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Abstract

We present a novel approach to automatic Sign Language Production using state-
of-the-art Neural Machine Translation (NMT) and Image Generation techniques. Our
system is capable of producing sign videos from spoken language sentences. Contrary to
current approaches that are dependent on heavily annotated data, our approach requires
minimal gloss and skeletal level annotations for training. We achieve this by breaking
down the task into dedicated sub-processes. We first translate spoken language sentences
into sign gloss sequences using an encoder-decoder network. We then find a data driven
mapping between glosses and skeletal sequences. We use the resulting pose informa-
tion to condition a generative model that produces sign language video sequences. We
evaluate our approach on the recently released PHOENIX14T Sign Language Transla-
tion dataset. We set a baseline for text-to-gloss translation, reporting a BLEU-4 score of
16.34/15.26 on dev/test sets. We further demonstrate the video generation capabilities
of our approach by sharing qualitative results of generated sign sequences given their
skeletal correspondence.

1 Introduction
Sign Languages are the dominant form of communication used by the deaf and hard of hear-
ing. Like spoken languages they have their own grammatical rules and linguistic structures.
To facilitate easy and clear communication between the hearing and the Deaf, it is vital to
build robust systems that can translate spoken languages into sign languages and vice versa.
This two way process can be facilitated using sign language recognition and production. Re-
search into recognition focusses on mapping sign to spoken language typically providing a
text transcription of the sequence of signs, such as [8], and [24]. This is due to the miscon-
ception that deaf people are comfortable with reading spoken language and therefore do not
require translation into sign language. However, there is no guarantee that someone who’s
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first language is, for example, British Sign Language, is familiar with written English, as the
two are completely separate languages. Furthermore, generating sign language from spoken
language is a complicated task that cannot be accomplished with a simple one-to-one map-
ping. Unlike spoken languages, sign languages employ multiple asynchronous channels to
convey information. These channels include both the manual (i.e. upper body motion, hand
shape and trajectory) and non-manual (i.e. facial expressions, mouthings, body posture)
features.

The problem of sign language production is generally tackled using animated avatars,
such as [6], [10], and [19]. When driven using motion capture data, avatars can produce life-
like signing, however this approach is limited to pre-recorded phrases, and the production
of motion capture data is costly. Another method relies on translating the spoken language
into sign glosses1, and connecting each entity to a parametric representation, such as the
hand shape and motion needed to animate the avatar. However, there are several problems
with this method. Translating a spoken sentence into sign glosses is a non-trivial task, as the
ordering and number of glosses does not match the words of the spoken language sentence.
Additionally, by treating sign language as a concatenation of isolated glosses, any context
and meaning conveyed by non-manual features is lost. This results in at best crude, and at
worst incorrect translations.

To advance the field of sign language production, we propose a new method, harnessing
recent developments in both NMT, and neural network based image/video generation. The
proposed method is capable of generating a Sign Language video, given a written or spoken
language sentence. An encoder-decoder network translates written sentences into gloss se-
quences. This is then followed by mapping glosses to skeletal sequences. These sequences
are then used to condition a generative model to produce videos containing sign translations
of the input sentences (see Figure 1).

The contributions of this paper can be summarised as 1) an NMT-based continuous-text-
to-gloss network with subsequent conversion into pose sequences, 2) a generative network
conditioned on pose and appearance without the need for a refinement network and 3) to the
best of our knowledge, the first end-to-end spoken language-to-sign-language video transla-
tion system without the need for costly motion capture or an avatar.

The rest of this paper is organised as follows: Section 2 presents recent developments
in Conditional Image Generation and Neural Machine Translation. In Section 3 we intro-
duce our spoken-language-to-sign-language translation system. In section 4 we evaluate our
system both quantitatively and qualitatively, before concluding in Section 5.

2 Related Work
Sign language production inherently requires visual content generation and can be treated as
a translation problem. Therefore, in this section we review the recent developments in the
conditional image generation and NMT fields.

Conditional Image Generation: With the advancements in deep learning, the field of
image and video generation has seen various approaches utilising neural-network based ar-
chitectures. Chen and Koltun [4] used Convolutional Neural Network (CNN) based cascaded
refinement networks to produce photographic images given semantic label maps. Similarly,
van den Oord et. al. [28] developed PixelCNN, which produces images conditioned on a
vector, that can be image tags or feature embeddings provided by another network. Gregor

1Glosses are lexical entities that represent individual signs.
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et. al. [12] and Van den Oord et. al. [27] also explored the use of Recurrent Neural Net-
works (RNNs) for image generation and completion. All these approaches rely on either rich
semantic and spatial information as input, such as semantic label maps, or they suffer from
being blurry and spatially incoherent.

Since the advent of Generative Adversarial Networks (GANs) [11], they have been used
extensively for the task of image generation. Soon after their emergence, Mirza and Osin-
dero [20] developed a conditional GAN model, by feeding the conditional information to
both the Generator and Discriminator. Radford et. al. [22] proposed Deep Convolutional
GAN (DCGAN) which combines the general architecture of a conditional GAN with a set
of architectural constraints, such as replacing deterministic spatial pooling with strided con-
volutions. These changes made the system more stable to train and well-suited for the task
of generating realistic and spatially coherent images. Many conditional image generation
models have been built by extending the DCGAN model. Notably Reed et. al. [23] have
built a system to generate images of birds that are conditioned on positional information and
text description, using text embedding and binary pose heat maps. Isola et. al. [13, 30]
applied conditional adversarial nets to the related field of image-to-image translation.

An alternative to GAN-based image generation models is provided by Variational Auto-
Encoders (VAEs) [14]. Similar to classical auto-encoders, VAEs consist of two networks,
an encoder and a decoder. However, VAEs constrain the encoding network to follow a unit
gaussian distribution. Yan et. al. developed a conditional VAE [29], that is capable of
generating spatially coherent, but blurry images, a tendency of most VAE-based approaches.

Recent work has looked at combining GANs and VAEs to create robust and versatile im-
age generation models. Makhzani et. al. introduced Adversarial Auto-encoders and applied
them to problems in supervised, semi-supervised and unsupervised learning [18]. Larsen et.
al. have combined VAEs and GANs that can encode, generate and compare samples in an
unsupervised fashion [15]. Perarnau et. al. developed Invertible Conditional GANs that use
an encoder to learn a latent representation of an input image and a feature vector to change
the attributes of human faces [21].

Most relevant to our work, VAE/GAN hybrid models have been used for human pose
conditioned image generation. Ma et. al. use a two-stage process to synthesise images of
people in arbitrary poses [17]. They achieve this by decoding an input image of a person
and combining it with a pose heat map, before using a second network to refine the image.
Siarohin et. al. also use two networks to generate human pose guided images. The first is
to learn the the appearance of a person, the second learns the affine transformations of body
parts using skip connections [25].

Neural Machine Translation NMT utilises RNN based sequence-to-sequence (seq2seq)
architectures which learn a statistical model to translate between different languages. Seq2seq
[26] [5] has seen success in translating between spoken languages. It consists of two RNNs,
an encoder and a decoder, that learn to translate a source sequence to a target sequence. More
recently, Camgoz et. al. modified the standard seq2seq framework to translate sign language
videos to text [2], which is the inverse of our problem.

Using NMT methods to translate text to poses is a relatively unexplored and open prob-
lem. Ahn et. al. use an RNN-based encoder-decoder model to produce upper body pose
sequences of human actions from text and map them onto a Baxter robot [1]. However, their
results are purely qualitative and rely on human interpretation. In this paper, we simplify the
problem by translating text to gloss first and then defining a mapping between glosses and
skeletal pose sequences.

Citation
Citation
{Gregor, Danihelka, Graves, and Wierstra} 2015

Citation
Citation
{vanprotect unhbox voidb@x penalty @M  {}den Oord, Kalchbrenner, and Kavukcuoglu} 2016{}

Citation
Citation
{Goodfellow, Pouget{-}Abadie, Mirza, Xu, Warde{-}Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Mirza and Osindero} 2014

Citation
Citation
{Radford, Metz, and Chintala} 2015

Citation
Citation
{Reed, Akata, Mohan, Tenka, Schiele, and Lee} 2016

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2016

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017

Citation
Citation
{Kingma and Welling} 2013

Citation
Citation
{Yan, Yang, Sohn, and Lee} 2015

Citation
Citation
{Makhzani, Shlens, Jaitly, and Goodfellow} 2015

Citation
Citation
{Larsen, S{T1o }nderby, and Winther} 2015

Citation
Citation
{Perarnau, vanprotect unhbox voidb@x penalty @M  {}de Weijer, Raducanu, and {Á}lvarez} 2016

Citation
Citation
{Ma, Jia, Sun, Schiele, Tuytelaars, and Gool} 2017

Citation
Citation
{{Siarohin}, {Sangineto}, {Lathuiliere}, and {Sebe}} 2018

Citation
Citation
{Sutskever, Vinyals, and Le} 2014

Citation
Citation
{Cho, van Merrienboer, G{ü}l{ç}ehre, Bougares, Schwenk, and Bengio} 2014

Citation
Citation
{Camgoz, Hadfield, Koller, Ney, and Bowden} 2018

Citation
Citation
{Ahn, Ha, Choi, Yoo, and Oh} 2017



4 STOLL ET AL.: SIGN LANGUAGE PRODUCTION USING NMT AND GANS

3 Text to Sign Language Translation
Our text-to-sign-language translation system consists of three stages: A text-to-gloss NMT
network, a learned lookup table to generate motion from gloss sequences, and a pose-
conditioned sign generation network consisting of a VAE/GAN hybrid (see Figure 1). We
will now discuss each part of our system in detail.

Figure 1: Full System Overview. A spoken language sentence is translated into a represen-
tative skeletal pose sequence. This sequence is fed into the generative network frame by
frame, in order to generate the input sentence’s sign language translation.

3.1 Text to Gloss Translation
We employ state-of-the-art RNN based machine translation methods, namely attention based
NMT approaches, to realize spoken language sentence to sign language gloss sequence trans-
lation. We use an encoder-decoder architecture [26] with Luong attention [16].

Given a spoken language sentence, SN = {w1,w2, ...,wN}, with N number of words, our
encoder maps the sequence into a latent representation as in:

o1:N ,hS = Encoder(SN) (1)
where o1:N is the output of the encoder for each word w, and hS is the hidden representation
of the provided sentence. This hidden representation and the encoder outputs are then passed
to our decoder, which utilizes an attention mechanism to generate sign gloss sequences, one
gloss at a time, as in:

glossm = argmax
gloss

Decoder(hS,α(o1:N),glossm−1) (2)

where α(.) is the attention function and glossm is the gloss produced at the time step m.
The reason we utilize an attention based approach instead of a vanilla sequence-to-sequence
based architecture is to tackle the long term dependency issues by providing additional in-
formation to the decoder. During training we use cross entropy loss over generated glosses
for each time step while for testing we use a beam search decoder.

3.2 Gloss to Skeletal Pose Mapping
To convert each gloss to a sequence of upper-body motions, we build a lookup-table that
provides a mapping between sign glosses and 2D skeletal pose sequences. OpenPose [3]
was used to extract skeletal joint coordinates from sign videos. We ignore the lower-body
joints, as they play no role in sign language and use 10 joints describing the upper body
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(head, neck, shoulders, elbows, wrists, and hips). Each joint is defined as a pixel in the
image with coordinates x and y. To utilise multiple datasets from different domains we
perform the following normalisation:

All skeletons are aligned at the neck joint to a chosen reference skeleton:
SkelT = Skel(x,y)+(Nre f (x,y)−Nin(x,y)). (3)

where Nre f and Nin are the neck joints of the reference and the input skeletons. SkelT is
the translated input skeleton after alignment. We then calculate a scaling factor f using the
reference and input skeleton’s shoulder-to-shoulder distances:

f =
abs(Slre f (x,y)−Srre f (x,y))
abs(Slin(x,y)−Srin(x,y))

, (4)

where Slre f and Srre f are the reference skeleton’s and Slin and Srin are the input skeleton’s
left and right shoulder joints, respectively. We finally calculate the normalised skeleton,
Skelnorm, using the previously obtained translated skeleton, SkelT , and the scaling factor, f :

Skelnorm = Nre f (x,y)+(SkelT (x,y)−Nre f (x,y))∗ f . (5)

To build the gloss to pose sequence lookup-table we group all skeletal sequences by
glosses using their gloss annotations. We then align all skeletal sequences for each gloss
using dynamic time warping, before combining them into one representative mean skeleton
sequence:

Skelgloss =
1
i

i

∑
j=1

DTW (Skelnorm j ,Skelnorm0), (6)

where i is the number of example sequences for a gloss, and Skelgloss is the representative
mean sequence for a gloss.

3.3 Pose-Conditioned Sign Generation Network
The pose-conditioned sign generation network is a convolutional image encoder followed by
a Generative Adversarial Network (GAN). A GAN consists of two models that are trained
in conjunction: A generator G that creates new data instances, and a discriminator D that
evaluates whether these belong to the same data distribution as the training data. In training,
G’s aim is to maximise the likelihood of D falsely predicting a sample generated by G to
be part of the training data, while D tries to correctly identify samples to be either fake or
real. Using this minmax game setup, the generator learns to produce more and more realistic
samples, ideally to the point where D cannot separate them from the ground truth.

For our system we adapted the design rules proposed by [22] to build a conditional
DCGAN and convolutional image encoder E. E takes an image of a signer in a base pose (not
signing) and translates it into its latent representation. It is then decoded by the generator G
taking into account the skeletal pose information provided to the network. The discriminator
D assesses the output of G using the skeletal information and base pose. See Figure 1 for an
overview. We will now provide more detail on all parts of this image generation system.

3.3.1 Image Encoder and Generator
In the encoder, the input image goes through five convolution stages before using two fully
connected layers to get a vector representation of the image. The skeletal information is
given into the network as a 128x128x10 binary heat map. It is resized and then concate-
nated to the input image before each convolution step and the first fully connected layer. The
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original-size heat map then goes through a fully connected layer, with the resulting vector
representation being concatenated to the vector representation of the input image. This pro-
vides the input for the generator which can be seen as a decoder. It uses up-convolution and
resize-convolution to decode the latent vector back into an image using the embedded skele-
tal information. Additionally, skip connections between the encoder and generator encourage
it to produce an output that is close to the input but with the desired spatial differences. The
generator is described in more detail in Figure 2.

Figure 2: Detailed Generator Description.
3.3.2 Discriminator
The discriminator receives either a tuple of the generated synthetic image or ground truth,
the skeletal pose heat map, and base pose input image as input. It decides on image’s authen-
ticity. Given that the system is trained on multiple signers, the base pose image is needed to
establish whether the generated image resembles the desired signer. The skeletal information
is used to assess if the generated image has the desired joint configuration.
3.3.3 Loss
We use adversarial loss, as well as a pixel loss between generated and ground truth images to
train our network. The encoder E is treated as part of the generator G, and trained conjointly
with G. The discriminator loss is purely adversarial and is defined as:

Ldis = Lce(D(Ibp, It p,Hsk,1))+Lce(D(Ibp, Ît p,Hsk),0), (7)
where Ibp is the base-pose image, It p is the target-pose ground truth image, Ît p is the gener-
ated target-pose image, and Hsk is the skeleton key point heat map. Lce denotes cross-entropy
loss. The generator’s adversarial loss is defined as:

Lga = Lce(D(Ibp, Ît p,Hsk),1). (8)
Its pixel loss is the absolute pixel difference between ground truth target-pose and generated
target-pose image:

Lpix = abs(It p− Ît p). (9)
The generator’s total loss is a combination of adversarial and pixel loss:

Lgen = Lga +Lpix. (10)

4 Experiments
To evaluate the performance of the approach, we conduct experiments focusing on each
component and the system as a whole. We first describe the datasets we have used for
training our networks. We then share both quantitative and qualitative results on the text-to-
gloss translation network and compare it against the gloss-to-text network performance of
[2], as there is no baseline result for spoken language to sign gloss translation. Finally, we
conclude this section with a qualitative ablation study evaluating each components’ effect on
sign production performance.
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4.1 Datasets

In order to realise spoken language to sign video generation, we require a large scale dataset,
which provides sign language sequences and their spoken language translations.

Although there is vast quantities of broadcast and linguistic data, they lack spoken lan-
guage sentence to sign sequence (i.e. topic-comment) alignment. However, recently Cam-
goz et al. released RWTH-PHOENIX-Weather 2014T (PHOENIX14T) [2], which is the
extended version of the continuous sign language recognition benchmark dataset PHOENIX-
2014 [9]. PHOENIX14T consists of German Sign Language (DGS) interpretations of weather
broadcasts. It contains 8257 sequences being performed by 9 signers. It has a sign gloss and
spoken language vocabulary of 1066 and 2887, respectively. Each sequence is annotated
with both the sign glosses and spoken language translations.

We trained our spoken language to sign gloss network using PHOENIX14T. However,
due to the limited number of signers in the dataset, we utilised another large scale dataset
to train the sign generation network, namely the SMILE Sign Language Assessment Dataset
[7]. The SMILE dataset contains 42 signers performing 100 isolated signs for three repeti-
tions in Swiss German Sign Language (DSGS). Although the SMILE dataset is multi-view,
we only used the Kinect colour stream.

Using two datasets is motivated by the fact that there is no single dataset that provides
both text-to-sign translations and a broad range of signers of different appearance. Using
two datasets from different subject domains demonstrates the robustness and flexibility of
our method, as it allows us to transfer knowledge between specialised datasets. This makes
the approach suitable for translating between different spoken and signed languages, as well
as other problems, such as text-conditioned image and video generation.

4.2 German to Gloss Translation

As described in Section 3.1, we utilised a state-of-the-art NMT architecture for spoken lan-
guage to sign gloss translation. Both our encoder and decoder networks have 4 layers with
1000 Gated Recurrent Units (GRUs) each. As an attention mechanism we use Luong et al.’s
approach as it utilises both encoder and decoder outputs during context vector calculation.
We trained our network using Adam optimisation with a learning rate of 10−5 for 30 epochs.
We also employed dropout with 0.2 probability on GRUs to regularise training.

To measure the translation performance of our approach, we used BLEU and ROGUE
(ROGUE-L F1) score, which are the most popular metrics in the machine translation domain.
We measure the BLEU scores on different n-gram granularities, namely BLEU 1, 2, 3 and
4, to give readers a better perspective of the translation performance.

DEV SET TEST SET
Approach: BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE
Gloss2Text [2] 44.64 31.71 24.31 19.68 44.91 44.47 31.00 23.37 18.75 43.88

Text2Gloss (Ours) 50.15 32.47 22.30 16.34 48.42 50.67 32.25 21.54 15.26 48.10
Table 1: BLEU and ROUGE scores for PHOENIX-2014T dev and test data. Our network
performs Text2Gloss translation. Gloss2Text scores are provided as a reference.

Our results, as seen in Table 1, show that Text2Gloss performs comparably with the
Gloss2Text network presented in [2], which is the opposite task of translating sign glosses
to spoken language sequences. While Gloss2Text achieves a higher BLEU-4 score, our
Text2Gloss surpasses its performance on BLEU scores with smaller n-gram and ROUGE
scores. We believe this is due to shorter length of sign gloss sequences and their smaller
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GT Text: am samstag ist es wieder unbestaendig . ( on saturday it is changing again . )

GT Gloss: SAMSTAG WECHSELHAFT ( SATURDAY CHANGING )

Text2Gloss: SAMSTAG WECHSELHAFT ( SATURDAY CHANGING )

GT Text: am freundlichsten ist es noch im nordosten sowie in teilen bayerns .( It is friendliest still in the north-east as well as parts of Bavaria . )

GT Gloss: BESONDERS FREUNDLICH NORDOST BISSCHEN BEREICH ( ESPECIALLY FRIENDLY NORTH-EAST LITTLE-BIT AREA )

Text2Gloss: BESONDERS FREUNDLICH NORDOST ( ESPECIALLY FRIENDLY NORTH-EAST )

GT Text: am sonntag ab und an regenschauer teilweise auch gewitter . ( on sunday rain on and off and partly thunderstorms . )

GT Gloss: SONNTAG REGEN TEIL GEWITTER ( SUNDAY RAIN PART THUNDER-STORM)

Text2Gloss: SONNTAG WECHSELHAFT REGEN GEWITTER ( SUNDAY CHANGING RAIN THUNDER-STORM )

GT Text: im suedosten regnet es teilweise laenger . ( In the south-east it partially rains longer . )

GT Gloss: SUEDOST DURCH REGEN ( SOUTH-EAST THROUGH RAIN )

Text2Gloss: SUED LANG REGEN ( SOUTH LONG RAIN)

Table 2: Translations from our NMT network. (GT: Ground Truth)

vocabulary. The challange is further exacerbated by the fact that sign languages employ a
spatio-temporal grammar which is challenging to represent in text.

We also provide qualitative results by examining sample text-to-gloss translations (see
Table 2). Our experiments indicate that, the network is able to produce gloss sequences from
text that are close to the gloss ground truth. Even when the predicted gloss sequence does
not exactly match the ground truth, the network chooses glosses that are close in meaning.

4.3 Sign Video Generation

The Pose-Conditioned Sign Generation Network was trained on 40 different signers over
90,000 iterations. Out of these signers, one signer was chosen, and the network fine-tuned
for another 10,000 iterations on the appearance of this signer. We started training with a
learning rate of 2 ∗ 10−4 using Adam optimisation, which was lowered to 2∗ 10−5 after the
first 20,000 iterations. The system generates sign video from spoken language with a speed
of approx. 4 sec/frame of video.

We evaluate our sign production system at three different stages, comparing it to the
PHOENIX14T ground truth frames. First we take the extracted and normalised PHOENIX-
14T skeletal data and pass it to the sign generation network, to produce sign video. This is
labelled as "GAN" in Table 3. We next use the PHOENIX14T ground truth gloss sequences
and pass them through the gloss-to-pose lookup table and the resulting skeleton sequence
into the sign generation network. In Table 3 this is called "LUT + GAN". Finally, we test
the whole system by passing a German sentence to our text-to-gloss network, its output to
the lookup table and then to the sign generation network. This is called "FULL" in Table 3.

We analyse four representative sequences. We display every tenth frame of each video.
The text input, ground truth gloss, as well as the predicted gloss is provided for each.

Sequences 1 and 2 represent generated sign videos from a long input. For both cases the
NMT manages to predict a sequence of glosses that is close in meaning to the ground truth,
albeit with small differences. This is mirrored in the resulting video sequences. Sequence
1 stays close to the ground truth frames for all three test cases, except for number 50 and
70, where both LUT + GAN and FULL diverge slightly from GAN. This is likely due to
differences in timing between the gloss generated sequences and the one generated from
raw skeletal input. However the fact that LUT + GAN and FULL stay close to each other,
demonstrate a successful video generation from the gloss sequences. The gloss translation
for Sequence 2 is less close to the ground truth gloss than for Sequence 1. However the
produced NMT Gloss sequence manages to stay close to the ground truth for most of the
video. At frame number 50, GAN fails to predict the subject’s left hand correctly, which
is probably due to OpenPose failing to locate it. Both LUT + GAN and FULL succeed in
predicting both hands, as they use mean sequences for each gloss, making them more robust
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to errors in the skeletal annotation.
Sequence 3 and 4 represent video generations from short inputs. Sequence 3’s gloss

prediction matches the ground truth gloss exactly. This is mirrored in the resulting video
sequences for LUT + GAN and FULL, which stay consistent with one another throughout the
sequence, and close to the ground truth frames. Again, GAN suffers from some undetected
hand key points, which is not carried over into the sequences generated from gloss. Similar
results can be reported for Sequence 4. The NMT predicts an extra gloss, but all three
sequences stay close to the ground truth frames.

Sequence 1 Sequence 2
Text in: im norden maessiger wind an den kuesten weht er
teilweise frisch. (in the north moderate winds at the coast it
blows partly fresh.)

Text in: sobald sich der nebel am tag lichtet scheint die
sonne. (as soon as the fog lifts during the day the sun shines.)

Gloss GT in: NORD WIND MAESSIG KUESTE
KOENNEN FRISCH WIND (NORTH WIND MODERATE
COAST CAN FRESH WIND)

Gloss GT in: WENN NEBEL TAG AUFLOESEN SONNE
(WHEN FOG DAY DESOLVE SUN)

Gloss NMT in: NORD WIND MAESSIG KUESTE TEIL
WIND (NORTH WIND MODERATE COAST PART WIND)

Gloss NMT in: NEBEL VERSCHWINDEN IX SONNE
(FOG DISSAPPEAR IS SUN )

GT Frames GAN LUT + GAN FULL GT Frames GAN LUT + GAN FULL

Sequence 3 Sequence 4
Text in: richtung norden und westen ist es recht freundlich .
(In the north and west direction it is fairly friendly.)

Text in: im westen ist es freundlich . (It is friendly in the
west.)

Gloss GT in: NORDWEST FREUNDLICH (NORTH-
WEST FRIENDLY)

Gloss GT in: WEST FREUNDLICH (WEST FRIENDLY)

Gloss NMT in: NORDWEST FREUNDLICH (NORTH-
WEST FRIENDLY)

Gloss NMT in: WEST MEHR FREUNDLICH (WEST
MORE FRIENDLY)

GT Frames GAN LUT + GAN FULL GT Frames GAN LUT + GAN FULL

Table 3: Four example sequences.
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5 Conclusions

In this paper, we presented the first end-to-end spoken language-to-sign language video
translation system. While other approaches rely on motion capture data and/or the com-
plex animation of avatars, our deep learning approach combines an NMT-based text-to-gloss
model with a sign generation network capable of producing video frames directly which are
conditioned on pose and appearance.

For text-to-gloss translation we achieve faithful, and consistent results, employing state-
of-the-art NMT methods. Our generative network is capable of producing video sequences
faithful to its skeletal pose and appearance conditioning. We are aware that much more
work needs to be done to compete with existing avatar approaches. However, we believe
that our approach has the potential to provide continuous, end-to-end realistic sign language
synthesis, using minimal annotation. This means it will be possible to train our system on
various domains and languages, something current approaches lack.

For future work we will focus on increasing the resolution of our video output, and
increasing sharpness of the face and hands.
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