like structure, utilizing cycle-consistency to
avoid the need for ground truth correspondence. This
provides scalability, allowing us to significantly increase
the training data seen by the system.

3) Application to RGB-FIR: We demonstrate RGB-FIR
correspondence estimation, which is seldom tackled.

4) Application to RGB-RGB and RGB-NIR: We further
demonstrate our approach with competitive results for
both RGB-NIR and RGB-RGB correspondence.

I I . R E L AT E D W O R K

Traditional solutions to the correspondence problem are to
solve it sparsely, using optimisation, correlation, or feature-
matching. However, most approaches rely upon photometric



consistency, and this assumption does not hold well for
cross-spectral matching. For wide-baselines, feature-matching
approaches using hand-crafted feature descriptors are common
(e.g. SIFT [3]). Although other features have been used for
dense matching [6], [7], most approaches rely on features
optimized for RGB and as a result, performance is lower
when applied to other spectra [20]. Work that has attempted
to adapt traditional techniques to RGB-NIR [21], [22] tends to
have drawbacks, e.g. they scale poorly when applied densely
over an entire image. Kim et al. proposed DASC [23], a dense
descriptor which finds illumination/sharpness differences
between both RGB and NIR pairs. Considering the closeness
of NIR to the visible spectrum and its similarities with
greyscale, NIR-RGB correspondence is perhaps easier than
for other spectra like FIR. RGB-NIR-specific approaches do
not transfer well to RGB-FIR.

Same-spectrum correspondence techniques can be adapted
from RGB to other spectra. For instance, thermal depth
images [24] and thermal stereo odometry [25]. For RGB-
FIR, Li and Stevenson use a straight line matching scheme to
register stereo images [26], but a reliance on straight edges
is likely to fail in less structured scenes. By contrast, our
approach uses feature losses to ensure we are robust to cross-
spectral images and less structured scenes.

Mutual Information (MI) does not rely upon photometric
consistency, and is widely used for multispectral matching [27].
However, MI is not differentiable and cannot be used to
supervise a neural network. While MI can be approximated
(e.g. MINE [28]), training a dense correspondence network
using this approximation is inefficient and time consuming.
Our network structure, combined with feature losses and cycle-
consistency, is the best-of-both-worlds, being both spectrum-
agnostic and computationally efficient.

A. Multispectral datasets

A current limitation for training and evaluating multispec-
tral stereo correspondence techniques is the lack of suitable
datasets. The majority of RGB-FIR datasets consist of pre-
aligned image pairs, and therefore do not exhibit disparity. For
distant scenes, which approximate orthographic projection,
alignment can be made with a simple homography registration.
Alternatively, images can be recorded with the same optical
axis through the use of a beam-splitter. This removes the
need for alignment/correspondence estimation and applies
to RGB/NIR datasets EFPL [21], RANUS [29], and also
RGB/FIR datasets KAIST [13], Coaxials [14], CAMEL [15].

Obtaining ground truth annotations for unaligned datasets
is challenging, and human annotators rely on their familiarity
with the visible spectrum. As a result, it is not always
possible to distinguish objects, particularly in the case of
FIR. The KAIST [13], LITIV [30] and PittsStereo [31]
datasets have weak bounding box annotations or very sparse
point correspondences only. The VAP dataset [32] provides
synchronized RGB, FIR and depth images, with pedestrian
segmentation in each modality. To our knowledge, the CATS
dataset [33] is the only with dense RGB-FIR ground truth cor-
respondence. However, the annotations are poorly registered,

making accurate quantitative evaluation impossible.
SODA from Li et al. uses image-to-image translation to

synthesize FIR images from RGB, enabling the use of existing
semantic labels [34]. However, these are limited to NIR only
and exhibit artefacts. Image-to-image translation with FIR is
more difficult, and it is impractical to train a correspondence
network on the output. For example, a hot or cold car may
have the same appearance in the visible spectrum. Given
an RGB image, it is not always possible to assign a correct
temperature using image-to-image translation alone.

The limited availability of annotated data has driven
us to pursue a self-supervised approach. Data capture is
much simpler without the requirement of ground truth, and
furthermore the stereo pair does not need to be prealigned.

B. Machine learning and self-supervised training

FlowNet [8] from Dosovitskiy et al. is a supervised end-to-
end Convolutional Neural Network (CNN) trained to estimate
dense optical flow between RGB images. It was succeeded by
FlowNet 2.0 [9] from Ilg et al., who improve the inference
speed and accuracy by stacking sub-networks and having
a more detailed training regime. Although they are trained
on synthetic datasets, they generalise well to real data such
as KITTI [35]. Sun et al. make a direct comparison to
FlowNet2 with PWC-Net [10], another supervised network,
which is smaller and easier to train. Meister et al. present
UnFlow, a self-supervised approach [11]. The authors use
data losses between the warped image and the original, as
well a consistency check between flow field directions. Wang
et al. propose another self-supervised approach, UnDepthflow,
which uses PWC-Net modules to isolate camera and scene
motion [36]. UnFlow and UnDepthflow both achieve com-
petitive accuracy on the KITTI dataset with other supervised
networks. Although the use-case is similar to ours, the above
approaches cannot work with images of different spectra.

A major factor in the success of self-supervised approaches
is the use of cycle-consistency [37], [38]. In a cross-domain
approach, Chen et al. employ adversarial losses to for
bidirectional domain transfer [39]. This is similar to our
approach in that the architecture consists of two halves
which have mirrored operations. However, Chen et al. transfer
between synthetic and real modalities (both RGB) as opposed
to different spectra. Aguilera et al. learn a similarity measure
for RGB to NIR using siamese networks [40]. Similarly,
WILDCAT uses pseudo-siamese encoders to generate a
shared latent space, to allow patch comparison between
RGB and FIR [41]. Both of these require supervision to
be trained, which limits their ability to generalise to different
environments.

Generative approaches for RGB and NIR use a cycleGAN
to match across generated stereo pairs for both spectra [42],
[43]. Performance of these image-to-image translation ap-
proaches are subject to spectral similarity. Jeong et al. show
that for unsynchronized pairs, most approaches score lower
on FIR compared to NIR when making feature-based com-
parisons [43]. We use synchronized pairs and assume all
geometric differences are caused by the camera viewpoints.



Fig. 1: Network overview. Red borders and arrows relate IA’s point of view, blue relates to IB’s. Green lines represent different losses (labeled). The
⊗

operation represents warping an image I with a flow field f . Networks σA and σB relate to fig. 2; the same architecture but differently trained weights.

I I I . M E T H O D O L O G Y
Our goal is to enable dense correspondence between

images with different spectra. We estimate 2D flow fields
between image pairs in both directions. The data flow in our
architecture is specifically designed to enable self-supervision.

Data flow. An overview of the losses and data flow is shown
in Figure 1. For simplicity, we only describe the operations for
one half of the full forward pass, as the other is identical but
inverted. Modules σA and σB are flow estimation networks
with the same architecture. They have two encoder arms, one
for each spectrum without sharing the weights. We begin
with two images, IA and IB . They describe the same scene
but from different viewpoints and with different spectra. Both
are provided to modules σA and σB . Flow estimation module
σB estimates how IA should be warped to align with IB and
returns a 2D flow field, which we refer to as AfB . Given AfB ,
the input image is warped using a differentiable sampling
operation, producing AIB . This shares IA’s spectrum, but its
structure should align with IB . We formalize this as

AfB = σB(IA, IB)
BfA = σA(IB , IA)

AIB = IA
⊗

AfB
BIA = IB

⊗
BfA,

(1)
where we use the

⊗
to represent a warping operation. We

supervise the flow estimates by warping back to the original
input, and evaluating cycle-consistency. AIB is provided to
other module σA, whose task is to estimate the flow field,
ABfA, to effectively undo the previous warping operation.
Similar to eq. (1),

ABfA = σA(
AIB ,

BIA)
BAfB = σB(

BIA,
AIB)

ABIA = AIB
⊗

ABfA
BAIB = BIA

⊗
BAfB .

(2)
ABIA should now be a perfect reconstruction of IA and may
be compared directly. Occlusions are handled implicitly by
sampling interpolation, which is suitable for almost all cases.

Flow estimation module. The following relates to the
module network structure in fig. 2. The modules σ simulta-
neously encode images to 6-layer pyramids. At each level,
the features from one image are warped with the current
optical flow estimate. These warped features are combined
with the features from the other image into a shared cost

Fig. 2: Flow estimation module σ architecture. Each red/blue block consists
of 3 convolution layers, downsizing by a factor of 2. Purple blocks consist
of warping, cost volume, optical flow estimation, and transpose convolution
layers. In contrast to PWC-Net, we separate encoder weights (red & blue).

volume. Each cost volume layer is fed through an optical
flow estimator which passes the upscaled flow to the next
layer, without sharing parameters between layers. Basing on
PWC-Net [10], we make the following enhancements: (1) We
separate the encoder parameters so that each encoder may
adapt to a different spectrum, (2) We use suitable padding to
overcome the restriction of tensor dimensions to multiples
of 2n convolutional layers, (3) We use strided transpose
convolutions in the decoder in place of unweighted bilinear
upsampling.

One forward pass of our full architecture uses each flow
estimation module σ twice. The tasks of each encoder in σ
are very similar. However, since our network is not targeted at
any specific modality, the level of difference between aligned
images is unknown. Hence, sharing weights between each
encoder may impair learning. In fig. 1 we distinguish σA
and σB as separate to indicate that the encoders do not share
weights, but a shared decoder is used. In each instance we
swap the encoders at runtime to accommodate the input and
target spectra, enabling parallel but separate learning.

Cycle-consistency loss. If an image can be warped away
and then back, and remain equal to its original, then both flow
fields agree. The forward operation passes each image through
both modules. σA always warps from IB’s spectrum to IA’s,



and σB from IA’s to IB’s. By enforcing cycle-consistency, σA
and σB must work together. This encourages learned features
to have a common representation between spectra. Direct
photometric image comparison also enables a high degree of
reconstruction accuracy. We introduce a simple mean-squared
error over each pixel i for cycle-consistent supervision,

LC1 =
n−1∑
i=0

(
ABIAi − IAi

)2
LC2

=
n−1∑
i=0

(
BAIBi − IBi

)2
.

(3)

Each cycle-consistency loss backpropagates through both
modules and maintains balance between them.

Bidirectional flow-field loss. Cycle-consistency is one way
to measure if two flow fields cancel out, but it only applies
to the serial flow fields, e.g. AfB with ABfA. Parallel flow
fields, such as AfB and BfA, should also cancel each other
out. We introduce a loss on the flow-fields directly to also
supervise these cases in tandem with the cycle-consistency
loss. This is formalized as

LB1 =
∣∣AfB + (BfA

⊗
AfB)

∣∣ , (4)

where
⊗

represents the warping function as an application
of a flow field. The similar operations for its inverse, and for
the second stage (ABfA and BAfB), have been omitted for
conciseness.

Feature loss. The trivial solution to minimising both the
cycle-consistency loss LC (eq. (3)) and the bidirectional flow-
field loss LB (eq. (4)), is to generate flow fields which are
entirely zero. In this case, the loss would be zero and ABIA
would perfectly match the original IA. We use a cross-spectral
feature loss after the first warping stage to discourage this.

AIB should align with IB , but their spectra are different.
To verify that the structure aligns while trying to ignoring
spectrum differences, we use a perceptual loss [44],

LF1
= 1

CHW ||φ(
AIB)− φ(IB)||22

LF2
= 1

CHW ||φ(
BIA)− φ(IA)||22,

(5)

where φ(x) are the layer activations of image x, and C ×
H ×W are the dimensions of that convolutional layer. In
the original work, Johnson et al. defines features φ at layer
relu3 3 as suitable for matching content, with all layers
suitable for style. Roughly speaking, the deeper the layer
at which latent features are extracted, the less the features
will represent the original spectrum which is an important
consideration for us. However, due to the receptive field of
the network, the deep layers can decrease precision. It is
important to consider the significant reduction in dimensions
when trying to precisely align a scene. For our problem, the
best layer to use depends on the proximity of the spectra
being compared. For RGB-RGB correspondence, we found
the activations of shallow layers suitable (φ ∈ relu2 2).

Regularisation loss. Correct estimated flow fields naturally

warp some pixels out of the image boundaries. In the absence
of ground truth, gradients from the other losses cannot correct
for pixels outside the image boundaries. Flow fields may be
generated with extreme values leading to an unrecoverable
situation. A low learning rate discourages this possibility
but impairs the training, increasing the likelihood to get
stuck in local minima. To optimize the learning rate and
achieve stability, we introduce a Huber loss LR to act against
unreasonable flow field magnitudes. For flow fields AfB and
BfA:

LRf
=

{
1
2x

2
f for |xf | < 1,

|xf | − 1
2 otherwise

xf = max(0, f −m) ∀f ∈ {AfB ,BfA},

(6)

where m is defined as the maximum disparity in pixels which
can be expected. This is set to the disparity of the closest
object in the dataset. The regularisation loss only starts to
affect flow field values above m, which we typically set to
10% of the image width. The squared term at flow field, f ,
lower than, x, does not have a strong effect and permits
a small amount of overshoot. At higher values, the loss
increases linearly to avoid exploding gradients. In summary,
pixels moved far from the image boundaries incur a high
loss. We only apply this on the flow fields produced at the
first warping stage, as ABfA and BAfB are supervised by
the cycle-consistency loss.

Smoothing loss. The flow fields themselves should be
smooth except at depth discontinuities. By enforcing uni-
formity in homogenous areas, the accuracy and visual quality
of the warped images improves, thereby allowing a closer
match for the cycle-consistency LC . We introduce a term
to penalize flow-field gradients which do not coincide with
image gradients,

LS1
=
∣∣h(AfB) ∗ (1− h(IA))∣∣

LS2
=
∣∣h(BfA) ∗ (1− h(IB))∣∣

LS3
=
∣∣h(ABfA) ∗ (1− h(AIB))

∣∣
LS4

=
∣∣h(BAfB) ∗ (1− h(BIA))

∣∣ , (7)

where h(x) retrieves the Sobel gradient magnitude of x,
normalised between 0 and 1.

Combined loss function. We define the overall loss as a
balanced combination,

Ltotal = αLC + βLB + γLF + δLR + εLS , (8)

where α, β, γ, δ, ε are training weights for each loss type.
For simplicity of notation, we refer to each loss type as the
sum of its components, e.g. LC = LC1 + LC2 .

I V. E X P E R I M E N TA L R E S U LT S

In this section we evaluate our approach under different
combinations of spectra. We show that our approach is both
capable of producing competitive state-of-the-art results, as



TABLE I: RGB-FIR evaluation results for precision (Pr), recall (Re) and
F1 score (F1) on the VAP dataset [32]. Scene 2 is omitted, as reported by
other authors. As reference, the top three approaches (the highest performers
for this dataset) estimate segmentation masks on registered images. The
bottom three register ground truth masks using image data. The repeated
baseline values represent the same evaluation. PWC-Net in parentheses was
designed for fully-supervised RGB-RGB only.

Method Metric Scene 1 Scene 3 Overall

RGB FIR RGB FIR RGB FIR Mean

St-Charles [45]
Pr 0.820 0.755 0.716 0.514 0.768 0.635 0.701
Re 0.810 0.975 0.688 0.969 0.749 0.972 0.861
F1 0.815 0.851 0.702 0.672 0.758 0.762 0.760

GrabCut [46]
Pr 0.685 0.808 0.653 0.847 0.669 0.828 0.748
Re 0.759 0.896 0.929 0.916 0.844 0.906 0.875
F1 0.721 0.850 0.737 0.880 0.744 0.865 0.804

St-Charles [47]
Pr 0.894 0.860 0.788 0.749 0.841 0.804 0.821
Re 0.902 0.901 0.918 0.937 0.910 0.919 0.914
F1 0.898 0.880 0.848 0.833 0.873 0.857 0.866

Baseline
Pr 0.536 0.536 0.559 0.559 0.548 0.548 0.548
Re 0.525 0.525 0.535 0.535 0.530 0.530 0.530
F1 0.529 0.529 0.545 0.545 0.537 0.537 0.537

(PWC-Net) [10]
Pr 0.448 0.337 0.693 0.129 0.571 0.233 0.402
Re 0.497 0.279 0.729 0.091 0.613 0.185 0.399
F1 0.467 0.294 0.702 0.095 0.585 0.195 0.390

Ours
Pr 0.700 0.799 0.720 0.694 0.750 0.707 0.728
Re 0.569 0.768 0.518 0.779 0.669 0.649 0.659
F1 0.622 0.781 0.595 0.734 0.702 0.665 0.683

well as generalising to more than a single fixed pair of spectra.
In order to demonstrate this, we evaluate three different cases:

1) RGB-FIR: We show that in addition to the previous two
scenarios, our approach can recover flow fields and solve
the correspondence problem between thermal and visible
images. We evaluate the task of transferring annotations
to the other spectrum.

2) RGB-NIR: We show that without modifying the archi-
tecture, our approach can solve correspondence between
the visible and NIR spectra without ground truth supervi-
sion. We demonstrate its effectiveness with competitive
evaluation scores on an automotive stereo dataset.

3) RGB-RGB: We show that our self-supervised training
approach is not limited to non-visible spectra, and it can
still achieve competitive results when compared to other
supervised state-of-the-art approaches.

Each of these instances do not require a network mod-
ification, demonstrating the flexibility of our method. For
each, we train with a batch size of 8 and SGD optimizer, and
optimize our hyperparameters with optuna [48]. For RGB-
RGB, the learning rate was set to 4.3e-05, with losses weighted
as α = 3.4e−1, β = 3.6e−4, γ = 6.7e−1, δ = 6.9e−2,
and ε = 2.7e−1. Our approach is able to recover both the
vertical and horizontal disparity, whereas many benchmarks
are restricted to horizontal disparity.

A. RGB-FIR evaluation

We first evaluate on the VAP dataset [32], using the RGB
and FIR modalities only. Ground truth correspondence is
not provided. We instead use human body segmentation as
a proxy, by warping the ground truth segmentation mask
from one spectrum to the other, and comparing against the

TABLE II: PittsStereo RGB-NIR evaluation results. Score for each material
category is the RMSE of disparity in pixels. PWC-Net in parentheses was
designed for fully-supervised RGB-RGB only.

Method Bag Cloth. Com. Glass Glossy Light Skin Veg. Mean

CMA [49] 4.63 6.42 1.60 2.55 3.86 5.17 3.39 4.42 4.00
ANCC [50] 2.57 2.85 1.36 2.27 2.41 2.43 2.32 4.82 2.63
DASC [23] 1.33 0.80 0.82 1.50 1.82 1.24 1.59 1.09 1.28

Liang [42] 0.80 0.98 0.68 0.67 1.05 0.80 1.04 0.68 0.84
Zhi [31] 0.90 1.22 0.51 1.05 1.57 1.08 1.01 0.69 1.00
(PWC-Net) [10] 4.88 5.67 11.20 6.06 3.33 3.92 7.00 13.5 6.95
Ours 0.91 0.90 0.64 1.18 1.49 1.00 1.47 1.10 1.08

Fig. 3: Qualitative results. Column 1: Example RGB and FIR input images
IA and IB . Column 2: Original masks from [IA, IB ], and used for baseline
scores. Column 3: Warped RGB with FIR masks

[
AIB , IB

]
. Column 4:

Warped FIR with RGB masks
[
BIA, IA

]
.

other mask. This process is significant because it provides an
easier way to obtain annotations on challenging modalities. A
state-of-the-art RGB segmentation algorithm may be used to
generate accurate masks which can then be densely registered
to another viewpoint and spectrum.

Training. We break the left→right RGB→FIR stereo as-
sumption by horizontally flipping both images in each
pair with a probability of 0.5 during training. With data
augmentation consistent between sample pairs, the static
backgrounds may lead to overfitting to the camera distortion.
To prevent this we randomly crop pairs independently, i.e. in
a single pair, the RGB may be cropped to a slightly different
region as the FIR. This introduces unpaired regions in each
image, which are masked from the loss. For each training
sample, the network is forced to warp a region of the image,
in any direction, to align and minimize the training losses.
This can only be achieved by learning how to match features
across different spectra.

Results. The three approaches at the top of table I estimate
the masks on registered images, whereas we use the provided
masks with unregistered images. This distinction is important
when comparing scores. When information is only present
in one modality, a correct flow field will not give a perfect
score, whereas segmentation on those images will reflect
what is present. In the qualitative comparison in fig. 3, both
RGB→FIR and FIR→RGB flow fields successfully align the
masks (note that the masks are not seen by our network).
However, poor FIR image quality around the borders results
the bottom of its mask being cut off which harms our
evaluation scores.



The ‘Baseline’ row in table I represents the scores on
unwarped, unregistered images (our evaluation’s input). The
majority of the masks already overlap but are not aligned.
The decreased scores of PWC-Net [10] shows the difficulty
of the task, whereas ours improves the stereo registration.

(a) RGB (b) NIR (c) RGB-NIR flow (d) NIR-RGB flow
Fig. 4: Qualitative results on the RGB-NIR evaluation dataset. Brightness and
contrast increased for clarity. Column 1: Input RGB images IA. Column
2: Target NIR images IB . Column 3: Flow fields AfB & BfA applied to
input images. Column 4: Flow fields ABfA & BAfB to return warped
images to their input state.

B. RGB-NIR evaluation

We also evaluate on the PittsStereo RGB-NIR dataset
(automotive) [31]. The test set is annotated with a small
number of point correspondences for each image pair, labelled
with a material category including vegetation, glass, and lights.

Training. The dataset only exhibits horizontal disparity. No
2D NIR datasets could be found. We do not restrict our
network to 1D; it learns to ignore the vertical component.
We follow a similar training regime as for the RGB-FIR
(section IV-A). Since spectral bands are closer, we are able
to augment the data by jittering the RGB values by 3%.

Results. The RMSE error for each material type can be
found in Table II. Our approach clearly outperforms existing
feature based methods. The state-of-the-art deep learning
approaches are specifically targeted at RGB-NIR. Our perfor-
mance is comparable in spite of this, noting that errors are
of the magnitude of a single pixel, accounting for < 0.2%
of the image width. Figure 4 shows the flow fields estimated
from both spectra and viewpoints agree, with clear object
boundaries.

Both neural network approaches, from Zhi et al. [31] and
Liang et al. [42] leverage image-to-image translation. This
is possible because the majority of materials in the NIR
spectrum closely resemble their grayscale counterparts in
the visible image. However, this is an inherent restriction
preventing their transfer to other spectra.

C. RGB-RGB evaluation

We evaluate on the KITTI 2015 scene-flow dataset [35].
Despite the fact that all images are RGB, our design choices
made to avoid direct left-right photometric image comparison
do not cause an issue for same-spectrum correspondence

TABLE III: KITTI optical flow evaluation 2015 results. ‘AEE’ is the Average
flow field End-Point Error in pixels. ‘Error’ is the percentage of erroneous
pixels, classed as having an end-point error of ≥3px and ≥5%.

Method Self-supervised AEE Error

FlowNet2 [9] 7 2.30 10.41%
UnFlow-CSS-ft [11] 7 1.86 11.11%
PWC-Net [10] 7 2.16 9.60%
LiteFlowNet [51] 7 5.58 9.38%
LiteFlowNet2 [52] 7 4.32 7.62%

UnFlow-CSS [11] 3 8.10 23.30%
UnOS (FlowNet only) [36], [53] 3 7.88 23.75%
Wang et al. [54] 3 8.88 31.20%
Janai et al. [55] 3 6.59 22.94%
DF-Net [56] 3 8.98 25.70%
Ours 3 4.53 21.12%

Fig. 5: KITTI 2015 evaluation (test set). Row 1: Input images IA. Row 2:
Estimated flow fields AfB . Row 3: Error heatmaps.

estimation. It should be noted that we do not make use of
techniques specific to RGB-RGB correspondence estimation,
nor do we estimate additional constraints such as vehicle
egomotion. We follow the same training regime as for the
RGB-NIR in section IV-B.

Results. We compare against popular recent approaches and
present quantitative results in table III, including supervised
approaches for context. Compared with other recent self-
supervised optical flow approaches, we achieve the lowest
error on the test set. This is even without using photometric
loss or explicit occlusion reasoning. None of the compared
approaches are capable of cross-spectral matching. Example
qualitative flow fields and error heatmaps are shown in fig. 5.

V. C O N C L U S I O N
In summary, we have presented a correspondence estimation

method agnostic to the spectra that it is operating in. We have
shown that our approach tackles RGB-FIR, RGB-NIR, and
RGB-RGB. This is all while achieving results comparable
to state-of-the-art methods, many of which that have been
fine-tuned to their specific modality. More generally we
have demonstrated that, at a fundamental level, cross-spectral
correspondence estimation is a problem that can be solved
in a generic way. Additionally, our approach demonstrates
that this can all be done in a self-supervised manner. This
enables correspondence estimation algorithms to be trained
in domains that have very little training data and virtually
no annotations. With this, we hope this that the interest in
the cross-spectral domain continues to grow, to expand the
currently limited variety of datasets and algorithms.
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