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Abstract— Imitation learning has been widely used to learn
control policies for autonomous driving based on pre-recorded
data. However, imitation learning based policies have been
shown to be susceptible to compounding errors when encoun-
tering states outside of the training distribution. Further, these
agents have been demonstrated to be easily exploitable by
adversarial road users aiming to create collisions. To overcome
these shortcomings, we introduce Adversarial Mixture Density
Networks (AMDN), which learns two distributions from sepa-
rate datasets. The first is a distribution of safe actions learned
from a dataset of naturalistic human driving. The second is
a distribution representing unsafe actions likely to lead to
collision, learned from a dataset of collisions. During training,
we leverage these two distributions to provide an additional loss
based on the similarity of the two distributions. By penalising
the safe action distribution based on its similarity to the unsafe
action distribution when training on the collision dataset, a
more robust and safe control policy is obtained. We demonstrate
the proposed AMDN approach in a vehicle following use-
case, and evaluate under naturalistic and adversarial testing
environments. We show that despite its simplicity, AMDN
provides significant benefits for the safety of the learned control
policy, when compared to pure imitation learning or standard
mixture density network approaches.

I. INTRODUCTION

Autonomous vehicles have received increasing interest as
a potential solution to transportation issues such as traffic
congestion, pollution, and vehicle safety [1]–[3]. One of
the enabling technologies gaining popularity for autonomous
driving is deep learning [4]. Deep learning has been demon-
strated to learn driving rules from recorded data, which pro-
vide general driving policies that generalise to a wide variety
of driving scenarios and outperform traditional approaches.

A common strategy for learning autonomous driving poli-
cies is imitation learning, where a deep neural network is
trained to imitate an expert driver using a dataset of demon-
strated driving [5]. Imitation learning has shown to scale well
to large amounts of driving data, and to perform well when
deployed in similar scenarios to its training data [6]–[9].
However, one of the main limitations of imitation learning
is that during training, the states observed by the agent are
not dependent on the learned control policy. However, once
deployed, the states visited by the agent depend on its own
control policy, often leading to compounding errors as the
agent visits states outside of its training distribution [10]–
[13]. As the agent experiences events further away from the
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safe states seen in its training data, the errors in its prediction
grow larger, creating a cascading failure. Further issues in
imitation learning models can be caused by unpredictable
road users [14] or causal confusion [15].

A number of solutions have been offered to mitigate these
drawbacks in imitation learning. For instance, Dataset Ag-
gregation (DAgger) [13], first learns from a dataset of expert
demonstration after which the agent is deployed in the test
environment. During testing, the expert labels each state seen
by the agent with the correct action, and in this way, labels
for states visited by the agent not seen in the original training
data are collected. However, one of the main limitations of
this approach is that it requires the expert to be available
for labelling large amounts of new data, which is not always
possible. Moreover, for a human annotator it may be difficult
to label the data when they were not in control of the vehicle
(e.g. labelling the correct control action may be difficult for a
human when presented with only a still image frame, without
further context). An alternative approach that does not query
the expert during training is Generative Adversarial Imitation
Learning (GAIL) [16], inspired by Generative Adversarial
Networks [17]. GAIL uses a discriminator during training,
which aims to classify trajectories as either coming from the
expert or the learned model. Therefore, as training progresses
the trajectories by the learned model become more human-
like, making the classification more difficult for the dis-
criminator. Other approaches have turned to Reinforcement
Learning (RL) instead, which learns from interaction with its
environment [18]–[21]. As the states visited by the RL agent
during training are dependent on its own policy, RL tends
to provide a more robust policy which can generalise well
to different scenarios. However, RL requires a significant
amount of training, due to the low sample efficiency of RL
algorithms [22]. This typically leads to the need for high
fidelity simulators, and restricts the use of RL within real-
world use-cases.

In this work, we present Adversarial Mixture Density
Networks (AMDN) which provide a method for imitation
learning with improved robustness to distribution shift and
increased safety in dangerous driving scenarios. The pro-
posed techniques utilises two datasets, one with safe expert
driving trajectories with labelled actions and another with
trajectories that lead to collisions without labels for correct
actions. The AMDN model aims to simultaneously learn two
distributions representing both safe and unsafe actions. By
learning these two distributions, the agent can then penalise
the safe action distribution whenever it becomes too similar
to the unsafe action distribution. Using these two distribu-



tions, and a measure of similarity between them, the model
can then further train the safe action distribution based on
the safety-critical scenarios in the collision dataset, without
any need for labelling of this dataset. This is similar to
Linear Discriminant Analysis (LDA) [23], [24], which aims
to separate classes of data by modelling them as Gaussian
distributions, and maximising the mean distance between
each class [25]. However, our approach differs significantly
from LDA, since in our case the aim is to use regression
to infer continuous control actions rather than classify data
or reduce the dimensionality of the data. And since the aim
is to learn a safer control policy, we only penalise the safe
action distribution based on its similarity to the unsafe distri-
bution. Furthermore, by leveraging the non-linearity of deep
neural networks, the proposed technique can be trained on
more complex data and use-cases. Therefore, our proposed
technique extends standard imitation learning and mixture
density network approaches, by providing an additional loss
during imitation learning, which increases the safety of the
learned driving policy and boosts the model’s robustness to
adversarial agents. We demonstrate the proposed approach in
a vehicle following use-case, and evaluate the control policies
both in naturalistic driving with typical leading vehicles,
as well as in safety-critical environments with adversarial
agents who are attempting to create rear-end collisions. We
demonstrate that the proposed Adversarial Mixture Density
Networks improves the model’s robustness in these safety-
critical scenarios compared to normal imitation learning and
mixture density networks.

The remainder of the paper is as follows. Section II
presents the required background and introduces the pro-
posed Adversarial Mixture Density Network technique. Sec-
tion III demonstrates the effectiveness of the approach in
simulated driving tests. Finally, conclusions are presented in
Section IV.

II. METHODOLOGY

We demonstrate the proposed approach in a highway
vehicle following use-case. The aim of the model is to
control the longitudinal actions of an autonomous vehicle,
whilst following the lead vehicle at a safe distance. The
model does this by observing states from the vehicle’s Radar
and inertial sensors, and then infers the correct actions to
control the gas and brake pedals of the host vehicle. We give
a brief overview of the background on Imitation Learning
and Mixture Density Networks in sub-sections II-A and II-
B, respectively. We then introduce the proposed Adversarial
Mixture Density Networks in sub-section II-C.

A. Imitation Learning

Imitation Learning (IL) is a type of supervised learning
strategy, where an agent learns from expert demonstration of
the desired task. The aim is to learn to imitate the expert’s
behaviour [26]. To do this, an expert demonstration dataset
De, consisting of observed states st and the corresponding
actions taken by the expert ât, is used. The IL policy denoted
by πIL and represented by parameters θIL, aims to find

optimal parameters θ∗, by minimising an imitation loss LIL
based on the distance of its predicted action at to the expert’s
demonstrated action ât for the same observed state st:

θ∗ = arg min
θIL

∑
t

LIL(πIL(sILt |θIL), ât) (1)

B. Mixture Density Networks

A Mixture Density Network (MDN) [27] is a type of
neural network, which can model a distribution as a mixture
of parametric distributions:

p(y|x) =

M∑
i=1

αi(x)φ(y|θi) (2)

where y is the output, x is the input, M is the number of
mixture components, αi is the mixing coefficient, and φ is
a parametric distribution with parameters θi. For instance, a
Gaussian distribution N (y|x) can be represented by its mean
and (co-)variance θi = (µi, σ

2
i ).

Mixture Density Networks can be used to estimate any
given density function to an arbitrary accuracy given suf-
ficient number of mixtures [28]. MDNs have been used to
model data distributions thanks to their ability to represent
multi-modal data distributions and provide uncertainty esti-
mations in various tasks such as speech synthesis [29], future
prediction [30], and autonomous driving [31], [32].

C. Adversarial Mixture Density Networks

Our proposed Adversarial Mixture Density Network is
similar to MDNs in that it also aims to represent parametric
distributions given an input x. However, instead of learning
a mixture of distributions that maps the probability of output
y for a given x, the AMDN aims to learn two different (and
often opposite) distributions p(y|x) and p(ȳ|x) for the same
input x. For the vehicle following use-case presented here,
these distributions represent the safe action as in current state
s and the unsafe action ac in the same state. Simply, the
safe action as is learned from an expert demonstration of
the task, whilst the unsafe action is learned from a dataset
of collisions and represents an action likely to lead to a
collision in the short term. Therefore, for any given state st,
the AMDN models the probability of safe action p(ast |st)
and the probability of action leading to collisions p(act |st).
For the vehicle following use-case presented here, unimodal
policies are sufficient to solve the task, and since we are not
using the different distributions to estimate uncertainty [32]
or multi-modal policies [33], we represent each distribution
by a unimodal Gaussian distribution, such that p(ast |st) =
N s(µs, σs2) and p(act |st) = N c(µc, σc2). However, it is
worth noting that it would be straightforward to extend
our approach to use mixtures of density functions for each
distribution, should multi-modal representations be desired
for the given task.

This additional information about safe and unsafe actions
can then be employed to learn a safer control policy, by
penalising the safe action distribution when it becomes
similar to the unsafe action distribution. To do this, a
similarity measure between the two distributions is required.



Fig. 1: Proposed Adversarial Mixture Density Network ar-
chitecture.

A common statistical measure of the difference between two
distributions is the Kullback-Leibler (KL) divergence DKL

[34]. For two distributions the KL-divergence is given as:

DKL(p(ast |st)||p(act |st)) =
∑

p(ast |st)log
(
p(ast |st)
p(act |st)

)
(3)

The AMDN is represented by a feedforward neural net-
work, with three hidden layers of 50 neurons each, followed
by the output layers which represent the mean and variance
of the two Gaussian distributions µs, σs2, µc, and σc2, as
shown in Fig. 1. The two distributions are each trained on
their respective datasets, De = (sst , â

s
t ) and Dc = (sct , â

c
t).

Both datasets are split into training and validation splits by a
80%/20% ratio, while further closed-loop testing within the
simulator is used to test the robustness of the final trained
policies. For both datasets, the action of the agent at is
represented by a single value in the range [-1, 1], which
represents the use of the gas and brake pedals of the host
vehicle, where positive values indicate the use of the gas
pedal and negative values the brake pedal. The observed
states st consist of the host vehicle velocity v, relative
velocity to the lead vehicle vrel, and time headway to the lead
vehicle th. The time headway is a measure of inter-vehicle
distance in time, given by:

th =
xrel
v

(4)

where xrel is the relative distance between two vehicles in
m, and v is the velocity of the host vehicle in m/s.

The expert dataset De is the dataset presented in [35],
which consists of 2 hours of driving data by the IPG Car-
Maker Simulator’s [36] default driver (IPG Driver) driving in
different highway driving scenarios while aiming to maintain
a time headway of 2s. The dataset consists of a total of
375,000 observation-action pairs.

The collision dataset Dc is a dataset collected by utilising
the adversarial testing framework in [14] and stress testing
a vehicle following controller. The testing framework uses
adversarial agents to evaluate the target control policy. The
adversarial agents are trained through reinforcement learn-
ing, with the aim of learning behaviours which cause the
follower vehicle to crash into it. To ensure the collisions are

TABLE I: AMDN hyperparameters.

Parameter Value
Safe action learning rate, ηs 1x10-4

Unsafe action learning rate, ηc 1x10-5

KL-divergence learning rate, ηKL 1x10-9

Hidden layers 3
Hidden neurons per layer 50
Batch size 100
Training steps 1x106

preventable, and therefore expose a weakness in the target
control policy, the actions and states of the adversaries are
constrained based on minimum/maximum velocities and ac-
celerations. The reward function of the adversary rAt (sAt , a

A
t )

is based on the inverse time headway to the follower vehicle,
given by

rAt = min(
1

th
, 100) (5)

Where rAt is the adversary’s reward at time-step t, and the
reward is capped at 100 to avoid the reward function tending
towards infinity as the headway reaches 0. To collect the
dataset, the adversary was deployed in different velocity
ranges in highway driving, and the follower vehicle was
controlled by an imitation learning agent trained on the
dataset De. In this way, a dataset representing over 11,000
collision scenarios was collected. For each collision in the
dataset, the 25 time-steps before the collision are taken for a
total of 1s of driving data per collision and used for training,
for a total of 275,000 observation-action in the dataset.

We train the two distributions N s and N c with a Negative
Log-Likelihood (NLL) loss, on the De and Dc datasets,
respectively. The NLL loss LNLL maximises the likelihood
of given label actions ât given an observation st:

LNLL(st, ât) = −log(N (ât|st)) (6)

In addition to each NLL loss, we also train the safe action
distribution N s on the KL-divergence loss. Since the aim is
that the safe action distribution should avoid overlap with
the actions that could lead to collisions, we maximise the
KL-divergence between the two distributions. Therefore, the
optimal parameters θ∗ are obtained by the following three
losses:

θ∗ = arg min
θs

∑
t

LsNLL(N s, ât|st ∼ De)

+ LcNLL(N c, ât|st ∼ Dc)−DKL(N s|N c, st ∼ Dc) (7)

The hyperparameters used for training the AMDN are
given in Table I. Each neuron in the hidden layer uses
the Rectified Linear Unit (ReLU) activation function, whilst
each µ output uses a tanh activation function, and each
σ2 output uses a Non-negative Exponential Linear Unit
(NNeLU) activation. Each loss LsNLL, LcNLL, DKL uses
learning rates ηs, ηc, ηKL, respectively. All networks were
trained using the Adam [37] optimiser.



TABLE II: Testing of learned control policies under Natural (Nat.) and Adversarial (Adv.) Testing frameworks, with baseline
comparison including Imitation Learning with Feed-Forward Network, a standard Mixture Density Network, and different
versions of Adversarial Mixture Density Networks.

Testing Framework Parameter
FFN
[35]

MDN AMDN
(w/o DKL)

AMDN
(sampling)

AMDN

Nat. Testing

min. xrel [m] 23.84 0.00 0.00 7.66 11.34
mean xrel [m] 57.37 54.57 55.75 57.55 56.29
max. vrel [m/s] 8.88 14.56 14.21 11.79 10.93
mean vrel [m/s] 0.0197 0.0126 0.0138 0.0219 0.0224

min. th [s] 1.74 0.00 0.00 0.90 1.13
mean th [s] 1.99 1.90 1.94 2.00 1.95
collisions 0 1 2 0 0

Adv. Testing
collisions against adversaries 800 63 51 1 0

episodes until collision 245 684 1998 1974 -

III. RESULTS

We test the effectiveness of the proposed AMDN approach
in two different evaluation frameworks. Naturalistic testing
tests the control policy in common driving scenarios which
represent the typical scenarios encountered when driving on
highways. These tests are completed in 5-minute episodes
with pre-defined lead vehicle trajectories in the IPG Car-
Maker Simulator. The types of lead vehicle trajectories
seen are similar to those seen in the expert driver dataset
De. For each model, we test the control policy in 120
different scenarios, which totals up to 10 hours of driving.
In contrast, adversarial testing utilises the adversarial agents
presented in [14] to create safety-critical scenarios. The aim
of these agents is to act in such a way that the vehicle
follower should collide into them. However, the actions of
the adversarial agents are limited such that any collisions
would have been preventable, and therefore represent a fault
in the vehicle follower’s control policy. We utilise the lead
vehicle velocity and acceleration limits which were shown to
be most effective for creating collisions in highway driving
in [14], such that the velocity and acceleration are limited to
vlead ∈ [12, 30] m/s and alead ∈ [−6, 2] m/s2, respectively.
For each model tested, we train 5 adversarial agents for up
to 2,500 episodes, and then report the number of collisions
averaged over the 5 training runs. It is worth noting that,
while the adversarial testing framework is the same as the
one used to collect the dataset Dc, each of the adversaries
used in the testing in this Section is randomly initialised and
trained specifically against one network only. If the same
adversarial agents that were used to collect the dataset would
be used for validation purposes, the agents could encounter
similar adversarial behaviour seen during training. Instead,
these adversarial agents are not the same agents as those
that collected the dataset Dc, and the adversarial testing
demonstrates how easy it is for new adversaries to find
control strategies that can exploit weaknesses in the target
policies. For both types of testing, at the beginning of each

test episode, a coefficient of friction between 0.4 and 1.0 is
randomly chosen.

We compare the AMDN to two different baselines, FFN is
the Feed-Forward Network based Imitation Learning control
policy presented in [35] and MDN is a standard Mixture
Density Network with M = 1, which outputs a single Gaus-
sian Distribution trained on dataset De. During inference, all
MDN and AMDN variants, unless otherwise stated, use the
output µs as the pedal action, since during testing it was
shown that this significantly improves the stability of the
vehicle control policy. To compare this inference strategy to
sampling from the distribution N s, we provide comparison
to the AMDN (sampling) model which samples action from
the Gaussian distribution during inference. We also compare
the model to the AMDN without the KL-divergence loss,
which is denoted by AMDN (w/o DKL).

The summary of the results from the naturalistic testing
are provided in the top half of Table II, while the results of
the adversarial testing are shown in lower half of the table.
Comparing the AMDN to the AMDN (sampling) model
shows that using the µs as the action during deployment is
a better inference strategy, as the AMDN policy using µs as
the action during inference maintains a safer distance from
the lead vehicle. Moreover, when sampling the pedal action
from the N s distribution, the variance of the sampled actions
creates jerky driving trajectories with rapid accelerations
and decelerations, which can present safety and passenger
comfort problems when driving. However, it is still beneficial
to model the two Gaussian distributions during training,
as this allows the use of the KL-divergence loss on the
unlabelled collision dataset. The benefit of the DKL loss
can be seen by comparing the performance of the AMDN
to the AMDN (w/o DKL) model. Not only does the AMDN
(w/o DKL) collide 2 times in the naturalistic driving, but
it shows significantly greater susceptibility to adversarial
testing as shown by its 51 collisions, demonstrating the
significant benefit of using the KL-divergence loss during
training. Moreover, comparing the AMDN to the standard



Fig. 2: Minimum episode headway during Adversarial Test-
ing. Averaged over 5 training runs, with standard deviation
shown in the shaded region.

MDN also shows the benefit of the proposed approach, as
the AMDN shows significantly better driving performance
in both the naturalistic and adversarial testing compared to
MDN. Of the models compared here, the only two models
that can drive without collisions in naturalistic driving are
the FFN and AMDN. The results demonstrate that while
the two models can drive safely without collisions, the
FFN performs slightly better in naturalistic driving as it
has slightly higher minimum headway at 1.74s compared
to 1.13s and a minimum distance of 23.84m compared to
11.34m. However, on average the models show no signif-
icant difference as the FFN has a mean headway of 1.99s
compared to 1.95s for AMDN, and the mean distances are
57.37m compared to 56.29m. However, comparing the FFN
and AMDN during adversarial testing shows one of the main
benefits of the AMDN approach. The FFN shows significant
vulnerability when facing unpredictable driving behaviour
different from its training distribution, as demonstrated by
its average number of 800 collisions in adversarial testing,
whilst the AMDN can still drive without collisions even in
the presence of adversarial agents that attempt to deliberately
cause collisions. The minimum headway during adversarial
testing can be seen in Fig. 2, where the results are averaged
over the 5 adversarial agents trained against each policy.
As can be seen the minimum headway for the FFN policy
reduces over the training time with increasing variance as
the adversarial agents learn to exploit the FFN model. In
comparison, the minimum headway for AMDN remains over
1s without reducing significantly, suggesting the adversarial
agents are struggling to learn how to exploit the AMDN
thus demonstrating increased robustness to unpredictable and
adversarial road users.

In addition to the summaries of the different tests, we also
show some example episodes in Fig. 3 - 5 comparing the
learned driving policies by the FFN and AMDN models un-
der naturalistic driving. The example scenario in Fig. 3 shows

Fig. 3: Example vehicle following scenario from naturalistic
driving tests. Vehicle velocities (top), host vehicle pedal
actions (middle), and relative time headway (bottom).

the lead vehicle starting at a constant velocity, and then
decelerating rapidly following by immediately accelerating
and vice versa. We see that both the FFN and AMDN models
can follow this type of trajectories easily without straying far
from the target headway of 2s. The control policies’ response
to an emergency braking manoeuvre by the lead vehicle is
shown in Fig. 4. The scenario occurs in low friction condi-
tions with a road friction coefficient of 0.475. At t = 224s, the
lead vehicle suddenly decelerates at 4m/s2, forcing the host
vehicle to brake in response. The vehicle then drives at 13m/s
for a period, followed by accelerating at 1.5m/s2 back to its
original velocity. As can be seen in Fig. 4, both the FFN and
AMDN models can adequately respond to this harsh braking
in low friction conditions, and avoid any potential collision
without bringing the vehicle too close to the lead vehicle.
To demonstrate the worst case behaviour by the AMDN,
in Fig. 5 the test scenario in which the AMDN control
policy demonstrated its lowest headway in naturalistic testing
is presented. This scenario includes multiple accelerations
and decelerations by the lead vehicle. We can see that both
vehicle followers again maintain a safe distance from the lead
vehicle. However, at two points in the scenario we can see the
lead vehicle decelerate to a lower velocity, and after some
time accelerating back to its original velocity. As the lead
vehicle starts to accelerate in this manoeuvre, we can see the
AMDN decide to engage the brakes of the vehicle, followed
by rapid acceleration to catch up to the lead vehicle. While
this behaviour does not result in any safety-critical situation,
this type of jerky manoeuvre could present comfort concerns
for any passengers. However, these models were not trained
explicitly to consider passenger comfort, therefore expanding
this work to include considerations for passenger comfort
could be included in future work.

Investigating the behaviour of the two models in the
adversarial testing can provide further insight into the learned
policies. An example collision episode from the adversarial
testing of the FFN is shown in Fig. 6. As can be seen,



Fig. 4: Example vehicle following scenario from naturalistic
driving tests. Vehicle velocities (top), host vehicle pedal
actions (middle), and relative time headway (bottom).

Fig. 5: Example vehicle following scenario from naturalistic
driving tests. Vehicle velocities (top), host vehicle pedal
actions (middle), and relative time headway (bottom).

the adversarial lead vehicle keeps decelerating to a low
velocity followed by accelerating to a high velocity, and
then continues to repeat this manoeuvre. While the AMDN
keeps a safe distance with a minimum headway of 1.48s,
the FFN eventually fails to maintain a safe distance as it
accelerates towards the lead vehicle to catch up but the
lead vehicle suddenly breaks harshly and a collision occurs.
Another example from the adversarial testing is seen in Fig.
7, where again the adversarial lead vehicle starts from a
low velocity and then rapidly accelerates to a high velocity.
As the follower vehicle is accelerating to catch the lead
vehicle, the adversary then breaks suddenly. However, this
scenario shows that even when the lead vehicle is already
decelerating rapidly, the FFN agent continues to accelerate
because the vehicles have a large relative headway and the
FFN is trying to reach a headway of 2s. Meanwhile, the
AMDN agent responds to the rapid deceleration by the lead
vehicle by also braking, even though the headway between

Fig. 6: Example vehicle following scenario from adversarial
testing. Vehicle velocities (top), host vehicle pedal actions
(middle), and relative time headway (bottom).

Fig. 7: Example vehicle following scenario from adversarial
testing. Vehicle velocities (top), host vehicle pedal actions
(middle), and relative time headway (bottom).

the agents is above 2s. These results suggest that the FFN
model, trained only on the expert demonstrated data where
a 2s headway was always followed, considers the headway
more important while the AMDN focuses on maintaining
the same speed with the lead vehicle. This demonstrates a
difference in the learned driving strategies of the two models,
and also provides further insight into why the AMDN has
lower minimum headways compared to FFN in naturalistic
driving, despite demonstrating better capabilities at avoiding
collisions. Indeed, this could be a driving strategy it learned
from the collision dataset Dc, which helps the model be
robust to these types of adversarial agents and maintain a
collision free driving performance.

IV. CONCLUSIONS

In this paper, a technique for learning safe control poli-
cies for autonomous driving was presented. The proposed
technique is based on Mixture Density Networks, where
the model learns two separate action distributions. The first



distribution is a safe action distribution learned from a
dataset of expert demonstration, whilst the second is a unsafe
action distribution learned from a dataset of collisions. By
learning each of these distributions, the model then uses
a KL loss, which penalises the safe action distribution for
similarity to unsafe action distribution, using example states
from the collision dataset. In this way, the model learns a
more safe and robust control policy, which remains safe
even in dangerous edge-cases. The proposed approach was
demonstrated in a highway vehicle following use-cases, and
the Adversarial Mixture Density Networks were compared
to standard imitation learning with feed-forward networks
and mixture density networks. The results demonstrate that
the proposed approach results in a more safe control policy,
which is better able to react to unpredictable and adversarial
road users.
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