IEEE TRANSACTIONS ON IMAGE PROCESSING

TMAGIC: A Model-free 3D Tracker

Karel Lebeda, Simon Hadfield, Member, IEEE, and Richard Bowden, Senior Member, IEEE

Abstract—Significant effort has been devoted within the visual
tracking community to rapid learning of object properties on the
fly. However, state-of-the-art approaches still often fail in cases
such as rapid out-of-plane rotation, when the appearance changes
suddenly. One of the major contributions of this work is a radical
rethinking of the traditional wisdom of modelling 3D motion
as appearance change during tracking. Instead, 3D motion is
modelled as 3D motion. This intuitive but previously unexplored
approach provides new possibilities in visual tracking research.

Firstly, 3D tracking is more general, as large out-of-plane
motion is often fatal for 2D trackers, but helps 3D trackers
to build better models. Secondly, the tracker’s internal model
of the object can be used in many different applications and it
could even become the main motivation, with tracking supporting
reconstruction rather than vice versa. This effectively bridges the
gap between visual tracking and Structure from Motion.

A new benchmark dataset of sequences with extreme out-of-
plane rotation is presented and an online leader-board offered
to stimulate new research in the relatively underdeveloped area
of 3D tracking. The proposed method, provided as a baseline, is
capable of successfully tracking these sequences, all of which pose
a considerable challenge to 2D trackers (error reduced by 46 %).

I. INTRODUCTION

NE of the major challenges found in visual tracking is

out-of-plane rotation, caused by variations in viewpoint.
This is a very hard problem, causing failures of many state-of-
the-art trackers due to the radical change in appearance that
can ensue. It is obvious that any successful tracker needs to
address this kind of appearance change, which comes from
the object pose and cannot be modelled by a simple planar
transformation.

Many approaches have been proposed to overcome variations
of appearance. Online approaches typically assume that the
tracking has thus far succeeded, using this to enrich the
representation of the object over time. The object is usually
represented as a 2D patch [10], [28], a cloud of 2D points [4],
[36] or a combination of these [14]. Unfortunately, variations
of viewpoint lead to rapid changes in appearance — see Figure 1
for an example. This causes problems for 2D trackers which
do not have sufficient observations to confidently update their
object representation.

In this work, the conventional approach of treating appear-
ance changes resulting from viewpoint variation as object
diversity is challenged. Instead, it is argued that an intrinsically
3D object in the 3D world should be modelled as such.
Variations of viewpoint (relative camera-object motion) should

K. Lebeda (corresponding author), S. Hadfield and R. Bowden are
with University of Surrey, GU27XH Guildford, United Kingdom (e-mail:
karel@lebeda.sk, {s.hadfield,r.bowden}@surrey.ac.uk).

This work was supported by the EPSRC project EP/I011811/1 and the SNSF
project SMILE. The authors would like to thank to Dr Philip Krejov for his
help with creating synthetic data.

Manuscript created February 13, 2017.

Fig. 1.

Out-of-plane rotations change the object appearance significantly, here
is a complete change in just 50 frames. First row: original images. Second
row: feature cloud and final model returned by the tracker. Notice the bottom
and back side of the car, which have not been observed yet, so the point cloud
does not reach there and the model is smoothly extrapolated.

then be treated explicitly as the camera motion, in accordance
with reality. Following this path, the negative effects of out-
of-plane rotation are not only mitigated; they actually prove
beneficial, as they improve the numerical conditioning (wider
baseline).

The 3D shape of the object is estimated online using
techniques developed in the fields of Structure from Motion
(SfM) and Simultaneous Localisation And Mapping (SLAM).
As such, this approach can be seen as a bridge between
visual tracking and SfM/SLAM, combining 2D feature tracking
and object segmentation with camera pose and 3D point/line
estimation, while avoiding the need for initialisation common
in SLAM [21]. Another difference from SfM/SLAM is ob-
ject/background segmentation, where only a small portion
(e.g. 10%, but can be even as low as 1%) of the image
may be used in tracking. This can easily become a significant
issue as an STM/SLAM technique would attempt to model
the scene (background) while features on the object would be
rejected as outliers. However, exactly the opposite behaviour
is desired. Therefore it is vital to use the tracking to provide
object/background segmentation to focus on the target object
and actively ignore the background.

To achieve this, a novel approach to modelling the object 3D
shape using a Gaussian Processes (GP) is explored. This model
helps to distinguish (segment) which parts of the image belong
to the projection of the object and which are background,
allowing intelligent detection of new features, thus preventing
inclusion of the background in the model. In addition, the GP
shape model 1) provides an initialisation of the 3D positions for
newly detected 2D features, 2) mitigates the sparsity of features
that would lead to failure of techniques such as PTAM[16],
3) the surface normals of the GP indicate which points on the
object may be visible to a particular camera to aid redetection
and loop closure and 4) the GP offers a model of the surface for
visualisation and subsequent tasks, such as dense reconstruction
or robot navigation, etc.

IEEE TRANSACTIONS ON IMAGE PROCESSING

T
TRACKING \ MODELLING

| v

Sec. IV-A 2D § £t 01 o1 M BUNDLE X L.oxtcte .",p

TRACKING g o |0 ADJUSTMENT X.LC e
L . | ¥ oe
! | =2 mopEL .t
T — TRAINING M
CAMERA X, L, X L
ESTIMATION o || rseve : o
: [FEATURE £,CLM be,

T GENERATION Yy 1
[|

Fig. 2.

Overview of the TMAGIC tracker. Symbols on the right side of each step indicate inputs and outputs, as labelled for the case of 2D tracking. While

the tracking loop is repeated in every frame, modelling only runs when necessary (according to Equation (4)). The numbers in upper left corners denote

sections covering individual steps.

This article expands our previous conference publication [18].

To aid reproducibility we include additional insight into the
internal workings of the algorithm, especially the feature
management and the Gaussian Process modelling. This includes
new figures and formalisation. Furthermore, experimental
evaluation is greatly expanded. Finally, the new sequences
which form the extended evaluation of the technique are made
available online including ground truth. Since very few works
exist on model-free 3D tracking, a benchmark with an online
leader-board is set up to stimulate new research in the area'.

The rest of this article is structured as follows. After
discussing related work in Section II, the TMAGIC tracking
algorithm is introduced in Section III. Its workings are detailed
in Sections IV and V regarding the tracking and modelling parts,
respectively. Section VI brings the experimental evaluation
of the algorithm from the point of view of 2D tracking,
3D tracking and 3D modelling. Finally, Section VII draws

conclusions and discusses limitations of the proposed approach.

II. RELATED WORK

3D monocular tracking attempts to recover the trajectory of
the object in the 3D world (relative to the camera) instead of
in the image plane. Typically, techniques employ known 3D
models of the object, examples of which are the tracking of
the pose of human bodies [29], vehicles in traffic scenes [8],
[38] or general boxes[15].

The focus of this work is on model-free tracking. There has
been considerably less research in this field. While there have
been relatively few attempts at learning 3D tracking models on
the fly, such approaches are fundamental to online SfM (such
as [13] or [24], where online coarse reconstruction is provided
as feedback for guided scanning). However, such approaches
assume the interest is in reconstructing the whole scene. In
the area of visual object tracking, 3D based approaches must
extract 3D shape and trajectory when objects are represented
only by a minority of the video frame. For this reason,
motion segmentation is sometimes used, such as to track and

Uhttp://cvssp.org/data/3DCars/

reconstruct moving bodies in the SLAM pipeline of Kundu et
al. [17].

An example of a recent model-less 3D tracker is the work
of Feng et al.[9], who introduced the idea of 3D monocular
tracking with no offline modelling or training, using explicit
colour-based segmentation. This allowed reconstruction of the
segmented object using visual SLAM techniques. However, they
do not attempt to estimate the surface shape beyond a cloud of
points. Another similar approach is the work of Prisacariu
et al.[26] who use level-set techniques for 3D modelling.
The approach is however not online, as it processes the
video-sequence as a batch, which significantly limits possible
applications of such a “tracker”. It is important to mention
the tracker of Yin and Collins [41], where the camera pose is
estimated in 3D during 2D object tracking, without building any
3D model. As such, this work can be seen as an intermediate
step between 2D and 3D approaches.

There has been a significant amount of work in the area of
online 3D modelling based on depth sensors. The most notable
in this area is the work of Newcombe et al., in particular
Kinect Fusion [23] and Dynamic Fusion [22]. However, since
this work focuses on tracking and modelling from strictly
monocular RGB video, a more detailed review is omitted here.
Recommended recent overviews for 3D modelling and tracking
are [5] and [33], respectively.

III. SIMULTANEOUS 3D TRACKING AND RECONSTRUCTION

Our goal is the tracking of a 3D object throughout a sequence,
learning a model of appearance on the fly. However, unlike most
online tracking approaches, ideas from both SfM and SLAM
are employed in this work, to form a 3D representation of the
model that can cope with out-of-plane rotation. The program
and data flow of the proposed TMAGIC (standing for Tracking,
Modelling and Gaussian-Process Inference Combined) tracker
is illustrated in Figure 2. It consists of two parts: tracking and
modelling (see the subsequent sections for full descriptions of
the individual elements).

The tracking loop is performed on every frame. 2D features
(points and line segments in the image) are tracked in the new
frame (Section IV-A), yielding the sets of features currently

IEEE TRANSACTIONS ON IMAGE PROCESSING

(s> ACTIVE

Extraction Local Rejection

o redetection
Deactivation

INVISIBLE ‘

Fig. 3. Life cycle of features used for 3D tracking.

visible. Using these, the new camera pose can then be estimated
(Section IV-B), while keeping the corresponding 3D features
(points and lines in the real world) fixed. Without an outer
reference, the world coordinate system is not fixed. Therefore
it can be, without loss of generality, safely assumed that the
camera is moving around a stationary object. The tracking loop
is repeated until a change in viewpoint necessitates an update
of the 3D features, using the modelling subsystem.

The first step of modelling is a BA (Section V-A). This
refines the positions of 3D features and the camera, using the
2D observations. The updated features are subsequently used to
retrain the shape model (Section V-B), which can be exploited
in two ways. The model defines regions of the image which
are eligible to detect new 2D features. Secondly, it provides an
initialisation of the corresponding backprojected 3D features
(Section V-C). Features, successfully extracted using the current
frame, camera pose and the shape model, enrich the 2D and
3D sets for use in future tracking.

IV. CAMERA POSE TRACKING

A. 2D Features and Tracking

The TMAGIC algorithm uses two types of features: points
and line segments. The main advantages of point features are
that they form readily available unique descriptors (patches),
are localised precisely and have intuitive and simple projective
properties. On the other hand, line features, which provide
complementary information about the image, have different
virtues. Lines encode a higher level of structural informa-
tion [42], e.g. constraining the orientation of the surface. They
can be not only texture-based, but also stemming from the
shape of the object[19]. Therefore in man-made environments
they appear in situations where point features are scarce [30]
(such as in a low texture scenario).

Features of both types go through the same life cycle,
visualised in Figure 3. Firstly, they are extracted from the
image, in areas belonging to (i.e. segmented as) the tracked
object. This is denoted as S1. Newly created features are
regarded as active. These features may be deactivated (and
their 2D counterparts removed), if they cannot be tracked,
or are deemed to be on an invisible part of the object. This
transition to the invisible state is marked as S2. On the other
hand, invisible features may be redetected and thus return to
the active state (S3). Finally, features considered invalid (e.g.
laying on the background) are discarded (S4). The techniques
used are described in the following paragraphs and the role of
the online learned model is detailed in Section V-C.

Fig. 4. An example of line tracking. Yellow: line feature lﬁfl, black: line
feature l;t, blue: pixels belonging to 1’* (as given by LSD), green: edge-to-edge
correspondences. Since 3 out of the § sampled edge points converged, feature
I’/ is validated and will become 1.

The 2D point features x! € X are extracted (S1) using

two techniques: Difference of Gaussians (i.e. SIFT points) and
Hessian Laplace [35]. These features are tracked independently
by an LK tracker from frame ¢ — 1 to ¢. Features, which do
not converge are removed from the 2D feature cloud (S2). The
tracked features generate a set of correspondences {(x! ™!, x¢)},
which are subsequently verified by LO-RANSAC [7], [20].
Outliers to RANSAC, i.e. correspondences inconsistent with
a global epipolar geometry model, are removed (S4), as well
as their respective 3D features, as these are likely to lie on the
background.

The 2D line features 1! € L are extracted (S1) using the
LSD [37] approach with false-positive detection control. Lines
are tracked as follows. Firstly, the LSD is executed on frame ¢
to obtain a set of candidate segments lfjt € L. Along each of
the previous line segments l,f*l a number of edge points are
then sampled. Each of these is tracked independently, using the
guided edge search of [19], leading to a new edge point in the
current frame. If this new point belongs to a line segment in
L't, this point votes for the segment. The segment 1;-t with the
most votes becomes the new feature 1¢. As there is no way to
validate line correspondences w.r.t. an epipolar geometry [11],
the features are validated using a threshold on the minimum
number of votes (3 out of 5 in all the experiments). See Figure 4
for an example.

B. Camera Estimation

The camera C?! with a projection matrix P! is defined by
the rotation R’ and position C! of the projection centre in the
world coordinate frame, given by the decomposition

Pt = %KRt [15] — C'], (1)
where f is a focal length (in world units, e.g. millimetres) and
K is a calibration matrix of intrinsic camera parameters [11],
while I3 stands for the 3 x 3 identity matrix. Since P! is a
homogeneous entity, f can be neglected in the computation.
For simplicity, a general projection function II is defined, such
that 3D lines are projected as 1} = IT1(L;|C?) and 3D points
as x! = II(X;|Ch).

Assuming a cloud of 3D features (points X; € X and line
segments L; € L, which are defined by their end-points) and
their projections (X?, £!) is given, it is possible to estimate a

IEEE TRANSACTIONS ON IMAGE PROCESSING

pose (in particular Rf, C*) of the camera C!. The calibration
matrix K of the camera is not computed exactly, instead an
estimate based on image dimensions is used:

w+h 0 w/2
K= w+h h/2 |, 2
1

where w and h are the width and height of the image
respectively. This formula would not suffice for cases of
strong zoom, wide-angle cameras, or cropped videos (shift
of the principal point and narrowed viewing angle). However,
Pollefeys et al. [25] show that images obtained by standard
cameras are generally well approximated by this formula.
Estimation of calibrated camera pose given 2D to 3D point
correspondences (the so-called PnP problem) is a standard prob-
lem, e.g. solved by a P3P-RANSAC [11]. However, although
research has been done in the P3L/PnL area for lines [42],
combining these two is not straightforward. Therefore an
optimisation approach is used to solve for camera pose:

[x
Cf = argcminz pr (|1x} — (X |C)|]) +
o =t 3)
> (o (AHLA) + o1 (B (LIO)))
=1

using both point and line features in a unified framework and
exploiting the sequential nature of tracking; p; is a robust cost
function to provide outlier tolerance (similar to [34]). The error
function consists of an error term for each point and line feature
(in the first and second summation, respectively). For points,
this is just a norm of the reprojection error. For line features,
the error terms are defined as orthogonal distances of the end-
points of the segment 1, (ﬁli’ 1711_, in homogeneous coordinates),
to the projection of the 3D line II(L;|C) (homogeneous,
normalised to the unit length of the normal vector). Note
that since the line may not be fully visible (and is theoretically
infinite), only perpendicular distances are used, in order to
cope with the aperture problem [19], [30]. This minimisation
is initialised at the pose in the previous frame (C*~!). During
experimentation, it was found that due to the smooth nature
of the derivatives of (3), the basin of convergence for this
optimisation is several orders of magnitude larger than the
typical inter-frame difference.

In the first frame, the world coordinate frame (which is
defined only up to a similarity) is chosen as follows. The object,
initialised as a sphere (see Section V-B for more details), is
centred at the origin and the camera centre C! is at (0,0,1)7.
The rotation R! is set such that the origin is projected to the
centre of the user-given bounding box and the y axis of the
camera coordinate system is parallel to the y-z plane of the
world coordinate system (see Figure 9). This is, however, not
fixed, and changes freely during BA, which optimises both the
camera trajectory and feature positions.

V. ONLINE MODELLING 3D SHAPES

A. Bundle Adjustment

After initialisation, 2D tracking is performed until the
distance between camera centres exceeds a specified thresh-

Fig. 5. Examples of 3D feature clouds and GP-learned smooth models. Notice
the unseen parts of the objects, which are without features and where the
model is extrapolated (i.e. the rear side of the car and the “pole” on the left
side of the cube).

old 6 [24]:

ICt — || > ¢,)

where ¢’ is the time of the last BA. Theoretically, 6 could be
set to 0 such that BA is executed on every frame, however that
would be excessively time-consuming. Requiring a baseline of
sufficient width (non-negligible camera motion) between two
consecutive BA runs creates well-timed on-demand executions
on keyframes characterized by equidistant camera poses.
When the condition (4) is satisfied, the modelling part of
the algorithm is performed. Firstly, the Bundle Adjustment
refines the positions of 3D features X, £ and cameras C
(for the purposes of BA, we define C as the set of previous
cameras Cl,...,Ct). If speed is an issue, one may limit the
BA to take only the last k£ cameras into account, i.e. to define
C = {C"lu = max(1,t — k),...,t}, however, in experiments
within this work this did not prove necessary (thus the setting
k = oo was employed). The BA [2] minimises a similar error
to (3):

t [
argminz (Z p2 (||xi — (X |CY)||) +

X.Le o \imt
[£%]
S (e (BmIC™) + oo (EnICLICY) +Ai)) 7
=1

(&)

where the additional term A; is a regularisation term, which
ensures that the lengths of 3D line segments are close to those
observed. The robust cost function p, employed here is the
Cauchy loss, as provided by the Ceres Solver [2]. Note also
that every point from X* and £! has a correspondence in X
and ﬁ, respectively, for every ¢, but not necessarily vice-versa,
due to features which are not currently visible. After the 3D
feature positions have been refined, they are used to train the
shape model.

B. Gaussian Process Modelling

As discussed previously, the object shape is modelled as
a Gaussian Process (GP)[1], [27]. This provides the ability
to infer a fully dense 3D model from the finite collection of
discrete observations X' and £. There are usually hundreds of
features, however in cases of low-resolution video (e.g. Dog)

IEEE TRANSACTIONS ON IMAGE PROCESSING

there can be less than a hundred training points. In theory
it is possible to learn the hyperparameters from less than 10
features, however this leads to low accuracy. Using the GP in
this manner can be seen as estimating a distribution over an
infinite number of possible shapes. The expectation of such a
distribution (the most probable shape) can be used to model the
object, while the variance at any point represents confidence.
For online target/background segmentation, a GP is trained as
a coarse, probabilistic model. A representation is chosen such
that every point X on the surface is represented in spherical
coordinates (6, ¢) relative to the object centre Y, as:

X =Y, +7-(sinf cosp,sinb sin g, cosf) (6)

(for more details on the choice of Y, see below). For any pair
of angles, the radius would then be modelled as:

r= GP(07 (P‘/f) ’ (7N
where « is the kernel of the GP, relating to the surface properties
of the modelled object, and may be any positive definite two-
parameter function (see below for more details). This function is
learned during tracking (per sequence), such that the likelihood
of the training data is maximised.

This is a natural, minimal (i.e. using exactly 2 parameters for
the two-dimensional space of 3D directions) parameterisation.
It does, however, suffer from singularities at the “poles”, where
the whole range of azimuths represent a single point. For this
reason, the unit-vector parameterisation is used within this
work instead. A 3D point is first re-expressed as a vector from
the centre Y, of the object:

X=Y,+Y (®)
These are then modelled such that the unit-length normalised
vectors Y = Y /||'Y|| represent the independent variable and
the radii rv = ||'Y|| the dependent variable, i.e.:

X=Y,+r 'Y, €))

r =GP(Y|x). (10)
As it does not suffer from a singularity in any direction, this
parameterisation was found superior to alternatives such as
spherical coordinates, despite its higher dimensionality.

The observed 3D points) = {Y;} (point features X and
end-points2 of line features E in both the active and invisible
states) are used as training data for the Gaussian Process (GP).
It could be argued that the 3D parameter space in this new
representation is not sufficiently covered by training data. It
is true that only training points laying on the unit sphere (a
2D manifold) are provided and the parameter space outside
the manifold is unconstrained. However, this does not create
a problem in practice, since only query points laying on the
unit sphere (i.e. direction vectors) are queried.

Without loss of generality, we can assume that the centre
Y, coincides with the origin of the world coordinate system.

2It is possible to sample more points along lines which have high confidence.

-~

Fig. 6. Star domain example in 2D. Left: Every region of the car shape can
be reached from the centre without crossing the boundary, i.e. its shape is a
star domain. Right: Since there are regions unreachable by a straight line, it
is not a star domain.

In this case, for a query direction Q (where ||Q|| = 1), the
resulting 3D point Q is predicted as [27]:

Q=Q (rD.QT kDY) "y

. - . (11)
(D, Q)T KD,) K(3,Q))
or more succinctly as
Q = Q (TQ + O'Q) y (12)

where rg is the predicted radius and og is the confidence.

The notation ry; represents a vector of norms of all vectors in

the training set Y, i.e. vy, =ry, = |[Yi|.

Intuitively, Equation (11) shows that the predicted radius at
any point is defined by the training radii while accounting for
the spatial relationships between the data points. The influence
of any particular element of the training data is quantified by
k(Y, Q), while (), ¥)~! removes any correlation within the
training data.

This kind of representation means that the object shape is
modelled by an implicit non-parametric function. While one
can query the surface in any direction, there is no discrete “set
of vertices” marking the shape. Instead, for visualisation the
model is queried at regularly sampled positions (see Figure 5
for an example). This, however, is not an obstacle for its use
in the presented framework.

As mentioned previously, the Gaussian Process shape model
is fully probabilistic. That means that not only a shape estimate
is provided, but a whole distribution of shapes (radius functions).
From this distribution, the mean (i.e. the most probable) shape
is used as the estimate, and the variance as the uncertainty at
any given point of the object surface. The probabilistic nature
of the GP model furthermore prevents overfitting through an
implicit “Occam’s-razor” effect, that favours models which
are both simple and which explain the observations well.
Other beneficial properties of GP modelling include smooth
interpolation and extrapolation in regions without training
inputs. Several alternatives for the surface shape modelling were
tested, such as a mesh-based model, a parametric probability
distribution and a spherical-coordinate model with a different
machine-learning technique used (such as nearest neighbour
regression, neural network, random regression forest or support
vector regression). However, none had the properties required.

The non-parametric nature of the model used makes it
possible to model a wide range of object shapes and resolutions
without the need for reparameterisation. To specify rigorously
what class of objects can be modelled, one needs to consider

IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 7. Iterative search for the shape centre. Black: training data. Coloured:
shape centre (o) and sampled points (x), iterating from the centre of mass X
(blue) to convergence (green).

the properties of the spherical representation. Since the radius
for any given direction angle must be unique, there must
exist a point inside the object, the shape centre, such that
the line segments connecting it to all the points on the shape
surface lie inside the object. This class of objects is known
in computational geometry as star shapes or star domains (of
a Euclidean space). See Figure 6 for 2D examples of objects
which are and are not a star domain. While this choice of
parameterisation might seem overly limiting, in practice most
“compact” objects (without deep concavities or long, extended
parts) are of approximately star shape. Furthermore, it is not
necessarily harmful for a particular application of the modelling
(such as segmentation in visual tracking) when the online model
smooths over minor regions which break this assumption.

Attention must be paid to the selection of the shape centre
Y .. While using simply the centre of mass is a viable solution
for many shapes, sometimes it lies too close to the object
surface, which leads to unwanted artefacts (see the blue samples
in Figure 7). Therefore a data-driven shape centre is found
as follows. The centre of mass of the training points is used
only as an initialisation and the centre is subsequently shifted
towards the midpoint between this and the centre of mass of the
sampled points (trained with the previous centre). The sampled
points change with the shift of the centre, so this needs to be
iterated:

. 312y Vit g v Mi

2
where A is a learning factor (set to 0.5 in our experiments)
and M, is a point sampled on the surface model (in regular
angular intervals, visualised as x). See Figure 7 for a 2D
illustration of the convergence. It is necessary to repeat this
search for the shape centre every time the training data changes
(after every bundle adjustment). However, it is not necessary
to repeat all steps to full convergence. Instead, only one step
is performed after each bundle adjustment, which converges
eventually as the (relative) magnitude of updates of the training
data decreases.

One of the most important choices while designing a
technique using a GP is the choice of kernel (or combination of
kernels). The kernel choice represents prior knowledge about
properties of the modelled function (in this case surface shape),
especially smoothness and differentiability. One of the most
commonly used is the RBF kernel (also called Gaussian kernel),
which is infinitely differentiable and therefore induces smooth

new
YO

+(1-ANY, (13)

x’?"&x .«'*d!
'« *
%
x %
% ,,zr’F}
% R
¥
FX @,
-
] A
% *
E * ¥
% A x o
%
e > ;F °,
* % ¥

"”"m*,x}(xx %%

Fig. 8. TIterative search for the shape centre with the RBF kernel; legend is
the same as in Figure 7. Right: detail of regression near the shape centre.

Fig. 9.
a bounding box, X! and 1. Right: X, £, initial model M (the blue
sphere visualises sampled points M) and C! (magenta). For the camera,
the visualisation shows the projection centre C, principal direction and image
plane. The upper left corner of the image plane is indicated by the dashed
line.

State of the proposed TMAGIC tracker after the first frame. Left:

shape contours. This, however, causes artefacts in the shape, as
the overly smooth gradient extrapolates too far from the training
data and exaggerates rapid radius changes (see Figure 8). The
same holds for the Matérn kernel (of both common orders 3/2
and 5/2). For this reason, the exponential kernel is employed,
which allows fast changes in both the radius and its gradient
(which can even be discontinuous) and thus models sharp edges.
This kernel is (additively) combined with a bias kernel to avoid
the assumption of zero-centred data and with a white-noise
kernel to gain robustness against outliers:

KGP = Kixp + kB 1+ Kw - (14)

All the kernel parameters (including the width of the exponen-
tial kernel and the sub-kernel weights) are learned from the
data at the training stage. Besides the choice of kernel, there
are no other parameters in the GP modelling.

It should be noted, that at the beginning of the video-
sequence (i.e. before the first Bundle Adjustment), there is
no depth estimate and therefore no 3D information. As an
initialisation of the model, a sphere is used, with dimensions
infered from the initial bounding box provided to the tracker
in the first frame (see Figure 9). While this model would be
useless as an output, it provides a prior to initialise tracking and
the model is then trained as soon as the 3D feature positions
are refined.

C. Feature generation

For camera pose estimation (Sec. IV-B), it was assumed that
the 3D feature clouds X and £ are known and fixed. In this sec-
tion, the issue of feature generation and localisation is addressed.
The assumption is made that a shape model of the object is
given (trained according to the previous section). The model is
vital at this stage, as it effectively segments out the object from
the background, validating features for use within the tracker.
This however does not hold for the first frame, see below.

IEEE TRANSACTIONS ON IMAGE PROCESSING

C

Fig. 10. Model intersection search example. The intersection points (+) are
initial 3D locations of the newly generated features. C marks the camera
centre.

In the first frame, initial sets of 2D features X! and £!
are generated inside a user-supplied bounding box. When
generating a 3D feature X; for a new 2D feature x! (in the
case of line features, both end-points must lie on the surface),
the process is as follows. Firstly, the corresponding ray Z
(parameterised by «)) from the camera centre is generated:

Z(a) = C' 4 a(KR!) 'X! (a>0), (15)

where x! is the homogeneous representation of x!. Then

a search for the (nearest to the camera) intersection between
the ray and the shape is performed:

X, =Z(a), (16)

o = arg min o s.t. 17

|Z(2)|| = TZ(a)
a>0

If the minimisation of (17) has no solution, it means that the
ray does not intersect the mean surface given by the GP (from
the distribution of possible surfaces, see Figure 10). The use
of the mean surface corresponds to a threshold such that there
is an equal probability of false positives (a detection on the
background was added to the feature set) and false negatives
(a point on the object surface was rejected). If there is prior
knowledge about the respective robustness of other components
available, this can be exploited by adding the appropriate factor
(multiple of 07(a)) 0 TZ(a) in Equation (17).

It should be noted that as in parts of the previous section, the
shape centre Y, is assumed to be the origin of the coordinate
system, to keep the notation uncluttered. Therefore the (finite-
length) ray can be simply expressed, similarly to Equation (12),
as cast from the origin: Z = rg - Z. This, again, does not limit
generality, as reintroducing Y, back to the equations is trivial.

Thus far, the process has been the same both for initialisation
in the first frame and for adding new features after model
retraining in the subsequent frames. However, there are several
differences. Firstly, if a ray does not intersect the surface during
the generation of new features in frame ¢ > 1, it is not used:
features are detected over the whole image but only those
covering the target object are used. However, in the first frame,
all the 2D features will lie inside the user-specified bounding
box. In this case, their 3D positions are reconstructed such that
they minimise the distance to the mean surface (even when
they do not intersect), leading to the characteristic fringe seen
in Figure 9:

(18)

a = argmin(||Z(a)|| - rz()

a>0
Generation of new features in £ > 1 has one further condition.
Since adding new features increases the time complexity of all
other computations, new features are added only into uncertain

regions of the object, with variance greater than a specified
threshold:

O'Z(a) > 9‘7 . (19)

As previously mentioned, some of the 3D features may be
temporarily occluded, i.e. without 2D correspondences (in the
invisible state). Surface normals, given by the shape model,
provide a tool to determine which parts of the object are
visible from a particular direction. This is done by sampling
three points in close proximity to the location of interest and
locally fitting a tangent plane. To remove any effect of shape
curvature, the distance is several orders of magnitude below
the object dimensions. TMAGIC uses this information in two
complementary ways. Firstly, if a 3D feature is deemed not
visible, but it has a 2D correspondence (e.g. adheres to an
object contour), it can be removed (transition S2 in Figure 3).
On the other hand, if a 3D feature has no 2D correspondence,
but is on a surface which is seen by C? under an angle close
to normal, the 2D feature can be redetected (S3). This is
performed by projecting it into frame ¢ by II and then tracking
it in 2D using a stored appearance patch. Loop closures (as
termed in the SLAM literature) are thus possible when a
number of previously seen features are redetected.

VI. EXPERIMENTAL EVALUATION

In all experiments, the parameters were fixed as follows:
0c = 10%, 0, = 0.5%, relative to the scene size. The
tested proof-of-concept implementation (Matlab framework
with several parts in C++) currently runs at speeds between
1 and 3s per frame on an Intel i5 computer at 3.3 GHz and
takes around 1 GB of RAM. However, there are possibilities
for trivial technical improvements and for parallelisation,
allowing significantly higher speeds. For instance, processing
of point and line features is independent from each other and
could be executed in separate threads; similarly the modelling
loop can be offloaded onto an independent semi-synchronous
thread, similarly to e.g. PTAM [16]. Independently to these, the
optimisation in both BA and model training (including inversion
of large matrices) offers possibility for massive parallelisation,
both multi-CPU and GPU.

A. Synthetic data

Firstly, results on a synthetic sequence CUBE1 are shown
(Figure 11). This has been rendered to have the following
properties. It contains a cube, rotating with speed 1°/frame.
Some of the sides are rich in texture, some are weakly textured.
From the point of view of the TMAGIC tracker, the camera
circles around the fixed cube with a perfect circular trajectory
(see Figure 12). However, since the world coordinate frame is
defined only up to a similarity transform and can be moved
freely during the BA, it is not possible to measure quality of
a tracker directly w.r.t. this expected position (i.e. no absolute
ground truth is possible). Therefore a 3D circle is fitted to
the camera trajectory and the error measured as an orthogonal
distance from this circle. Figure 13 shows the results. If we
assume the camera orbits at a distance of 1 m, the mean camera
pose error is 1.3 cm. This indicates a very close approximation
to the circular trajectory.

IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 11. Selected frames from the CUBE] sequence. Notice, how TMAGIC
learns the new face of the cube. #194: unknown shape, the surface is smoothed
over. #213: first features detected, shape roughly estimated. #239: more features

identified, shape refined. #272: Final state, model in agreement with the object.

s s

Fig. 12. The 3D scene in t = 180 and 360. The camera and features are
shown in the same way as in Figure 9, the camera trajectory (centres and
principal directions for each previous frame) is shown in black. Ground-truth
trajectory is in yellow. The details of the model can be seen in Figure 5.

Despite being based on sparse data, the resulting learned
shape model represents the cubic shape (of side equal to
approximately 17 cm) accurately, having a mean reconstruction
error of 3.4 mm. The trajectories at the beginning and end of
the sequence did not meet (due to accumulated error prior to
loop closure), thus the deviation from the fitted ground truth is
distributed between the two. The peak around frame #100 is
due to a temporary inaccuracy during the transition between
sides of the cube, when the continuously visible side is lacking
visual features. However, TMAGIC recovers once sufficient
visual evidence has been accumulated. The input video and
additional results can be found on the authors’ website.

To compare the method with currently used reconstruction
approaches, this sequence (with no background to account for)
was processed with VisualSfM [39], [40], Bundler [31], [32]
and CMP SfM WebService [12]. While Bundler surprisingly
failed, reconstructing 2 separate cubes, VisualSFM performs
worse than TMAGIC with a comparable reconstruction error
of 2.8 mm, but 72 % larger camera trajectory error of 2.3 cm.
On the other hand, CMP SfM reconstructed the scene with
a lower camera trajectory error of 0.7 cm, but higher model
error of 7.0mm. On real sequences, including background,
these reconstruction techniques perform even worse, commonly
failing to capture the object of interest (see Figure 14).

N W s~ o

relative error (%)

0

o

100 200 300
frame #

Fig. 13. Deviation of the trajectory from a perfect circle (least-squares fitted).
Errors are relative to the radius of the circle.

TABLE I
TRACKING RESULTS: MEAN LOCALISATION ERROR (IN PIXELS) AND MEAN
OVERLAP (IN PERCENTS). BOLD NUMBERS INDICATE THE BEST RESULT,
UNDERLINED NUMBERS THE SECOND BEST.

LGT TLD FoT T TMIC TMAGIC
DocG 19.3/20 12.3/56 4.7/63| 13.9/65 9.3/71 12.1/46
FisH 15.6/20 8.8/72 9.2/75 8.0/68 10.4/65 5.6/69
SYLVESTER | 13.1/16 18.0/58 18.0/58| 37.3/42 353/ 9 17.8/48
TWININGS 22.5/18 13.2/38 15.5/44| 42.9/31 16.2/29 9.1/53
DouGHNUT |131.0/35 63.8/56 181.7/44| 544.3/12 814.1/ 7 87.9/57
RALLY-AUDI | 71.0/37 18.0%/ 3 212.4/33| 117.2/40 123.3/38 110.2/48
RALLY-LAN. |145.8/19 333.5/13 734.5/13| 127.8/43 121.3/42 94.3/53
RALLY-OPEL | 97.7/17 226.4/43 165.9/38| 168.0/26 125.7/35 44.0/52
RALLY-OTS | 28.7/22 89.8/25 116.2/29| 72.0/34 102.4/27 48.9/59
RALLY-VW | 91.3/21 152.5/48 196.9/39| 149.4/39 148.3/39 47.6/62
TOPGEARI 16.3/49 65.1/34 80.4/41| 39.0/49 44.5/43 40.0/56
TOPGEAR2 84.3/37 104.3/21 117.9/29| 48.4/51 84.1/31 34.7/59
Average 61.4/26 92.1/39 154.4/42| 114.0/42 138.7/36 46.0/55

*TLD on Rally-Audi reported loss of tracking after only 3 frames.

B. Real data

The performance of TMAGIC was further analysed on sev-
eral sequences, used in previous 2D visual tracking publications.
These sequences contain visible out-of-plane rotation in most
cases. Additionally, several new sequences of drifting cars were
used, which have significant out-of-plane rotation (in addition to
strong motion blur). These new sequences are available online
including human annotated GT, evaluation scripts and a leader-
board®. The initial frames are shown in Figures 15 and 16.

The TMAGIC tracker is compared with several state of
the art tracking algorithms in Table I: LGT [4], TLD [14] and
FoT [36]. The FoT tracker is similar to the proposed approach,
in that it employs a group of independently tracked features
with a higher management layer, however it operates in 2D
only. GT in 3D is not available for these sequences: neither
shape nor trajectory. Therefore the performance metric used was
localisation error, i.e. the distance of the centre of the bounding
box to the ground-truth centre, and additionally overlap of the
(returned and ground-truth) bounding boxes. TLD can report an

3We invite anyone testing their tracker on these sequences to submit their
results to this leader-board at http://cvssp.org/data/3DCars/.

Fig. 14. Example of failed reconstruction of the RALLY-VW tracking sequence
by the CMP SfM WS[12].

IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 15. First frames from the test sequences (sequences from literature).
From left: DOG [6], FISH [28], SYLVESTER [28] and TWININGS [3]. The initial
bounding boxes are overlaid.

Fig. 16. First frames from the test sequences (newly created sequences). From
top and left, in row-major order: DOUGHNUT, RALLY-AUDI, RALLY-LANCER,
RALLY-OPEL, RALLY-OTS, RALLY-VW, TOPGEARI and TOPGEAR2. The
initial bounding boxes are overlaid.

absence of the object. There are, however, no full occlusions in
the tested scenes, thus in such cases the frames were assigned
the maximal error found in the sequence and zero overlap.
The results are visualised in Figure 17 and the mean values
tabulated in Table I.

On the DOG sequence, the TMAGIC and TLD trackers
perform similarly, and LGT slightly worse. All these trackers
experience difficulties at about frame #1000, where the dog is
partially occluded by the image border. This is however not
a problem for FoT, which estimates the position accurately
even under such strong occlusion. The FISH sequence is
relatively easy, with all the trackers reaching low errors and
TMAGIC being the best. On the SYLVESTER scene, TMAGIC
as well as FoT track consistently well until the end. Both LGT
and TLD have similar momentary failures (frames #450 and
#1100, respectively) but both are able to recover. For LGT,
the duration of the problematic part of the sequence is shorter
and the error is lower, rendering it the best tracker for this
sequence. The TWININGS sequence contains full rotation and
was originally created to measure tracker robustness to out-
of-plane rotation [3]. Unsurprisingly, TMAGIC significantly
outperforms the state of the art on this sequence. The average
localisation error reduction for all these scenes is 22 %.

The car sequences are chosen because they contain rigid 3D
objects under strong out-of-plane rotation (around 180°) with
significant camera motion. Therefore the TLD and FoT trackers,
which are trying to track a plane only (one side of the car)
instead of the 3D object, fail. As the cars rotate, the tracked
parts are no longer usable and TLD reports this (the horizontal
sections in Figure 17). FoT is incapable of reporting object
disappearance and it attempts to continue tracking, exacerbating
the situation. The LGT tracker, which has a less rigid model
of the object, is sometimes capable of tracking after the cars
start to rotate, if the rotation is slow enough for the 2D shape
model to adapt. The TMAGIC tracker is also able to adapt
as the object rotates, and explicitly modelling the car in 3D
improves robustness by allowing to intelligently detect new

N
o

80 - oy
g ———TMAGIC |M‘ &
< eof| —LaT 1 5 %0
e TLD i 5
] FoT | c 20
S 40 ° I 2
= [y =
2 | =
% 20 e < 107
S e N o ’
o “ °
0 0
0 500 1000 0 100 200 300 400
frame # frame #
100 60
B 3
- 80 g
o o
5 60 5 40
s s
= 40 =
38 a2
® 20 K]
8 flle il A g 8 N \
= o CHEAYE)
0 500 1000 0 100 200 300 400
frame # frame #
300 = 400
< o
g = 300
S 200 e
o © 200
=
S 100 2
5 & 100
S M N S 0
e 0 50 100 150 200 250 = 0 50 100
frame # frame #
300
— /’\\ =
x ~~ [
5 -] &
§1000 f 5 200
£ / £
[} | [}
5 / w/ £
£ 500 /o S 100
2 7 g
S —— L =
8 Ay g’ - g
0 o
0 20 40 60 80 = 0 20 40 60
frame # frame #
150
<
o =<
o
5 = 300
g 100 5
5 2
c c 200
S 50 2
S 3
o 5 100
2 o 50 100 150 % 20 20 60
frame # frame #
150
- 7 = 200
& e &
S 100 /\/ § 150 /
5 5 = v
5 / 5 100 \V/\M
T 50 © /
[%2] [%] /
] 5 50
o A o
o) S 7
0 . = 0
0 50 100 0 20 40 60 80 100
frame # frame #
Fig. 17. Visualisation of results of the quantitative performance analysis.

From top and left, in row-major order: DOG, FISH, SYLVESTER, TWININGS,
DOUGHNUT, RALLY-AUDI, RALLY-LANCER, RALLY-OPEL, RALLY-OTS,
RALLY-VW, TOPGEAR1 and TOPGEAR2.

features. While 2D trackers attempt to mitigate the effects of
out-of-plane rotation, TMAGIC actively exploits it. This gives
it a significant edge, resulting in the localisation error being
reduced by 46 % on average. Notice that the errors in the car
sequences are generally higher, due to the higher resolution.
The resulting model for the RALLY-VW sequence is visualised
in Figures 1 and 5. The car is modelled accurately, except for
missing elements at the rear of the vehicle, which have not
been observed during the sequence.

The last three columns of Tab. I show the effect of the
different stages of TMAGIC on performance. Firstly, FoT is

IEEE TRANSACTIONS ON IMAGE PROCESSING

gos .
5 X
>
o
= 04
g .
[0]
(&]
G 02
£
[e]
T
[0] 0 N N N N N '
o
0 50 100 150 200 250 300

Processing time (s)

Fig. 18. Dependency of speed and performance on period of BA execution.
Each data point is a result of a complete run on the RALLY-LANCER sequence,
with the BA executed at fixed periods between 1 (blue) and 30 (green) frames.
Results of the proposed execution strategy is shown as a cross.

compared with T, which assumes a fixed 3D model (sphere)
and feature locations. This can be seen as 2D and 3D trackers
based on the same principle. FoT performs better on sequences
without rotation (higher accuracy of the solution) and the
advantage of 3D tracking becomes apparent with stronger out-
of-plane rotations (decreasing the error up to five-fold). The
next step is performing refinement of the 3D features and fitting
a naive spherical model (T—TMIC). However, the effect of
this procedure on the performance of tracking in the image
plane is imperceptible, despite the improved plausibility of
the feature cloud. The final stage is training a more complex
shape model using the feature cloud (TMIC—TMAGIC, using
the full system). This yields the most significant improvement
(three-fold error reduction), rendering TMAGIC by far the best
of the evaluated trackers in cases of out-of-plane rotations.
In the case of TOPGEARI, mostly the front part of the car
is being modelled, shifting the centre of the bounding box
forward and therefore adversely affecting the final results.

C. Speed vs. Performance

As mentioned in Section V-A, Bundle Adjustment (BA)
is executed on “keyframes” chosen according to the camera
motion. There is a natural trade-off between processing
speed and performance of the algorithm. Figure 18 illustrates
this dependency on the RALLY-LANCER sequence. In this
experiment, we executed BA periodically at specific frames.
While executing it very sparsely can lead to speeds as high as
3 FPS, the performance is very low as the tracker easily loses
the object without a realistic model. On the other hand, slower
runs with more frequent BA have in general better performance.
The correlation between execution time and average overlap
is 0.49. For comparison, we show the result of the proposed
on-demand execution as well, which outperforms any fixed
interval BA approach.

D. Handling Concavities

One of the assumptions of the proposed algorithm is that
the target is compact. Although convexity is not required, deep
concavities may render the object outside of the star-shape class
and/or make it difficult to find a suitable centre. In this section,

)

DO

o

Fig. 19. Resilience of TMAGIC to concave targets. From top: Selected input
frame, profile around the “equator”, recovered camera trajectory and shape,
recovered profile (mean surface 1 st. deviation).

resilience of TMAGIC against concavities is tested. A series
of synthetic objects were created, which are of approximately
spherical shape, with increasingly deep concavity in one side.
Similarly to Section VI-A, this object rotates in front of the
camera at a constant speed. Selected input frames and the
extent of the concavity are visualised in Figure 19 together
with the obtained results.

In the first column, the concavity is not very deep, and
TMAGIC tracks this sequence without difficulties, as can be
observed from the realistic obtained model and near-perfect
camera trajectory. Similarly in the second video (the second
column), although the concavity reaches close to the centre of
the target the performance is still good. In the third video, the
concavity reaches even deeper, such that the object centre is
outside its actual body. In this case the resulting model does not
(even approximately) represent the shape of the target globally,
however it is still useful for tracking — the camera trajectory is
viable and from the 2D point of view, tracking is successful.
Finally, the concavity in the last video (as shown in the fourth
column) is so extensive that the object is a mere hollow “shell”.
TMAGIC starts tracking correctly, as can be seen near the top
of the camera trajectory. However, it is unable to model the
target shape once the concavity is aligned with the camera,
and it eventually fails.

VII. CLOSING REMARKS

The experiments show that the TMAGIC tracker is able to
track standard sequences, used in many previous publications,
with a comparable performance to the state of the art. However,
by explicitly modelling the 3D object, it handles out-of-
plane rotations significantly better and can also track in
cases of full rotation. TMAGIC consistently outperforms
simpler variants (TMIC etc.), especially in scenarios when

IEEE TRANSACTIONS ON IMAGE PROCESSING

the object/background segmentation is vital. This shows the
benefit of the shape model, used for filtering features and
initialisation of their 3D positions.

TMAGIC works under the assumption that the object is
rigid. It is robust to small shape variations (e.g. a face), but
is not capable of tracking articulated objects, e.g. a walking
person. Another limitation would be full occlusions in long-
term tracking. Fast motion may also cause failure in the
underlying 2D tracking. However, the algorithm is robust to
low textured objects through the use of line features. TMAGIC
assumes fixed camera calibration during the tracking. Cases
of zooming in the sequences or cropped sequences usually do
not cause tracking failures, but the resulting model is distorted.
Online estimation of calibration parameters is a part of our
ongoing related research.

TMAGIC tracks a single object. A naive multi-object
extension, running it multiple times in parallel, would be
trivial since TMAGIC doesn’t require any pre-learning and the
object properties are estimated online. Advanced correlation
or occlusion reasoning would be an interesting field for future
research.

The sequences used for experimental validation in this
work are publicly available, as well as the ground truth and
an evaluation script. Anyone testing their tracker on these
sequences is invited to submit their results to the online leader-
board.

REFERENCES

[1] GPc library. https://github.com/SheffieldML/GPc.

[2] S. Agarwal, K. Mierle, et al. Ceres solver. http://code.google.com/p/
ceres-solver/.

[3] B. Babenko, M.-H. Yang, and S. Belongie. Robust object tracking with
online multiple instance learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2011.

[4] L. Cehovin, M. Kristan, and A. Leonardis. Robust visual tracking using
an adaptive coupled-layer visual model. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2013.

[5] K. Chen, Y.-K. Lai, and S.-M. Hu. 3D indoor scene modeling from

RGB-D data: a survey. Computational Visual Media, 2015.

M. Chen, S. Pang, T. Cham, and A. Goh. Visual tracking with generative

template model based on Riemannian manifold of covariances. In

Proceedings of the International Conference on Information Fusion,

2011.

[7] O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In
Proceedings of the DAGM Symposium, 2003.

[8] A. Dame, V. Prisacariu, C. Ren, and I. Reid. Dense reconstruction using
3D object shape priors. In In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2013.

[9] Y. Feng, Y. Wu, and L. Fan. On-line object reconstruction and tracking

for 3D interaction. In International Conference on Multimedia and Expo,

2012.

S. Hare, A. Saffari, and P.H.S. Torr. Struck: Structured output tracking

with kernels. In Proceedings of the International Conference on Computer

Vision, 2011.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2004.

J. Heller, M. Havlena, M. Jancosek, A. Torii, and T. Pajdla. 3D

reconstruction from photographs by CMP SfM web service. Machine

Vision and Applications, 2015. http://ptak.felk.cvut.cz/sfmservice/.

C. Hoppe, M. Klopschitz, M. Rumpler, A. Wendel, S. Kluckner,

H. Bischof, and G. Reitmayr. Online feedback for structure-from-

motion image acquisition. In Proceedings of the British Machine Vision

Conference, 2012.

Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-Detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

K. Kim, V. Lepetit, and W. Woo. Keyframe-based modeling and tracking

of multiple 3D objects. In Proceedings of the International Symposium

on Mixed and Augmented Reality, 2010.

[6

=

(10]

(1]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

(37]

[39]

[40]

[41]

[42]

G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. of ISMAR, 2007.

A. Kundu, K. Krishna, and C. Jawahar. Realtime multibody visual
SLAM with a smoothly moving monocular camera. In Proceedings of
the International Conference on Computer Vision, 2011.

K. Lebeda, S. Hadfield, and R. Bowden. 2D or not 2D: Bridging the
gap between tracking and structure from motion. In Proceedings of the
Asian Conference on Computer Vision, 2014.

K. Lebeda, S. Hadfield, J. Matas, and R. Bowden. Texture-independent
long-term tracking using virtual corners. IEEE Transactions on Image
Processing, 2016.

K. Lebeda, J. Matas, and O. Chum. Fixing the locally optimized
RANSAC. In Proceedings of the British Machine Vision Conference,
2012.

A. Mulloni, M. Ramachandran, G. Reitmayr, D. Wagner, R. Grasset,
and S. Diaz. User friendly SLAM initialization. In Proceedings of the
International Symposium on Mixed and Augmented Reality, 2013.

R. Newcombe, D. Fox, and S. Seitz. DynamicFusion: Reconstruction
and tracking of non-rigid scenes in real-time. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015.
R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison,
P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion:
Real-time dense surface mapping and tracking. In Proceedings of the
International Symposium on Mixed and Augmented Reality, 2011.

Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilistic
feature-based on-line rapid model acquisition. In Proceedings of the
British Machine Vision Conference, 2009.

M. Pollefeys, L. van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch. Visual modeling with a hand-held camera.
International Journal of Computer Vision, 2004.

V. Prisacariu, O. Kahler, D. Murray, and I. Reid. Simultaneous 3D
tracking and reconstruction on a mobile phone. In Proceedings of the
International Symposium on Mixed and Augmented Reality, 2013.

C. Rasmussen and C. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2004.

D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for
robust visual tracking. International Journal of Computer Vision, 2008.
L. Sigal, M. Isard, H. Haussecker, and M. Black. Loose-limbed people:
Estimating 3D human pose and motion using non-parametric belief
propagation. International Journal of Computer Vision, 2012.

P. Smith, I. Reid, and A. Davison. Real-time monocular SLAM with
straight lines. In Proceedings of the British Machine Vision Conference,
2006.

N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: Exploring image
collections in 3D. In Proceedings of the ACM Special Interest Group on
Computer Graphics and Interactive Techniques, 2006.

N. Snavely, S. Seitz, and R. Szeliski. Modeling the world from internet
photo collections. International Journal of Computer Vision, 2007.

S. Song and J. Xiao. Tracking revisited using RGBD camera: Unified
benchmark and baselines. In Proceedings of the International Conference
on Computer Vision, 2013.

P. Torr and A. Zisserman. MLESAC: A new robust estimator with
application to estimating image geometry. Computer Vision and Image
Understanding, 2000.

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of
computer vision algorithms. http://www.vlfeat.org/, 2008.

T. Vojit and J. Matas. The enhanced flock of trackers. In Registration and
Recognition in Images and Videos, Studies in Computational Intelligence.
2014.

R. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. LSD: A fast
line segment detector with a false detection control. /EEE Transactions
on Pattern Analysis and Machine Intelligence, 2010.

C. Wojek, S. Walk, S. Roth, K. Schindler, and B. Schiele. Monocular
visual scene understanding: Understanding multi-object traffic scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.
C. Wu. Towards linear-time incremental structure from motion. In
Proceedings of the International Conference on 3D Vision, 2013.

C. Wu, S. Agarwal, B. Curless, and S. Seitz. Multicore bundle adjustment.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

Z. Yin and R. Collins. On-the-fly object modeling while tracking. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

L. Zhang. Line Primitives and Their Applications in Geometric Computer
Vision. PhD thesis, Department of Computer Science, Kiel University,
2013.

