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Abstract—This paper proposes a Hybrid Approximate Representation (HAR) based on unifying several efficient approximations of the
generalized reprojection error (which is known as the gold standard for multiview geometry). The HAR is an over-parameterization
scheme where the approximation is applied simultaneously in multiple parameter spaces. A joint minimization scheme “HAR-Descent”
can then solve the PnP problem efficiently, while remaining robust to approximation errors and local minima.

The technique is evaluated extensively, including numerous synthetic benchmark protocols and the real-world data evaluations used in
previous works. The proposed technique was found to have runtime complexity comparable to the fastest O(n) techniques, and up to
10 times faster than current state of the art minimization approaches. In addition, the accuracy exceeds that of all 9 previous
techniques tested, providing definitive state of the art performance on the benchmarks, across all 90 of the experiments in the paper

and supplementary material.

Index Terms—PnP, perspective-n-point, camera resectioning, overparameterization, multiview geometry
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Fig. 1: Visualization of the PnP cost surface in the presence of noise and outliers, when optimized using different
parameterizations. Color indicates the reprojection error from low (blue) to high (yellow). Fig. 1a plots this against initial
camera orientation (defined by 2 Euler angles). Remaining subplots show the resulting error from a single refinement in
various parameterization spaces. Diamonds indicate local minima and the white circle is the ground truth pose.

INTRODUCTION

1

STIMATING the pose of a camera using observations of
E n points from the environment is one of the most funda-
mental problems in multi-view geometry. It’s often referred
to as the Perspective-n-Point (PnP) problem, and has been
investigated since the 1980s [1]. The PnP problem can be
seen as a special case of the Bundle Adjustment problem,
when there is only 1 camera and the 3D point cloud is not
modified. Recent applications of the PnP problem include
robotics [2], augmented reality [3], [4], 3D tracking [5],
structure from motion [6] and action recognition [7]. Despite
excellent progress in recent years, it is extremely challenging
to develop a fast and accurate approach, which is resistant to
noisy observations and near-singular point configurations.
We propose a direct minimization approach, operating on
an extremely efficient approximation to the theoretically
optimal cost function. We also introduce a Hybrid Ap-
proximate Representation (HAR) and corresponding joint
optimization framework HAR-Descent, which make it pos-
sible to unify the representations from several of state-
of-the-art algorithms, improving robustness and accuracy.
Figure 1 provides an illustration of this idea. The topology
of the cost surface (i.e. the extrema) does not change when
transformed to different parameter spaces. However, the

shape of the cost surface, and thus the path taken during
optimization, changes dramatically. Because of this, the re-
fined cost surfaces shown in Figures 1b-e demonstrate vastly
different convergence properties and even different proba-
bilities of encountering local minima. By jointly selecting an
optimization path which is simultaneously suitable for all
these parameter spaces, we greatly reduce the likelihood of
encountering a local minimum in the cost surface. To verify
these findings and motivate the remainder of the paper, we
provide the Matlab code necessary to generate Figure 1 as
supplementary material.

Direct minimization methods are widely employed
for PnP problems, either as a complete solution or as
a final “polishing” stage in the pipeline [S]. However,
the characteristics of minimization approaches depend
heavily on the choice of error function to be minimized.
The reprojection error is generally considered the Gold
standard error function for multi-view geometry [9],
however it is very difficult to optimize, leading to a
fractional programming problem (i.e. relying on the
ratio of two general non-convex functions). As a result,
direct minimization methods either have prohibitive
computational complexity, such as the branch-and-bound
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method of [10], or optimize an alternative algebraic error via
local-optimization [11], [12], reducing the accuracy of the
results and leading to issues with local minima. In contrast,
the direct minimization scheme derived in this paper is
solved efficiently using convex combination descent [13].

2 RELATED WORK

Previous work on efficient direct minimization techniques
for PnP have explored various algebraic cost functions. Lu
et al. [11] proposed an iterative minimization of the object
space error, and proved that their approach was globally
convergent. Schweighofer and Pinz [12] explored ambigu-
ities in the object space error for planar targets, and later
approximated the problem using a Semidefinite program re-
laxation [14]. Garro et al. [15] more recently proposed an al-
gebraic image-space error, which they minimized iteratively.

In contrast to these direct minimization schemes, there
is a second class of solution to the PnP problem which is
particularly popular in the literature. We refer to these as
algebraic techniques, as they focus on developing alterna-
tive parameterizations of the PnP problem, which are then
rewritten into polynomial form. For example, Hesch and
Roumeliotis [16] develop a system of polynomial equations
based on the rotation vector, and solve them using the
Macaulay matrix. Recently, the field has had a great deal
of success solving these algebraic techniques using the
Grobner basis method, partly due to the automated basis
generator of Kukelova et al. [17]. The best known example
is the 5 point Essential matrix algorithm of Stewénius et al.
[18], but it has also been applied to the PnP problem using
derivations from the Cayley representation [2], the unit-
quaternion representation [19] and the non-unit quaternion
representation [20]. Recently Wu [21] used the Grobner basis
method to solve the P4P problem (unknown focal length)
using a hybrid representation of one Euler angle and a
2 DOF quaternionl. In brief, the Grobner basis method
requires a particular monomial ordering to be selected. New
polynomials are then iteratively generated and reduced
until a suitable set of polynomials have been generated for
solving. This solution is computed offline using random
values selected from a prime field, and the series of steps
is recorded. The discovered procedure can then be applied
to the real data at test time. For more details on the Grobner
basis method we refer the reader to [22].

Another interesting formulation was proposed by Lep-
etit ef al. [23], where the solutions were found algebraically
without the use of Grobner bases. Instead a barycentric
parameterization was used, where 3D points are defined
as a weighted combination of 4 control points, which can
be automatically selected to ensure the problem is well
conditioned similar to the normalization of the Direct Linear
Transform (DLT) method [24]. Unfortunately, the barycen-
tric representation requires different solutions depending on
the rank of the null-space for the control point weightings.
This null-space estimation is very sensitive to outliers, thus
Ferraz et al. [25] proposed an extension to the technique
with integrated outlier rejection, by forcing the control point
assignment to always have rank 1.

1. It is important to note that this “hybrid” representation is still min-
imal, and is not an overparameterization, unlike the proposed approach.

2

As most of these algebraic techniques are based on poly-
nomial equations, they generally result in a large number
of roots, depending on the complexity of the representation
employed. Some recent techniques report as many as 81 so-
lutions [20] with the lowest reported as 16 [19]. The number
of solutions obtained also depends on the configuration of
the points (for example if they are planar or quasi-singular).
Unfortunately, although some of these solutions can often
be rejected (for example any complex roots), it is generally
necessary to introduce an additional stage which evaluates
the various roots according to one of the direct minimization
cost functions, in order to select the best. It is also important
to note that although the roots of these equations are guar-
anteed to be “optimal” in some sense, this generally does not
mean they minimize the gold-standard reprojection error,
or that they elegantly handle noise and outliers. For many
applications, better solutions may still exist.

In the remainder of the paper we start by formalizing
the PnP problem, and deriving a cost function based on a
generalized form of the reprojection error in Section 3. Then
in Section 4 we describe an efficient approximation scheme,
which allows us to obtain the solution faster than most com-
peting state-of-the-art approaches, including several non-
iterative O(n) techniques. An overparameterization scheme
is discussed in Section 5, which combines several represen-
tations to improve robustness. In Section 6 we perform an
extensive evaluation of the proposed technique, firstly we
compare different variances in Section 6.1. We then compare
against 9 state of the art approaches, including both direct
minimization and algebraic techniques (Section 6.2). Finally
we examine robustness to outliers in Sections 6.3. We then
summarize the findings in Section 7.

3 DERIVATION OF THE GENERAL COST FUNCTION
To formalize the PnP problem, we begin by assuming that
a collection of n points from the world are observed. This
collection is defined as P € R"*3 and the i-th point is
defined as p; € R3. The observations of a point are defined
by the normalized observation ray f; € R* (also known as
the bearing vector). Parameterizing the observations using
normalized rays (in the euclidean space) instead of pixel co-
ordinates (in the projective space), makes the system more
flexible, and applicable to a wider range of optical systems
such as spherical cameras [2].
Given these definitions, it follows that

ief{l...n}, 1)

where ); is the unknown depth of point ¢ and R,t define
the rotation and translation, respectively, from the world co-
ordinate frame to the camera co-ordinate frame. The PnP
problem is then to estimate the unknown X; , R and t
from the known f; _ , and p1. ..

One of the most important issues when deriving solu-
tions to the PnP problem is the choice of parameteriza-
tion for the camera pose. This is also one of the primary
differences between many recent techniques. The choice of
parameterization for the translation vector t is straightfor-
ward, however there are many possible parameterizations
of the rotation matrix R which enforce the important prop-
erties det(R) = 1 and RRT = I, with each parameteriza-
tion having different advantages. In theory R has 3 degrees

Aifi = Rp; +1t,
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of freedom, but most 3 element parameterizations (e.g. Euler
angles, Cayley transform, rotation vector) suffer from insta-
bilities and singularities. As such, over-parameterizations
(e.g. angle-axis, rotation matrix, unit-quaternion and the
recent non-unit-quaternion [20]) are often used to improve
stability and generality, at the cost of requiring additional
constraints and making convergence more challenging.

By defining a general function R = Rot; (R;), to
convert any rotation (R;) from parameterization j into a
rotation matrix representation (R), the remainder of the
paper is general enough to be compatible with most existing
PnP formulations. The new general PnP formulation is

Note that the depth A, is equal to the magnitude of p;
after transformation to the camera co-ordinate frame. We
can substitute this into Equation 2 to remove the unknown
A and rewrite as an error function

Rot (R)pi +t
€ (R,t) = —f; ®)
[IRot (R) pi + |l 2
The total error for a particular solution is then
E(R.t) =) e (R.t)". )
i=1

This can be seen as a generalization of the reprojection error,
which is regarded as the gold standard cost [9]. Note that this
is the error measure visualized in Figure 1.

4 EFFICIENT APPROXIMATION
In order to efficiently minimize this error function, we first
reformulate it into an iterative scheme where R and t° are
the initial solution and AR and At are the estimated update
to the solution. To obtain the initial solution we randomly
select 3 of the points and corresponding observations. The
minimal P3P solver [26] is then applied to obtain an initial
pose RY and t°. Note that applying P3P to a random set
of points is an extremely weak initialization cue, primar-
ily serving to set the correct order of magnitude for the
translation. More accurate results would be obtained by
initializing from a competing PnP algorithm (as in many
previous works with a final “polishing” stage), however
this would adversely affect the speed of the approach. This
idea is examined experimentally in Section 6.2 and in the
supplementary material.

We perform a Taylor series expansion around the posi-
tion RY,t to get the cost function

E(R°+ ARt + At) = <ei (R, %)
i=1
AR]  1[AR]T . [aR] )
e {At] ta {At] Hp {At} )
where Jg is the Jacobian of the error function, and Hpg is
its Hessian. These derivatives obviously depend, in part,
on the rotation parameterization used. However, for any
particular representation, they can be computed in closed
form. Due to the size of the resulting equations, please see
the supplementary material for details.

From this expansion, we can then obtain an efficient
approximation to the cost function by taking a subset of

©)

3

the terms. The number of higher order terms which are
included determines the trade-off between computational
complexity and approximation accuracy. However, the gain
in accuracy from using a more complex approximation is
often negligible compared to the gain from performing ad-
ditional iterations. In contrast the decrease in computation
time when using fewer terms is significant. As such, in this
paper we make use of the first order approximation and
linear solvers to estimate the update at each iteration:

n

- . AR
[AR", At ]:ﬁ%{fﬁ;(@(m’to) —l—JE[At}). (6)

However, by maintaining second order terms the following
formalization could exploit Hessian based solvers (see
supplementary material for additional formalization of the
error Hessian).

In practice we find a single iteration is often sufficient to
obtain a reasonably accurate solution, and that convergence
(up to numerical precision) occurs in 5 iterations.

5 ROBUST OVERPARAMETERIZATION

Iterative estimation schemes are typically susceptible to
local minima and the quality of the result depends on the
initialization. In addition, the low order Taylor approxima-
tion introduces some inaccuracy. However, we can mitigate
these effects by fusing estimates from multiple parameter-
izations. This is because different types of inaccuracy and
different sets of local minima are found, when performing
the approximation in different parameter spaces.

We perform a joint optimization, where the cost func-
tions relating to the different representations are combined
within a single framework, and a solution is obtained to
satisfy all representations simultaneously. It is important to
note that this is not a simple “late fusion” scheme where the
problem is solved independently in every parameterisation
and the results fused (e.g. by conversion to a single refer-
ence representation followed by averaging). Such a scheme
would have little effect on the frequency of local minima,
which would still impact the fused result. Instead, the
proposed approach unifies the different parameterisations
during the optimization process. In this case, the process
will not halt unless it has hit minima in all representations
simultaneously. This intuition can be verified by examining
Figure 1 and the supplementary code provided. To this end,
we define the overparameterization R which includes m
different representations,

R={Rjljel...m}. @)

In order to make use of this overparameterization, we
define a general conversion function ;Rot; (Ri) = R;
which generates a rotation in parameterization j from a rota-
tion in parameterization ¢. We can then redefine Equation 2:

MNf = ROtj (11:£1>7j (Rl)) pi+t, i€ {1 .. n} 8)

Note that even in this “early fusion” approach, a reference
representation R is still required. However, in this case it is
embedded within the cost function, being converted to each
representation (R;) in turn and having the PnP problem
parameterized in this new representation. Note that if j = 1
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then 1 Rot; is an identity transformation and thus Equation 8
is equivalent to Equation 2 in this case.

We can now repeat the previous approximation starting
from Equation 8, to obtain a new cost based on the Hybrid
Approximate Representation R (i.e. combining approxima-
tions in various representations within a single cost),

[AR*, At*] = arg min Z (leij {AA?]
[AR,At) R,eR i=1 ©)

2
+€; (ROtj <1fﬁj (R?)) ,to) > .
Following the total derivative chain rule, the Jacobian J;
of the error function in the representation j should be
augmented by multiplication with the Jacobian ; J, ; relating
to the derivatives of the composed function ;Rot;. Once
again, note that if j = 1 then ; J ; = I and this term of the
cost function matches that of Equation 6.

Previous work has shown that some representations are
in general more valuable for PnP problems. As such, it
may be possible to introduce weightings for the various
representations (examined in the supplementary material),
or even to introduce a more intelligent fusion scheme which
favors certain representations based on the situation. It is
also trivial in our approach, to introduce weightings for
the individual points, if confidences in the observations are
available (e.g. a point matching score). However, we leave
these ideas for future work and the results in the remainder
of this paper use equal weightings.

At every iteration, we wish to solve Equation 9 to obtain
the optimal value (in a least squares sense) of [AR*At*].
Helpfully, R is naturally bounded, and we can introduce
sufficiently large bounds on t to define a compact solution
space. In the limit, bounds on t may be equal to the limits
of numerical precision, and thus do not constrain the pos-
sible accuracy of the approach. We can therefore solve the
PnP problem via Convex Combination Descent [13] in the
Hybrid Approximate Representation space, which we term
HAR-Descent. This relates to iteratively finding the solution
within the compact subspace, which minimizes the least
squares error of the first order Taylor-approximation (e.g.
Eq. 9) with decreasing steps.

6 EVALUATION

We follow the evaluation protocol which has become stan-
dard in recent years [8], [19], [20], [23] for comparing various
classes of PnP solver, including algebraic methods, direct
minimization methods, and combinations of the two. The
algorithm performance is evaluated with varying numbers
of points, varying levels of input noise, and in varying con-
figurations (general, planar and quasi-singular). The quasi-
singular configuration is when the points are poorly scaled
and near degenerate. This means that algorithms with spe-
cial handling for the planar case may attempt to use the
non-planar solution, and suffer from numerical instabilities.
Good performance across all point configurations is desir-
able for a general PnP algorithm. For each test, a number of
3D points are randomly generated uniformly in the ranges
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These points are observed by a camera with a focal length of
800 pixels. The observations are then corrupted by Gaussian
noise of a particular standard deviation. R and t are then
estimated, and performance is measured by the orientation
error (the maximum angle between any corresponding basis
vectors from the estimated, and true camera orientation) in
degrees. Each test is repeated 1000 times, and the median er-
ror is recorded. We also computed the translation error and
reprojection error as specified in the benchmark. Note that
the rotation and translation errors offer the fairest compar-
ison against algebraic techniques. The final error measure is
equivalent to Equation 4 and Figure 1 which the proposed
technique attempts to optimize directly through its hybrid
approximation. Regardless, the conclusions are similar for
all three performance measures, and so for conciseness the
latter 2 are relegated to the supplementary material.

For these tests, the Hybrid Approximate Representation
is chosen as a combination of 3 different parameterizations,
the minimal rotation vector RV, the Euler axis+angle EA
and the non-unit-quaternion Q (used by Zheng et al. [20]).

6.1 Evaluation of proposed techniques

We first examine the effect of the reference representation
on the proposed technique. All 3 variants of the technique
include all 3 representations (RV, EA and Q), but each
variant uses a different representation as the reference. As
described in Section 5, the reference representation is the one
which all equations are converted to and solved in (i.e. R; in
Equations 8 and 9). Results for this comparison are plotted
in Figure 2. The top row shows the noise resilience of the
algorithms, while the bottom row shows the performance
against the number of points. From left to right the columns
relate to the general, planar, and quasi-singular configura-
tions, respectively.

For the RV variant even the worst performance (in the
planar configuration with a noise level of 5 pixels) gives
a median orientation error of slightly over 1 degree. The
choice of reference representation has a clear affect on the
performance (even though all variants include all 3 repre-
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sentations) confirming what has been found by previous
work in the field. Using the 4 element representations (EA
and Q) as a reference is less accurate than using the minimal
RV representation in all cases. EA generally performs the
worst. This agrees with the numbers of local minima found
in the initial motivation for the paper (Figure 1).

For all representations, and in all point configurations,
the accuracy of the technique with respect to the amount
of observation noise (the top row of plots) is approximately
linear. However, the impact of the noise (i.e. the slope of the
trend) depends on the point configuration, with the same
amount of noise causing roughly twice as much error in the
planar case as in the general configuration. It is also interest-
ing to note that as the noise level decreases, the performance
of HAR using different reference representations converges.

6.2 Comparison to State of the Art

We now compare the proposed algorithm against many
previous state-of-the-art techniques including direct mini-
mization (which are closest to the proposed technique) and
algebraic methods. We follow the protocol of [19], compar-
ing against a total of nine other approaches in their full “as
released” form. Note that five of these techniques include
both an algebraic and an iterative stage.

o LHM The current state-of-the-art iterative minimization
technique of Lu et al. [11]. In the planar case, the planar
variant SP+LHM of Schweighofer and Pinz [12] is used.

o EPnP+GN The non-iterative O(n) approach of Lepetit et
al. [23] followed by Gauss-Newton minimization of the
solution (non-planar tests only).

e DLT The classic direct linear transform method [24]
(non-planar tests only).

« HOMO The homography method of Malik et al. [27]
(only for planar tests).

e RPNP The O(n) solution of Li et al. [8], designed to be
robust to planar and quasi-singular configurations, using
an algebraic approach followed by a minimization step.

e DLS_ . The non-degenerate version of the Direct Least
Squares technique of Hesch et al. [16] (one of the few
algebraic techniques with no following minimization).

¢ SOS The Sum-Of-Squares technique solved via semidef-
inite programming by Schweighofer and Pinz [14].

o OPnP The recent O(n) solver of Zheng et al. [20] using
non-unit-quaternions and including a polishing stage.

o UPnP The Unified PnP approach of Kneip et al. [19], in
its central PnP mode, with a final minimization stage.

o REPPnP The approach of Ferraz et al. [25] with inte-
grated outlier detection.

Note that the primary comparison of our proposed tech-
nique is against LHM which is generally considered to be
the state of the art iterative technique. Most other state
of the art techniques in this comparison calculate a set of
solutions algebraically, and perform a smaller amount of
minimization or “polishing”, in order to achieve accuracy
comparable to LHM but with less computational overhead.
It is also interesting to note that due to the representation
used in DLS, the initial release suffered from a degeneracy
in the case of 180 degree rotations around any of the 3
axes, with significantly decreased accuracy when the pose
approaches these configurations (this was solved in a later
release by running the algorithm multiple times). This is
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Fig. 3: Comparison of HARD-PnP against previous SOTA.

also part of the reasoning behind the move to a quaternion
representation in OPnP. This provides further motivation
for our HAR overparameterization, where issues with any
one parameterization are balanced out by the other param-
eterizations.

The evaluation is shown in Figure 3. As in Figure 2, the
columns relate to the general, planar and quasi-singular con-
figurations respectively, while the top row examines noise
resilience and the bottom row varies the number of points.

The HARD-PnP algorithm compares very favorably
against state-of-the-art and is the most accurate out of the
ten techniques, at every point in all the graphs (i.e. it has
the lowest error for all numbers of points and noise levels,
in all three point configurations) apart from a brief region
of the bottom-middle plot (the planar configuration). We
also note that as the image noise approaches zero, most
techniques are able to reliably recover the ground truth pose
(with a few exceptions for challenging point configurations).
This indicates that with perfect observations, minimization
techniques such as HARD-PnP are only marginally disad-
vantaged by the lack of global optimality guarantees, which
algebraic techniques can provide.

When compared to the previous state-of-the-art min-
imization technique (LHM), HARD-PnP is slightly more
accurate in the general and planar configurations. However,
LHM is unreliable in the quasi-singular configuration as it
uses a separate technique in the planar case. In contrast
HARD-PnP performs equally well for this configuration.

We also see that the proposed technique consistently
outperforms algebraic approaches such as OPnP and DLS,
despite their theoretical optimality guarantees. This indi-
cates better robustness to measurement noise.

In Figure 4 we perform a comparison of runtimes (Fig-
ure 4a), and also of the accuracy with both extremely small
and large numbers of points (figures 4b and 4c). Speed tests
for HARD-PnP were performed in Matlab using a single
thread at 2.4 GHz. The runtime graph indicates that the com-
plexity of the HARD-PnP algorithm compared to the num-
ber of points is drastically improved compared to the previ-
ous state-of-the-art minimization technique LHM. Indeed,
complexity is comparable to the O(n) algebraic solutions
such as EPnP, RPnP and UPnP (and significantly better than
DLS which is also O(n)). Note that SOS cannot be seen on
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the plot, but has average runtimes of around 250 ms.

With extremely low numbers of points, the ranking of the
algorithms changes significantly (although HARD-PnP is
still the top performing algorithm). DLT, EPnP and REPPnP
are no longer visible on the range of competitive plots. Addi-
tionally UPnP and LHM (the previously state of the art min-
imization technique) are no longer competitive with the best
techniques. The difference in accuracy between HARD-PnP,
OPnP and DLS is negligible with only 4 points, although as
already mentioned HARD-PnP is significantly faster.

All techniques perform well with extremely large num-
bers of points (note the largest error is around 0.2°), the
ranking of the algorithms again changes, but again HARD-
PnP is the most accurate. The robust RPnP appears to be
unable to exploit the additional information and actually
performs worse than all other techniques including the DLT
baseline. This is likely due to a limitation of their approxi-
mate cost function. In contrast, our Hybrid Approximate
Representation does not suffer from this limitation.

In addition, as HARD-PnP is a minimization approach,
it can be used as an alternative “polishing” step for existing
algebraic PnP techniques. In Figure 4d we compare the most
accurate competing technique (DLS) in its standard form,
and when using HARD-PnP refinement. The refinement
provides a consistent 5% reduction in errors. Even larger
gains (up to 50%) are seen when combining HARD-PnP
with other techniques (see the supplementary material).
This experiment demonstrates that the proposed technique
is extremely robust to it’s initialization. The accuracy is
similar when initialized randomly, or using a state-of-the-
art algebraic technique (however a good initialization likely
reduces the number of iterations necessary to converge).

We next examine in greater detail the distribution of
performance for one of the data points from the previous
experiments. We selected the most challenging experimen-
tal setup for exploration; the 4 point experiment with a
noise level of 5. Rather than simply displaying the mean
or median of the errors, Figure 4e displays a cumulative
histogram of the errors (i.e. how frequently each technique
achieved a result within a particular threshold of the ground
truth). This is useful for exploring the frequency of local
minima or suboptimal solutions. UPnP is able to most fre-
quently exceed very tight success thresholds (<3 degrees),

with the proposed technique having the second best success
rates. At looser success thresholds the proposed technique
overtakes UPnP, being able to get within 5 degrees of the
true solution in 88% of cases compared to 84%. This indi-
cates that the proposed technique suffers fewer catastrophic
failures than UPnP (i.e. it gets stuck in distant local minima
less often), while the solutions it finds are also generally
more accurate than all other approaches.

6.3 Performance with outliers

Although this is a widely used standard benchmark, it has
one significant drawback. Noise is assumed to be Gaussian
distributed (i.e. caused by localization errors) with none
of the outliers due to incorrect correspondences, which
are ubiquitous in real PnP applications. Traditionally a
RANSAC [1] framework is used to deal with outliers, hence
the focus on “inlier performance” in the standard bench-
mark. However, it’s still interesting to examine how algo-
rithms behave in a more realistic setting. This is particularly
true as recent techniques such as REPPnP [25] have been
developed to handle outlier rejection internally.

For this experiment we follow the protocol of [25]. As
in the previous experiment, data is generated in 3 different
configurations, including Gaussian noise with a standard
deviation of 3 pixels. Additionally, a varying number of
outliers are generated by duplicating random 3D points and
observations, creating invalid correspondences. As in [25]
we compare against various combinations of “minimal” and
“non-minimal” techniques, however we follow a slightly
different approach which better exploits the non-minimal
solvers. The previous benchmark employed a two stage
process, where RANSAC was first run using the minimal
solver, and the non-minimal solver was then run on the
result of RANSAC. Instead we use a Locally-Optimized-
RANSAC framework [28]. In brief, every time a new optimal
solution is found by the minimal solver, the solution is
iteratively refined using the non-minimal solver on the inlier
set, with decaying inlier thresholds. The primary advantage
for this experiment is that the non-minimal solvers are
exploited to much greater effect, and their behaviors can be
more easily analyzed. For further details we refer the reader
to [28], but we should point out that LO-RANSAC is often
faster than standard RANSAC (despite repeated calls to the
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Fig. 5: Comparison of the proposed HARD-PnP algorithm against the previous state-of-the-art, with varying numbers of
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configurations respectively. Right compares runtimes.

non-minimal solver) because it generally finds larger inlier
sets (and thus terminates after fewer iterations).

Note that we evaluate only the subset of the tech-
niques above which were included in the recent [25] bench-
mark. The benchmark omits some techniques with higher
complexity, which scale poorly to the large numbers of
points involved in the experiments. The combinations of
minimal /non-minimal techniques evaluated are: RNSC P3P
using the minimal sampling of [26] without a non-minimal
solver. RNSC P3P/OPnP including OPnP [20] as the non-
minimal solver. RNSC P3P/ASPnP including ASPnP [29] as
the non-minimal solver. RNSC P3P/DLS, ;| including the
non-degenerate DLS variant [16] as a non-minimal solver.
RNSC RP4P/RPnP using RPnP [8] as both the minimal and
non-minimal technique (unlike other techniques, a minimal
sample of 4 is required here). REPPnP using the technique
of [25] which handles outliers, with no minimal solver or
RANSAC. RNSC P3P/HARD-PnP (RV) using the proposed
algorithm as the non-minimal solver.

In Figure 5 the performance is plotted for various levels
of outlier contamination. In every case there were 100 inliers
as in [25] (so 10 % outliers corresponds to 110 total points,
and 90 % outliers corresponds to 1000 total points). The
runtime plot shows that REPPnP is the fastest approach and
because it does not require RANSAC the runtime does not
change with the number of outliers. However, we also see
that in the general point configuration, the REPPnP tech-
nique breaks down when the number of outliers is greater
than the number of inliers (i.e. when the outlier fraction
exceeds 0.5) while the other RANSAC based techniques pro-
vide consistent accuracy all the way up to 90 % outlier con-
tamination. This breakdown point agrees with the findings
in [25], however we also examine the performance for points
in the planar and quasi-singular configurations. This has
little effect on RANSAC based methods, but causes REPPnP
to break down as early as 20 % outlier contamination.

In terms of runtime, most RANSAC techniques behave
similarly. As mentioned previously, the LO-RANSAC tech-
niques which repeatedly execute the non-minimal solver are
still able to achieve similar runtimes to pure P3P RANSAC
(but with greatly improved accuracy) as they can terminate
earlier. However, the RPnP RANSAC scales poorly at the
higher outlier ratios; it requires a larger minimal sample
of 4 which greatly increases the number of RANSAC iter-
ations required for a pure sample. HARD-PnP RANSAC

proves to be the most accurate approach, followed by OPnP
RANSAC, however there appears to be significant overhead
in this technique causing runtimes significantly slower than
any other approach except DLS when the outlier fraction is
less than 0.8.

In addition to these experiments, all the tests from the
previous sections (i.e. evaluation against noise level, number
of points and different variants of HARD-PnP) are repeated
in the presence of outliers in the supplementary material.

6.4 Evaluation on real data
Finally, we take this realistic evaluation a step further.
In the supplementary material we perform a qualitative
examination of results obtained using real data obtained
via SIFT point matching between images (including match
outliers and feature localization noise) following [20] and
[25]. In Figure 6 we present a similar quantitative evaluation,
following the protocol of Garro et al. [15]. We first perform
multiview stereo reconstruction [30], [31] on the entire Herz-
Jesu-P8 dataset’ (shown in Figure 6a). We then take random
subsets of the reconstructed 3D point cloud, and the corre-
sponding 2D feature detections from a single input image.
These noisy 2D-3D correspondences are then provided to
the various PnP techniques from the previous section, and
the accuracy of the estimated camera pose is examined.
Clearly the trivial P3P technique performs poorly, and
REPPnP has difficulty when the number of points is very
low. The other techniques are able to achieve excellent
accuracy, with median orientation errors less than a tenth
of a degree even on realistic data. As shown in the zoomed
subplot, the proposed technique has the best performance
overall, particularly with smaller numbers of points avail-
able. OPnP comes a close second in terms of accuracy.
However, as highlighted in Figures 4 and 5, OPnP is orders
of magnitude slower than the proposed technique.

7 CONCLUSIONS

From these results we can conclude that using an
overparameterized representation, such as our HAR,
during PnP can greatly improve accuracy and robustness
to noise. Our hybrid representation outperforms all 9
state of the art techniques in a huge range of experiments
over 3 different types of point configuration. We have
also shown that our HARD-PnP efficient approximation
scheme is extremely robust to planar and near-planar point

2. http:/ /cvlabwww.epfl.ch/data/multiview /denseMVS.html
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Fig. 6: The reconstructed Herz-Jesu-P8 dataset (left) and two views (overall and zoomed in) of the the accuracy of different

PnP techniques using different sized subsets of the data.

configurations. The approximation scheme, in conjunction
with the convex combination descent solver, also provides
runtimes which are up to 10 times faster than the current
state-of-the-art minimization technique, and is even
comparable to several recent O(n) techniques.
Interestingly, the non-unit-quaternion representation
(which has recently become popular in the field) performed
significantly worse as a reference representation than the
minimal rotation vector representation. This implies that
the requirements for a good reference parameterization are
different to the requirements for a good parameterization.
In the future, it would be interesting to investigate
techniques to combine the Hybrid Approximate Represen-
tation with global direct solvers (such as the semidefinite
programming of [14]). It is also likely that overparameter-
ized representations may be useful within algebraic (rather
than minimization based) PnP algorithms, or even in other
areas of multi-view geometry. With additional derivation,
the proposed technique could also be extended to Hessian
based optimization schemes.
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