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ABSTRACT

Non-zero diffusion particle flow Sequential Monte Carlo probabil-
ity hypothesis density (NPF-SMC-PHD) filtering has been recently
introduced for multi-speaker tracking. However, the NPF does not
consider the missing detection which plays a key role in estima-
tion of the number of speakers with their states. To address this
limitation, we propose to use intensity particle flow (IPF) in NPF-
SMC-PHD filter. The proposed method, IPF-SMC-PHD, considers
the clutter intensity and detection probability while no data associa-
tion algorithms are used for the calculation of particle flow. Exper-
iments on the LOCATA (acoustic source Localization and Track-
ing) dataset with the sequences of task 4 show that our proposed
IPF-SMC-PHD filter improves the tracking performance in terms
of estimation accuracy as compared to its baseline counterparts.

Index Terms— LOCATA, SMC-PHD, particle flow.

1. INTRODUCTION

The problem of acoustic source localization and tracking in an en-
closed space has attracted an increased amount of attention in the
last decade due to its potential applications such as personal assis-
tants [1], advanced computer interfaces [2], hearing aids [3] and
speech recognition [4]. To address this problem, several methods,
such as direction of arrival (DOA) [5], generalized cross-correlation
(GCC) phase transform (PHAT) [6], steered response power (SRP)
PHAT, beam steering [7], and time delay of arrival (TDOA) esti-
mates [8], have been proposed. The trajectories of the speakers can
be extracted using estimated positions by aforementioned methods.
However, these trajectories may involve the random errors, false re-
turns from background clutters, and detection loss [9]. To overcome
these issues, filters are used to smooth the estimated trajectories.
Representative filters include Kalman [10] and particle [11] filters
employed in tracking of a single moving sound source.

To track multiple moving sources, the unknown and variable
number of sources need to be handled for reliable tracking. There-
fore, PHD filter [12] and its extension such as cardinalized PHD
filter [13] are elegant solutions for multiple source tracking. The
Gaussian mixture (GM) [14] and sequential Monte Carlo (SMC)
[15] are the implementations to obtain practical solutions of the
PHD filter. [15]. However, it suffers from the weight degeneracy
problem [16]. To address this problem, particle flow is proposed
[16], which migrates particles from the prior distribution to the pos-
terior distribution based on a homotopy function defined for parti-
cle flow. In the literature, particle flow is categorized into five main
classes: incompressible particle flow [16], zero diffusion particle
flow (ZPF) [17], Coulombs law particle flow [18], zero-curvature

particle flow [19] and non-zero diffusion particle flow (NPF) [20].
Recently, ZPF-SMC-PHD and NPF-SMC-PHD filters are used to
track multi-speakers based on the audio-visual information [4, 21].

For acoustic source tracking, the filters are mostly conducted
with simulated data [22]. For the objective benchmarking of state-
of-the-art algorithms on real-world data, the LOCATA dataset under
the IEEE AASP Challenge is released [23]. The dataset comprises
six tasks ranging from the tracking of a single static sound source
to the tracking of multiple moving speakers. It contains real-world
audio recordings obtained by DICIT array, Eigenmike array, Robot
head and Hearing aids in an enclosed acoustic environment. The
sound sources are represented by moving human talkers or static
loudspeakers.

In this paper, we propose a new algorithm for multi-speaker
tracking, namely IPF-SMC-PHD filter for the task 4 of the LO-
CATA dataset. This task covers the multiple moving talkers us-
ing a static microphone array. The proposed method considers the
clutter intensity and detection probability while no data association
algorithms are used for the calculation of particle flow. The DOA
lines are employed as the measurements of the IPF-SMC-PHD filter
for multi-speaker tracking under challenging conditions such as oc-
clusion. The speaker identity is estimated using the target position
under the assumption that it is not changed abruptly in subsequent
frames. Our methods are tested on all sub-arrays of task 4.

The reminder of this paper is organized as follows: the next
section introduces the NPF-SMC-PHD filter. Section III describes
our proposed IPF-SMC-PHD filtering algorithm. In Section IV, ex-
periments on the LOCATA dataset are presented to show the perfor-
mance of the proposed IPF-SMC-PHD algorithm as compared with
the baseline algorithms.

2. PROBLEM STATEMENT AND BACKGROUND

This section describes our problem formulation and the NPF-SMC-
PHD filter. For the LOCATA challenge, we assume that the target
dynamics and measurements are described as:

m̃k = fm̃ (m̃k−1, τk) , (1)

zk = fz (m̃k, ςk) (2)

where m̃k ∈ R4 is the target state vector in time k, defined as
m̃k = [xk, yk, ẋk, ẏk]

T , which consists of the source azimuth x,
elevation y and the angular velocity (ẋk, ẏk). ˜ is used to dis-
tinguish the target state from the particle state used later. Let Zk
denote the set of DOA calculated by Multiple Signal Classification
in time k. Zk = {z1

k,z
2
k, ..., z

Rk
k }whereRk is the number of mea-

surements at time k. The measurement zrk is a noisy version of the
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position (xk, yk), where r is the index of the measurement. τk and
ςk are system excitation and measurement noise terms, respectively.
fm̃ is a transition model and fz is a measurement model.

In the NPF-SMC-PHD filter [21], target PHD is approxi-
mated by Nk−1 survival particles {mi

k−1}
Nk−1

i=1 and their weights
{ωik−1}

Nk−1

i=1 at time k − 1. In the prediction step, the particle set
is obtained by the proposal distribution qk,

mi
k|k−1 ∼ qk(·|mi

k−1,Zk) (3)

The proposal weights are

ωik|k−1 = qsω
i
k−1 (4)

where qs is the surviving possibility. NB born particles are sampled
by the importance function pk,

mi
k|k−1 ∼ pk(·|Zk) (5)

The born particle weights are

ωik|k−1 =
γk(m

i
k|k−1)

NBpk(m
i
k|k−1

|Zk)
i = Nk−1 + 1, ..., Nk−1 +NB

(6)
where γk(·) is the born possibility. Nk−1 is the number of surviving
particles at time k − 1.

After predicting particles, a particle flow mitigates particle
states via the Ito stochastic differential equation [24]:

4mi
k|k−1 = f ik(m

i
k|k−1, λ)4λ+ υikw

i
k (7)

where f ik ∈ R4 is the particle flow vector which moves the par-
ticle mi

k|k−1 with the distance 4mi
k|k−1 at λ. wi

k ∈ R4 is
the Wiener process with the diffusion coefficient υik, λ, called the
synthetic time, takes values from [0,4λ, 24λ, · · · , Nλ4λ] and
Nλ4λ = 1. In NPF [20], f ik ∈ R4 is given by,

f ik = −[−(P i
k−1)

−1 + λ∇2 lnhik]
−1(∇ lnhik) (8)

where P i
k−1 is the covariance matrix of mi

k−1. ∇ is the spatial
vector differentiation operator ∂

∂mi
k−1

. The likelihood hik is given

by
hik = N (mi

k|k−1| argmin
zr
k

∥∥∥zrk −mi
k

∥∥∥ ,R) (9)

where R is the covariance matrix of the measurement noise. ‖·‖ is
the l2 norm. Then each particle state is updated as

mi
k|k−1 ⇐mi

k|k−1 +4mi
k|k−1 (10)

The weights are calculated as

ωik =

[
1− pD,k +

Rk∑
r=1

pD,kh
i
k

κk +
∑Nk
i=1 pD,kh

i
kω

i
k|k−1

]
ωik|k−1

(11)
where piD,k and κk are the abbreviations of
piD,k(m

i
k|m1

k−1, ...,m
Nk−1

k−1 ) and κk(Zk), respectively. piD,k is
the detection probability. κk is the intensity function of clutter
at time k. The number of targets is estimated as the sum of the
weights. The states and weights of the targets {m̃j

k, ω̃
j
k}
Ñk
j=1

can be calculated using e.g. K-means clustering method [25] or
multi-expected a posterior (MEAP) [26].

Algorithm 1 NPF-SMC-PHD Filter

Input: {mi
k−1, ω

i
k−1}

Nk−1

i=1 , {P i
k−1}

Nk−1

i=1 and Zk.

Output: {m̃j
k, ω̃

j
k}
Ñk
j=1, {P i

k}
Nk
i=1 and {mi

k, ω
i
k}
Nk
i=1.

Initialize: k, qk, ps, φk, pk, κk, PD,k, 4λ, Nλ, υik, wi
k and

NB .
1: Run:
2: Propagate the particle states {mi

k|k−1}
Nk−1

i=1 by Eq. (3).

3: Calculate the particle weights {ωik|k−1}
Nk−1

i=1 by Eq. (4).

4: Sample NB born particles {mi
k|k−1, ω

i
k|k−1}

Nk−1+NB

i=Nk−1+1 uni-
formly around each measurement by Eq. (5) and Eq. (6).

5: Combine all the particles: {mi
k|k−1, ω

i
k|k−1}

Nk
i=1 =

{mi
k|k−1, ω

i
k|k−1}

Nk−1

i=1 ∪ {mi
k|k−1, ω

i
k|k−1}

Nk−1+NB

i=Nk−1+1.
6: for λ ∈ [0,4λ, 24λ, · · · , Nλ4λ] do
7: Calculate the likelihood hik by Eq. (9).
8: Calculate particle flow f ik by Eq. (8).
9: Calculate4mi

k|k−1 by Eq. (7).
10: Update each particle state by Eq. (10).
11: end for
12: Update the particle weights {ωik|k−1}

Nk
i=1 to obtain {ωik}

Nk
i=1 by

Eq. (11) and calculate Ñk =
∑Nk
i=1 ω

i
k.

13: Set {mi
k}
Nk
i=1 as {mi

k|k−1}
Nk
i=1.

14: Cluster particles and get {m̃j
k, ω̃

j
k}
Ñk
j=1 by the K-means method

or MEAP
15: Calculate {P i

k}
Nk
i=1 by Kalman filter or clustered particle group.

16: if ESS < Nk/2 then
17: Resample {mi

k, ω
i
k}
Nk
i=1.

18: end if

Finally, resampling is performed when the effective sample size
(ESS) [27] is smaller than half number of particles. In the resam-
pling step, we can obtain {mi

k, ω
i
k}
Nk
i=1, where {ωik}

Nk
i=1 = 1/Nk.

The NPF has mitigated the weight degeneracy problem in the
SMC-PHD filter under the assumption that all targets are on the
scene (visually) or active (continuously talking) during tracking.
However, the LOCATA includes the practical challenges of data
processing of conversational speech, such as natural speech inac-
tivity during sentences, sporadic utterances and dialogues between
multiple talkers. Therefore, the clutter intensity and detection prob-
ability should be considered for multi-speaker tracking.

3. IPF-SMC-PHD FILTER

To address the limitations of the NPF-SMC-PHD filter, we propose
the IPF-SMC-PHD filter for the task 4 of the LOCATA challenge.
The measurements of the IPF-SMC-PHD filter is given by the MU-
SIC, which is the baseline method of the LOCATA challenge. In
this section, the IPF and identification of the speaker are discussed.

3.1. Intensity particle flow

The IPF is used to replace the NPF, lines 6-11 of the Algorithm
1. For decreasing the computational cost, we only update the sur-
vival particles by the IPF, since the born particles are created as the
measurements. After the prediction step, the particle set is shown as
{mi

k|k−1, ω
i
k|k−1}

Nk−1

i=1 . Based on the intensity function [28], the
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Algorithm 2 Intensity particle flow step in the IPF-SMC-PHD filter

Input: {mi
k|k−1, ω

i
k|k−1,P

i
k|k−1}

Nk−1

i=1 and Zk.

Output: {mi
k, ω

i
k}
Nk−1

i=1 .
Initialize: R, pD,k,4λ, κk, υik, ∂m andwi

k.
1: for λ ∈ [0,4λ, 24λ, · · · , Nλ4λ] do
2: for Each surviving particles do
3: Calculate the likelihood density hi,rk based on the prob-

ability density function of the Gaussian distribution
N (zrk,R).

4: Calculate ∇hi,rk ,∇(∇hi,rk ) by Eq. (15) and Eq. (16).
5: Calculate particle flow by Eq. (12).
6: Calculate4mi

k|k−1 by Eq. (7).
7: if4mi

k|k−1 < ∂m then
8: Stop calculating the particle flow for this surviving par-

ticle.
9: end if

10: Update each particle state by Eq. (10).
11: Update the weights of the particles {ωik|k−1}

Nk−1

i=1 to ob-

tain {ωik}
Nk−1

i=1 by Eq. (11).
12: end for
13: end for
14: Set {mi

k}
Nk−1

i=1 as {mi
k|k−1}

Nk−1

i=1 .

particle flow can be calculated according to

f ik =− [

Rk∑
r=1

λpD,k∇(∇hi,rk )

Grk
+∇(∇ ln(ωik|k−1))]

−1

·
Rk∑
r=1

pD,k∇hi,rk
Grk

(12)

where

Grk = κk +

Nk−1+NB∑
i=Nk−1+1

Si,rk +

Nk−1∑
i=1

hi,rk ωik|k−1 (13)

Si,rk = γk(m
i,r
k|k−1) ∗max(0, 1−

Nk−1∑
i=1

hi,rk ωi,rk|k−1) (14)

where Si,rk is the birth intensity function for the i-th particle and
the r-th DOA line at k. ∇(∇ ln(ωik|k−1)) is independent of the
particle state and a constant for the particle flow. If we assume that
likelihood model is Gaussian, the particle flow in Eq. (12) may be
derived analytically for particle motion. The differentiation of the
likelihood hi,rk is calculated as follows:

∇hi,rk = −hi,rk R
−1(fz (m̃k, ςk)− zrk) (15)

∇(∇hi,rk ) =hi,rk [R−1(fz (m̃k, ςk)− zrk)
(fz (m̃k, ςk)− zrk)−1R−R−1]

(16)

With the increment of λ, the rate of change of 4mi
k|k−1 may

decrease. If 4mi
k|k−1 is smaller than the sensor resolution ∂m,

mi
k|k−1 is invariant based on Eq (10) after 4mi

k|k−1 is added to
mi
k|k−1, which is inefficient and wasteful. So if4mi

k|k−1 < ∂m,
the particle flow step would be ignored. The pseudo code of IPF in
the IPF-SMC-PHD filter is shown in Algorithm 2.

Algorithm 3 Identification step in the IPF-SMC-PHD filter

Input: {m̂j
k−1}

N̂m
j=1 and {m̃j

k}
Ñk
j=1

Output: {m̂j
k}
N̂m
j=1

Initialize: d and N̂m.
1: if Ñk = N̂m then
2: for j ∈ [1, .., Ñk] do
3: m̂j

k = argmin
m̃

j
k

∥∥m̂j
k−1 − m̃

j
k

∥∥
4: end for
5: end if
6: if Ñk > N̂m then
7: for j ∈ [1, .., N̂m] do
8: m̂j

k = argmin
m̃

j
k

∥∥m̂j
k−1 − m̃

j
k

∥∥
9: end for

10: end if
11: if Ñk < N̂m then
12: for j ∈ [1, .., Ñk] do
13: m̂j

k = argmin
m̃

j
k

∥∥m̂j
k−1 − m̃

j
k

∥∥
14: if

∥∥m̂j
k−1 − m̂

j
k

∥∥ > d then
15: m̂j

k = fm̃
(
m̂j
k−1, τk

)
16: end if
17: end for
18: end if

3.2. Identification of the speaker

As all estimated positions must be associated with an identity (ID)
in the LOCATA challenge, the estimates resulting from the IPF-
SMC-PHD filter should consider false tracks, missing tracks, bro-
ken tracks and track swaps. However, the PHD filter does not con-
sider the identity of speakers. An assistant identifier should be
added. Since the number of speakers is not known, the identifi-
cation problem is normally solved by the Blind Source Separation
(BSS) method. However, the BSS has a high computational com-
plexity. As the IPF-SMC-PHD filter can provide the estimate of
the speaker state, in our proposed method, the speaker identity is
estimated by the speaker states under the assumption that it is not
changing abruptly in subsequent frames. Although the number of
speakers at each frame {Ñk}ki=1 has been estimated at the line 12
of the Algorithm 1, the estimated number is varying due to the noise
and undetected DOA lines. For smoothing the trajectory of speak-
ers, we assume the mean number of speakers N̂m is given by:

N̂m =

∑k
i=1Nk

k
(17)

For each frame, if the number of the estimated speakers Nk is
larger than N̂m at frame k, it may imply that the noises are esti-
mated as the speakers. To detect the noise, the distance from the
estimated speaker state at k and the speaker state k − 1 is consid-
ered. As we assume the positions are not changed abruptly in sub-
sequent frames, the estimated speaker state at k with less distance
to the state at k − 1 is considered as the speaker state at k, where
j ∈ 1, ..., N̂m. If the number of the estimated speakers Nk is less
than N̂m at frame k, it may imply the miss detection of speakers.
The undetected speaker states are updated by the velocity as Eq.
(1). If the number of the estimated speakers Nk is equal to N̂m at
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Table 1: The index of used microphones and the number of the
subspaces for the DICIT array, Eigenmike array, Robot head and
Hearing aids.

Array Index Number
DICIT 5,6,7,9,10 1,2

Eigenmike 1,...,32 1,2,3,4,5
Robot head 1,...,12 1,2,3,4
Hearing aids 1,2,3,4 3,4

frame k. The identify of the speaker is given based on the distance
from the estimated speaker state to the speaker state at last frame.
The pseudo code of identification step in the IPF-SMC-PHD filter is
shown in Algorithm 3, where {m̂j

k−1}
N̂m
j=1 is the set of the speaker

states which is ordered by ID, for example, m̂1
k−1 means the state

of the first speaker.

4. EXPERIMENTAL RESULTS

In this section, the proposed algorithm is compared with its baseline
counterparts including the NPF-SMC-PHD [21], SMC-PHD algo-
rithms [29] and the baseline MUSIC of the LOCATA dataset [23].
The parameters of the PHD filter and particle flow filters are set as
in [29] and [4]. The number of particles per speaker is 50 and the
particles are spread randomly in the tracking area. The experiments
are run in Matlab on Windows 7 with Intel i7 (3.2 GHz).

The LOCATA dataset consists of sequences where multiple
speakers may speak or walk. Those actions are recorded by four
circular eight-element microphone arrays at 48 kHz. Although the
baseline MUSIC method is provided by the LOCATA challenge,
the MUSIC only considers one speaker. So we consider more signal
subspaces to calculate the DOA lines than the baseline MUSIC. The
parameters of the microphone arrays are shown in Table 1, which
are chosen based on the ground truth dataset of the Task 1 and Task
2.

Figure 1: The audio signal is illustrated in (a), and (b) shows the
speaker state estimated by the IPF-SMC-PHD filter and ground
truth speaker state with the Robot head array on recording 1 of the
evaluation data of the task 4.

Due to the space limitation, we only show the tracking result
on recording 1 on the robot head. Figure 1a shows the signal rep-
resentation of recording 1 of task 4. Speaker states are indicated
with blue and red line in Figure 1b, respectively for the IPF-SMC-
PHD and ground truth. Here, we performed down-sampling to the
plots for better visualization. At the beginning of the recording, the

Table 2: The OSPA for the IPF-SMC-PHD, NPF-SMC-PHD, ZPF-
SMC-PHD filters and MUSIC algorithm in terms of the OSPA error
on the Locata task 4.

Array Recording IPF NPF SMC MUSIC

1 1.084 1.178 1.247 1.875

Robot head 2 1.079 1.165 1.242 1.753

3 1.093 1.205 1.253 1.897

1 4.826 5.893 7.089 10.357

DICIT 2 4.543 5.407 6.580 10.182

3 5.405 6.777 7.860 11.057

1 4.833 5.894 7.091 10.360

Hearing aids 2 4.591 5.603 6.736 9.848

3 5.310 6.507 7.895 11.490

1 1.465 1.559 1.568 2.288

Eigenmike 2 1.295 1.461 1.616 2.212

3 1.399 1.503 1.656 2.429

Average OSPA 3.077 3.679 4.319 6.312

speakers are silent and the estimates are calculated when the speak-
ers start to talk. Although the filter can detect the occlusions, the
error increases when the occlusions happens.

The Optimal Sub-pattern Assignment (OSPA) for trackers [30],
which gives a combined score for the estimation performance in the
number of sources and their positions, is used to evaluate the track-
ing accuracy. Table 2 reports the average OSPA over 10 random
tests. With the contribution of the IPF, 16% reduction in tracking
error has been achieved as compared with the NPF-SMC-PHD fil-
ter. In addition, the IPF-SMC-PHD filter also improves the estima-
tion accuracy by 29% and 51% over the SMC-PHD and baseline
MUSIC method, respectively. However, the running time of IPF
(about 10s/frame) is three times and ten times of the SMC-PHD
filter (about 3s/frame) and the MUSIC method (about 1s/frame), re-
spectively.

5. CONCLUSION

We have presented a novel IPF-SMC-PHD filter for audio multi-
speaker tracking by smoothly migrating the particles. The proposed
algorithm has been tested on the task 4 of the LOCATA dataset. The
experimental results show that the proposed filter offers a higher
tracking accuracy than the baseline methods with a higher compu-
tational cost.
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