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Abstract. We present SignSynth, a fully automatic and holistic approach
to generating sign language video. Traditionally, Sign Language Produc-
tion (SLP) relies on animating 3D avatars using expensively annotated
data, but so far this approach has not been able to simultaneously pro-
vide a realistic, and scalable solution. We introduce a gloss2pose network
architecture that is capable of generating human pose sequences condi-
tioned on glosses." Combined with a generative adversarial pose2video
network, we are able to produce natural-looking, high definition sign
language video. For sign pose sequence generation, we outperform the
SotA by a factor of 18, with a Mean Square Error of 1.0673 in pixels.
For video generation we report superior results on three broadcast qual-
ity assessment metrics. To evaluate our full gloss-to-video pipeline we
introduce two novel error metrics, to assess the perceptual quality and
sign representativeness of generated videos. We present promising results,
significantly outperforming the SotA in both metrics. Finally we evaluate
our approach qualitatively by analysing example sequences.
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1 Introduction

Computational research into sign languages is an important, yet under-researched
problem. Whilst there are some applications to translate sign languages into spo-
ken languages [10, 32], their success is limited. The inverse process of translating
spoken languages to sign languages is widely neglected. However, to provide the
Deaf and Hard of Hearing with equal access and opportunities as hearing people,
sign languages must become present in all parts of today’s society. While sign
language transcription is possible using human interpreters, it is simply infeasible
to employ interpreters 24/7 at public places such as train stations and post
offices, or to record video transcriptions for all web based content. An automatic,
scalable solution is needed that can generate naturalistic sign language video
from spoken or written language.

Traditionally, research into Sign Language Production (SLP) has focused on
animating 3D avatars using sequences of parametrised glosses. However, given

! For sign languages a gloss is a written representation that describes a specific sign.
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the complexity of sign language, the task of manually annotating data requires
tremendous effort and expert knowledge. Sign languages are different from country
to country and have the same local variations as dialects do in spoken languages.
They also rely on much more than hand shape and motion to convey meaning,
such as mouth/face gestures, eye gaze, and body pose. These non-manual features
need to be annotated correctly and aligned with the gloss they belong to. Most
sign avatars largely ignore non-manuals, making them hard to understand, and
unnatural looking. Avatars using motion capture data provide a better sign
quality, but are limited in their vocabulary. This is due to the cost associated
with recording and storing high fidelity motion capture data.

Stoll et al. [34] were the first to present a neural network approach to SLP.
They first translate written German into German sign gloss sequences using
Neural Machine Translation (NMT), and use a look-up table (LUT) of mean
sequences to generate 2D motion from automatically extracted pose information.
This data provides the input to a Generative Adversarial Network (GAN) to
produce sign language video. Their results for text to gloss translation are
impressive and the approach is naturally scalable. However, the quality of the
produced videos is lacking, given a low resolution of 128x128 pixels. Furthermore,
the use of a LUT severely limits this approach and introduces artefacts and
discontinuities in co-articulation between signs.

To further the field of SLP and address the shortcomings of previous ap-
proaches we present the following contributions:

1. In order to dramatically increase the quality of synthetic sign video generation,
we propose a gloss-to-pose (gloss2pose) network capable of producing sign
motion data of high fidelity, conditioned on sign glosses, and trained on weakly
labelled data. To our knowledge, we are the first to address the generation of
manuals and non-manuals in a holistic, data-driven way.

2. We combine the gloss2pose network with a pose-to-video (pose2video) net-
work and are able to produce high definition sign language video.

3. We introduce two error metrics to assess the quality of automatically generated
sign language videos.

We implemented our approach in Pytorch and will release the code upon accep-
tance of this manuscript.

2 Related Work

We provide an overview of recent developments in SLP, before describing the
concept of motion graphs and recent approaches relevant to our work. Finally,
the field of conditional image generation is presented.

Approaches for Sign Language Production Automatic SLP is traditionally
achieved by animating avatars, using a sequence of parametrised glosses. Examples
of these include VisiCast [2], eSign [40], Tessa [5], dicta-sign [9], and JASigning [17].
All these approaches rely on manually annotated data using a purpose-specific
transcription language such as HamNoSys [29] or SigML [18]. Annotating the
data requires expert knowledge and is generally carried out by trained linguists.
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The resulting animations suffer from unnatural, under-articulated motion, that
makes the avatars look robotic, hard to understand, and at times uncomfortable
to view, due to the uncanny valley effect.? Given the tremendous annotation
effort required, non-manuals are often neglected. Some work on integrating non-
manuals has been carried out in recent years [7,8,24,20], but it remains an
unsolved problem. A possible method to circumvent these issues is to animate
avatars directly from motion capture data [12]. This results in highly realistic, and
expressive animations, including non-manuals. However, these systems are limited
to pre-recorded phrases, or need complex re-assembly taking into account the
effects of co-articulation. Additionally, the recording and cleaning of high-fidelity
motion capture data is costly and time consuming, making this approach not
scalable.

To make automatic SLP feasible, Stoll et al. [34] propose generating synthetic
sign language video using a LUT and GAN. Whilst this potentially overcomes
some of the limitations of avatar technology, the low resolution of the produced
videos and the use of a LUT to provide the pose information restricts the approach,
particularly in terms of co-articulation between signs. Furthermore, non-manuals
such as facial expressions are not addressed. In contrast, our approach learns
to generate detailed pose and video sequences. Sequences of varying speed and
expressiveness are automatically generated, including non-manuals.

Motion Graphs A popular concept in computer graphics, they are used to
animate characters using a directed graph constructed from motion data, i.e.
novel animations are created by re-combining short sequences of recorded motion.
They were first introduced independently by Kovar et al. [21], Arikan et al. [1],
and Lee et al. [22]. In recent years, deep-learning based approaches have emerged,
most relevant to our work being Holden et al. [15], and Zhang, Starke et al. [39].
Holden et al. developed a regression network for generating cyclic motion such
as walking and running, by predicting character joint positions, velocities, angles,
and the character’s global trajectory at ¢t + 1 given the joint positions, velocities,
the character’s global trajectory, and a semantic variable describing the type of
gait at time t. A Catmull-Rom Spline to calculate the weights of the regression
network helps enforce the cyclic nature of the data to be generated. The system is
trained on motion capture data. Zhang, Starke et al. [39] build on this approach,
and apply it to quadruped characters. They use heavy supervision, such as the
character’s 3D joint positions, velocities, rotations, as well as a user-defined global
character trajectory & velocity, plus action variables describing the type of gait,
and footfall pattern. In contrast our system does not require heavy supervision
and instead learns to decompose signs into simpler sub-units.

Conditional Image Generation The field has seen a number of different
techniques emerge over the last few years. Convolutional Neural Networks (CNNs)
[4], [27], as well as Recurrent Neural Networks (RNNs) [14], [28] have been

2 The uncanny valley is a concept aimed at explaining the sense of unease people often
experience when confronted with simulations that closely resemble humans, but are
not quite convincing enough [26].
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explored for generating images. Variational Auto-Encoders (VAEs) [19], and later
conditional VAEs [37] have proven a popular choice. Since their initial conception,
GANSs [13] have provided many approaches to the task of image generation, such
as conditional GANs [25], [30], [31]. VAEs and GANSs are often combined to
harness the VAE’s stability, and the GAN’s discriminative nature. Most relevant
to our work, VAE - GAN hybrids have been applied to image generation of
people [23], [33], and more specifically to produce videos of people performing
sign language [34]. In image-to-image translation, pix2pix [16], and recently
pix2pixHD [35] were able to produce high-definition images from semantic label
maps using a multi-stage generator, and a multi-scale discriminator.

In our work we build on the recent success of pix2pixHD, and develop a VAE-
GAN-based network that is capable of producing high resolution sign language
productions from semantic label maps.

3 Synthetic Sign Video Generation

Our approach to generating sign language video from glosses works in two stages,
see Figure 1. First a gloss is translated into a human pose sequence by our
gloss2pose network. The acquired poses are then used to condition a generative
network called pose2video.

| | 0t=||f’ul » | | =
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gloss2pose pose2video

Fig. 1. Overview of our method at runtime. A sub-unit predictor estimates blending
coefficients. These are used to generate the weights for the pose regressor. This network
predicts poses and velocities for the next time step and is autoregressive. The generated
poses are used as input to the video generator which produces sign video frames

3.1 Gloss to Pose

In contrast to previous work [39] our system works on 2D data, and does not
require heavy supervision like user-defined global trajectories. We only use 2D
skeletal pose and velocity data, as well as a label indicating the desired gloss(es).
As the pose data can be automatically extracted using a detector such as [3] the
data annotation effort is minimal. At run time the user only has to specify the
desired gloss to generate a motion sequence of the target sign(s). The gloss2pose
network predicts the state of pose keypoints for a future time step Y, given the
current keypoints’ state X. X is defined as X = {ps, v4,1;} being a vector of the
joint positions p;, velocities v, and gloss label I; at time ¢t. The velocity v; is
defined as vy = p; — ps—1, and [; is encoded as a one-hot vector, representing all
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gloss classes. The output Y is defined as Y = {{ps41, 041} where pri1 and 0¢41q
are the predicted positions and velocities of all keypoints at time t + 1.

As shown in Figure 1, the gloss2pose network consists of two sub-networks,
which are trained end-to-end. The main network, called pose regressor, predicts
Y given a subset of X, X = {p;, v;}:

Y = &(X|wa), (1)

where @ is the pose regressor network and wg¢ are its weights. The pose regressor
is a three-layer network consisting of two 1D-convolutional residual layers, and
one fully connected layer. We found a convolutional architecture to be superior
to a fully connected one, for both spatial accuracy in predicting joint poses per
frame, as well as learning trajectories given the frame velocities. We achieved
this by reshaping the input X to the pose regressor from a 1D to a 2D vector,
with p; occupying the first, and v; the second row. Using a filter of height two
we teach the network to learn the relationship between keypoint positions and
velocities. To express in theory any number of signs and smoothly blend between
them, we want the gloss2pose network to learn their composition in terms of
sub-units. We achieve this by learning a set of blending coefficients given X,
using a secondary neural network, called the sub-unit predictor. This is a fully
connected network, consisting of four fully connected layers. We estimate the set
of blending coefficients for X:

BC = u(s(X|w), l|w.), (2)

where ¢ is the sub-unit predictor, w. the weights of ¢, and ¢ is the reduction
layer, with weights w,. The blending coefficients BC' are a vector of length b,
with BC' € R®. BC is used to generate the pose regressor network weights wg:

b
We :ZBCzQu (3)

i=1

where (2 is a bank of pose regressor weights wg of size b. This allows us to
dynamically blend between weights depending on the target sign’s sub-unit
composition over time.

The predicted output Y is compared to the ground truth using the mean-
square error. Therefore the loss of the gloss2pose network is defined as:

N
1
Lp= Y (V- V*P, (4)
k=1

where k is an iterator over all keypoints up to the maximum number of keypoints
N, and Yy, is the ground truth position and velocity.

Error-Correcting Data Augmentation We developed a two-time-step train-
ing scheme that allows us to double the amount of training data, and teach the
network to correct its own mistakes in pose and velocity predictions. At time ¢
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we let the network predict the output Y for ¢t 4+ 1. After calculating a loss, we use
this result as input X for the next time step, to predict Y at t 4+ 2. After this
the next ground truth from the original training data is used and the process
repeated. The generated training samples are discarded after their use, to keep
the ratio of ground truth and generated training data constant.

In addition to serving as a data augmentation scheme, we argue that this training
scheme helps the network to correct itself from mis-predictions. At ¢ + 1 the
predicted result Y = py11,0rr1 has a prediction error of €41, making the total
error for this time step F = €;41. When using the predicted result as the input
for the next time step the total error at t + 2 now becomes F = €41 + €149.
This is penalised with a higher loss, than just F = €;y5. This means the network
learns to correct for drift from error accumulation, and to handle data samples
from previously unexplored space.

3.2 Pose to Video

Like pix2pixHD [35], our pose2video network is the combination of a convolutional
image encoder and a Generative Adversarial Network (GAN), conditioned on
semantic label maps. Inside the GAN a generator G is engaged in a minimax
game against a set of multi-scale discriminators D. G is generating new data
instances, which are evaluated by D to be either “fake” (as in not belonging to
the same data distribution), or “real” (part of the same data distribution). G’s
aim is to maximise the likelihood of D choosing incorrectly, whereas D tries to
maximise its chance of choosing correctly. Trained in conjunction, the networks
improve each other, with G creating more and more realistic data samples.
The input to the generator G is the positional information generated by the
gloss2pose network p. The discriminator D evaluates either the generated image
G(pt), or the real image I;. We can therefore define the adversarial loss as

Laan(G, Dy) = Zlgj:[log(Dk(p}, Ii))] + ]IDE[ZOQ(I — Dy(p, G(9r)))] (5)

where k indicates the discriminator scale. To combine the adversarial losses of all
Dy, we sum:

Lgan(G,D) = Z Lgan(G, Dg). (6)
k=1,2,3

Additionally we apply a feature matching loss as presented in [35]:

T
Ly(G,Dy) =E Z Ni {Z \D;(:) (P, It) — Dz(f) (D, G(PAt)q ) (7)
y43 i=1 7

where T is the total number of layers in Dy, ¢ is the current layer of Dy, and

D,(:) is the i*" layer feature extractor of Dj. Again we sum the L  losses of all
Dy, to obtain the overall Ly loss:

Li(G,D)= > Ls(G,Dy). (8)

k=1,2,3
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The total loss Ly, is a combination of adversarial and L1 loss:
Lp2v = LGAN + 5Lfv (9)
where § weighs the influence of L.

4 Experiments and Results

We evaluate the gloss2pose and pose2video parts of our approach separately,
before quantitatively and qualitatively analysing their combined performance.

We use the SMILE Sign Language Assessment Dataset [6] for training and
testing the gloss2pose as well as pose2video networks. It consists of 42 signers
performing 105 signs in isolated form, with three repetitions each, in Swiss-
German Sign Language (DSGS). The SMILE dataset is multi-view, however we
only utilise the Kinect colour stream, which is of 1920x1080 resolution at 30fps.
We extract 2D human pose estimations from the video data, using OpenPose [3]
for the upper body (14 keypoints), face (70 keypoints) and hands (21 keypoints
per hand). For the pose2video network, the extracted keypoints of one chosen
signer are used to generate semantic label maps encoding the position and type
of joint of each keypoint. At run time the positional information to generate
these maps is provided from the output of the gloss2pose network, Y. We split
our remaining dataset into train, test and validation sets. We use the training set
to train the gloss2pose network, and evaluate it using the test set. The validation
set is used to assess the performance of our whole system.

4.1 Gloss to Pose

We compare our gloss2pose network against the approach of Stoll et al. [34], who
use a LUT to transform glosses to a dynamically time-warped mean sequence
built from all example sequences for the gloss. They populate their LUT with the
RWTH-PHOENIX-Weather 2014T[11] dataset, which is of continuous German
Sign Language (DGS). However as it is of low resolution (227x227), the quality
of pose information is poor. Furthermore, as the data is continuous, the glosses
were extracted using a forced-alignment approach, meaning boundaries between
glosses are not exact. These factors led us to decide it would be unfair to directly
compare their results to our results obtained using high-resolution isolated data.
We therefore contacted the authors of [34] for their code and populated their
LUT using the SMILE data instead. The quantitative comparison in this section
will be against this LUT of dynamically time warped mean sequences created
out of all examples per gloss.

Quantitative Evaluation For our first experiment we train with 10, 30, 50,
and 80 blending coeflicients to find the optimal configuration to encode the 105
gloss classes into sub-units. The data per epoch consists of 859,522 real, and
859,522 synthetic data frames, given the regime described in Section 3.1. Batch
size is set to 32, the learning rate to 0.0001, and ADAM optimisation is used.
We evaluate by sampling 20 different sequences per gloss and taking the Mean
Squared Error (MSE) between sampled positions & velocities, and their ground
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truth. The MSE per frame is accumulated and divided by the total number of
frames across all sequences for all glosses. A sequence is sampled by giving the
network a starting input X; from the test dataset. The network generates a
prediction Y;41 which we use as the input for the next time step, and let the
network feed back on itself for 150 frames in total. This is a very challenging test
environment as there is a huge scope for drift caused by errors propagating as
the network feeds back on itself over such a long time. To put our findings into
context we compare it to the performance of the network when feeding the next
ground truth frame at ¢ + 1 instead of a generated frame. We found that after
20 epochs the best and most stable performance was achieved with 50 blending
coefficients, see Figure 2. We did not find that, in general, increasing the number
of blending coefficients improves performance, meaning our subunit-predictor is
able to dissect sign motions into sub-motions, rather than learning one set of
coefficients for each of the 105 signs in the dataset.

12
feedback_bcl0
fromGT_bclo
feedback_bc30
fromGT_bc30
feedback_bec50
fromGT_bc50
feedback_bc80
fromGT_bcso

10 4

MSE
o
L

—

5 10 15 20
Fig. 2. The performance of our network " ferms of MSE over 20 epochs. Different
numbers of blending coefficients are explored (10, 30, 50, 80). As a means of comparison
we also provide results when the network is fed the next ground truth frame, rather
than the sample generated at the previous time step (fromGT)

We next compare the MSE of our best performing network against the LUT
approach of [34]. The result is presented in Table 1. To test the performance
of [34] we compare the dynamically time warped mean sequence for each gloss
against all ground truth sequences. As before, the MSE per frame is accumulated
and divided by the total number of frames across all sequences. Our network
outperforms [34] by a factor of 18. We suspect this has two causes. Firstly,
averaging across all signers in the training set to acquire one representative mean
sequence per gloss robs the LUT of the capability to express different people’s
skeletal builds, and a signer’s natural variance in expressiveness. However, our
network is capable of intelligently managing this spatial variance, as it learns
from the data. Secondly, the dynamic time warping needed by [34] removes any
variability in speed. However, a sign’s duration can vary immensely, depending
on repetition, or to convey e.g. excitement. In contrast, our network can express
this natural variance in speed.
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Table 1. MSE for [34]’s LUT and our gloss2pose (g2p) network

LUT [34]|g2p (ours)
MSE|19.2886 (1.0673

Qualitative Evaluation We analyse two generated pose sequences, see Figure
3. Each sequence and canonical example is sampled at every 10" frame. We
would like to point out that the example video sequences cannot be considered a
direct ground truth, but merely a reference for the reader. The sequences depict
the signs JAHR (YEAR) and ERZHLEN (TELL), respectively. We chose two
signs that are close in their overall motion to showcase our network’s ability
to still generate them distinctively. Both hands for the sign JAHR form fists,
whereas for ERZHLEN they are flat and open. This is recreated in detail in the
pose sequences generated, together with the correct motion for each sign. We also
want to point out the variability in speed of the signs produced. The sequence
generated for ERZHLEN is shorter than the video example provided, whereas
for JAHR it is slightly longer. Our network can produce sequences of variable
length and expressiveness, something a mean sequence based approach such as
[34] is incapable of. Furthermore, we are able to automatically produce aligned
non-manuals such as facial expressions, which is not addressed in the SotA [34].

Generated . .
Skeletal Data Tt s - A T
Canonical 3 n ) n . y |
Example ) Jy ) ) )
Sequence . . \ a [ ) a8 [ ) * .
\ \ \ - - { [ W - {
Generated
Skeletal Data
Canonical .
Example - 4 .
Sequence . ; ¢ ! L3 - ()
fal fal fa) fal fal fa) fal fal

Fig. 3. Two pose sequences generated by the gloss2pose network. Canonical example
sequences are provided to give the reader a reference of the signs. The top example is
conditioned on the gloss JAHR (YEAR), the bottom example on ERZHLEN (TELL).
This figure is best viewed in colour and digital format

4.2 Pose to Video

We evaluate the performance of pose2video against the Pose-Conditioned Sign
Generation Network (PSGN) by Stoll et al. [34]. We trained the pose2video
network for 100 epochs, with a training set of 12,500 and a test set of 1,400
image-semantic label map pairs. We used ADAM optimisation with an initial
learning rate of 0.0002 that we linearly decay to zero.

Quantitative Evaluation We evaluate the image generation of each network
using Structural Similarity Index Measurement (SSIM) [36], Peak Signal-to-Noise
Ratio (PSNR)[38] and MSE. SSIM measures a perceptual degradation of down-
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sampled or corrupted images compared to their originals. We use this to measure
the perceptual degradation of a generated image I; = G(P;) to its ground truth
I;. PSNR and MSE are also used to assess compressed or corrupted image quality
compared to their original. For images the MSE is used to calculate the average
squared per-pixel error between ft and I;. Using the MSE, PSNR measures the
peak error in dB. Table 2 compares the SSIM, PSNR, and MSE scores for PSGN
[34] and our pose2video network over 1200 frames respectively. PSGN scores
marginally higher for SSIM, however as it is a metric focussing on overall image
structure and appearance rather than fine details, this is unsurprising. As the
original ground truth of 1920x1080 is encoded to 128x128 pixels by PSGN most
fine detail is already lost. In contrast pose2video beats PSGN by a large margin
for both PSNR and MSE. This is due to to high resolution and detail of the
generated images.

Table 2. Mean SSIM, PSNR, and MSE values for PSGN [34] and our pose2video
network. SSIM ranges between -1 and +1, with +1 indicating identical images. Lower
MSE indicates more likeness, whereas higher PSNR indicates images are more alike

SSIM  |[PSNR |MSE
PSGN [34]/0.9434(24.7248 {226.2474
p2v (ours) |0.9428 (29.0181(86.0553

4.3 Synthetic Sign Video Generation from Gloss

Finally, we evaluate the performance of the gloss2pose and pose2video networks
in conjunction (SignSynth). We compare our approach to that of [34] before
discussing qualitative results.

Quantitative Evaluation Evaluating the quality of generated sign language
videos in a quantitative fashion is challenging for multiple reasons. For each sign
there is a natural variability in terms of size, motion and speed, but also context-
specific differences, such as repetitions, or negations. Furthermore, transitions
between signs can influence the individual signs’ trajectories and positions. A
logical option that comes to mind is to use a Sign Language Recognition (SLR)
system to assess the quality and accuracy of produced sign language videos. Since
the advent of deep learning such systems have certainly improved. However, they
are still far from accurate and highly depend on the data they were trained on.
To our knowledge there is no publicly available SLR system that is trained on
the SMILE dataset. Furthermore, we want to accurately measure the quality
of synthetic sign video, rather than diluting the measurements with inevitable
errors produced by an SLR network.

We therefore devise two metrics. The first one is a confidence score that
assesses the level of detail and human characteristics of the generated videos.
The second is a distance measure that assesses how closely generated sign videos
resemble the ground truth videos for that gloss. Both metrics make use of the
OpenPose [3] human pose detector. To be more specific, we take the generated
sign language videos and let OpenPose detect pose, face and hand keypoints.
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For [34] we do the same on the mean video sequences. For each keypoint k
the coordinates = and y as well as a detection confidence c is inferred. For our
first metric we utilise ¢ to assess the pose detector’s ability to detect human
keypoints from the generated videos, the intuition being that the more detailed
and “human-like” the generated video, the higher the detector’s confidence. We
divide our keypoints into regions of interest. This lets us assess confidences on
specific body parts, such as the hands and the face. For each region we define
the regional confidence as

1 T-1 1 I
C= T_1 ; (I ;%dh)) , (10)

where I is the total number of keypoints in the region, T is the total number of
frames assessed, and «; is the importance of a keypoint in the region. We can
further obtain the overall confidence by summing over the regions:

1 R
Ctotal = E Z 6rCr (11)
r=1

where (3, is the importance of the region in the total score, and R is the number of
regions. In our experiment we define four regions: pose (14 keypoints defining the
upper body skeleton), face (70 facial keypoints), handl and handr (21 keypoints
for the left and right hand respectively). We set « and £ to 1.0. Whilst we
believe there is scientific value in identifying the importance of specific regions
and keypoints for sign language, this is future work and beyond the scope of
this manuscript. Table 3 compares confidence scores of [34] and SignSynth. Both
methods perform well in the pose region. However, the detector fails to detect
any facial keypoints in the output of [34] and has very low confidence in the
keypoints of both hands. For our method, the detector has a high confidence for
the face region, and beats the hand confidences of [34] by an order of magnitude.
This showcases our approach’s superior ability to produce detailed signings with
manuals and non-manuals clearly present.

Table 3. Confidence scores for Stoll et al. [34] and SignSynth. Confidences are given
for four regions, as well as an overall score. The confidence is measured between 0 and 1

Cpose Cface C(handl Chandr Ctotal
Stoll et al. [34]|0.499 |0.000 |0.026 [0.025 |0.138
SignSynth 0.791/0.766/0.120 (0.266 |0.485

For our second experiment we analyse the behaviour of keypoints over time.
Rather than just looking for overall smoothness, we want to also relate the
trajectory of points to the signs they are meant to represent, whilst taking
into account different levels of speed and expression. For this, we first perform
hierarchical clustering with average linking of the SMILE validation set. The
metric used is based on dynamic time warping (dtw). We define the similarity of
two sequences S1 and S2 as the euclidean distance between S1 and S2 when the
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alignment path P is optimal:

dtw(S1,52) = [ Y [|(S1m — 52,2 (12)

(m,n)epP

We again divide our keypoints into regions and treat each keypoint’s trajectory
independently:

1 I
D= ;aidtw(SMki), S2(k:)), (13)

where D is the regional distance between S1 and S2, «; again is the importance
of a keypoint in the region. To obtain the overall distance between S1 and S2 we
sum over the regions as before:

R
1
Dtotal = E § BTDN (14)
r=1

where R is the number of regions and (3, the importance of each region.

After clustering the validation set we use the same metric to measure the distance
of each generated sample to each cluster. We then report the mean distance
between clusters and samples per sign class. Table 4 shows results for three sign
classes. Again, we compare our approach against that of [34]. However, we also
provide a reference to put the distances obtained into perspective for the reader.
As the reference we take ground truth samples of a signer from the SMILE test set
and measure the distance to each cluster. The reference’s samples per sign class
measure closest to the sign cluster they belong to. [34]’s approach measures more
or less the same distances to all clusters per sign class, meaning their sequences
are not descriptive of any sign. Overall their distances are significantly larger
than that of the reference. Our results lie in the same range as the reference, and
their variability per sign class showcases the generated samples’ descriptiveness.
Two out of three signs are correctly identified, whereas for the third all samples
score similarly regardless of which sign class they belong to. When inspecting
the samples for the third gloss we saw that our network performs a variable
number of repetitions for the circular hand motion in front of the body. While
repetition in sign language is common, there are no sequences with repetitions in
the data used to form the clusters. We wish to take into account the occurrence
of repetitions in future work.

Table 4. Diotq1 for test samples of three signs to each sign cluster. ERZHLEN is
abbreviated to ERZ in the table

SignSynth Stoll et al. [34] Reference
Clusters ABEND[ABER‘ERZ ABEND[ABER‘ERZ ABEND[ABER‘ERZ
ABEND|12.51 14.49 16.17 |19.82 16.36 19.29 |12.28 14.61 14.69
ABER |[15.58 14.72 17.02 [18.13 16.29 19.35 |14.86 13.34 15.43
ERZ 15.51 15.32 15.93 [20.68 17.04 19.78 [14.70 15.03 13.54




SignSynth: Data-Driven Sign Language Video Generation 13

Qualitative Evaluation We present sequences generated by our SignSynth
method, and compare it to results from [34], (see Figure 4). For each sign, a
canonical sequence is provided. For those example sequences and SignSynth
results, every 10" frame is shown. For spatial reasons we only show every 20"
frame of LUT+PSGN, as the dynamic time warping needed by [34]’s approach
results in sequences that are much slower than many real life examples.

We study two signs with similar hand motion, but different hand shape. The
first sign ABER (BUT), is shown in the top section of Figure 4, the second
VORGESTERN (DAY-BEFORE-YESTERDAY) in the section below. Our gener-
ations for both signs follow the correct trajectory, with slight variations in speed
and expressiveness, showcasing our networks’ ability to learn natural variations
in sign language production. Furthermore, our approach generates significant
detail such as an extended index finger in the dominant hand. The hand shape
for the sign VORGESTERN (an extended thumb pointing backwards) is also
generated. The sequences generated by [34] follow the global trajectories for both
signs, but are executed at less than half the speed. Any detail of hands or facial
expression is lost completely.

Finally, we show a sequence generated from multiple glosses. Even though our
approach is trained on isolated data, it is capable of generating smooth pose
and video sequences without artefacts between signs, see Figure 5. It depicts the
generated pose and video data conditioned on the gloss sequence FUSSBALL
SPIELEN (PLAY FOOTBALL). As before, every 10" frame is shown. The Sign-
Synth approach generates detailed sequences for pose and video that represent
the gloss input sequence, with smooth transitions between signs. Detail in the
hands is well preserved, especially for the sign SPIELEN. For more results we
refer to the supplementary material.

5 Conclusion

We presented a novel approach to Sign Language Production (SLP) that only
requires minimal user input. Our approach is capable of producing sign language
video of high resolution, where sequences contain hand motion with a natural
variance in speed, expressiveness, and distinctive hand shape. Non-manuals are
also generated and naturally aligned with the rest of the sign, as our approach
directly learns from sign language data. Additionally, we are able to smoothly
and automatically transition between glosses, making our approach superior to
approaches relying on manually enforcing co-articulation. When comparing our
method to the current SotA [34], we were able to surpass its performance for
pose and video generation, as well as generating videos from gloss information.
We evaluated and compared our approach using MSE and popular metrics from
broadcast quality assessment. We then developed two new metrics to assess the
quality of sign language videos, which we used to compare our approach to [34],
and reported highly promising results.

In the future, there are a number of avenues to pursue. The gloss2pose network
could be extended to 3D data, and be used to drive an avatar without the
drawbacks found with current approaches. We also want to incorporate techniques
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from NMT to address complete spoken language to sign language translation.
Furthermore we want to explore the intricacies of sign language, as mentioned in
Section 4. Finally, we are excited to continue working with linguists on solving
the problem of automatic SLP to further the integration of the Deaf community.

SignSynth ‘ 3 : : ¢ al H
(ours) >

LUT + PSGN : : \ \ \
(Stoll et al.) " "

Canonical 8 . s
Example

Sequence .

SignSynth | ¢ 4 ’ k EN ‘ h - y ‘
’ ) > . L

(ours)

LUT + PSGN l \ \ ‘
(Stoll et al.) g 1

Canonical

Example L ."

v (\ .
Sequence f=t ' _ f

Fig. 4. SignSynth output compared to Stoll et al. [34]. The top half depicts the sign
ABER (BUT), the bottom half VORGESTERN (DAY-BEFORE-YESTERDAY). This
figure is best viewed in colour and digital format

Transition

FUSSBALL SPIELEN

Generated o s * e ~«.v- Lo o &
Skeletal o e g P A
Data

Generated
Video

Canonical
Example
Sequences

Fig. 5. Generated pose and video sequences for the gloss sequence FUSSBALL SPIELEN
(PLAY FOOTBALL). This figure is best viewed in colour and digital format
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