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Abstract—Acoustic scene classification has drawn much re-
search attention where labeled data are often used for model
training. However, in practice, acoustic data are often unlabeled,
weakly labeled, or incorrectly labeled. To classify unlabeled
data, or detect and correct wrongly labeled data, we present
an unsupervised clustering method based on sparse subspace
clustering. The computational cost of the sparse subspace clus-
tering algorithm becomes prohibitively high when dealing with
high dimensional acoustic features. To address this problem, we
introduce a random sketching method to reduce the feature
dimensionality for the sparse subspace clustering algorithm.
Experimental results reveal that this method can reduce the
computational cost significantly with a limited loss in clustering
accuracy.

I. INTRODUCTION

Much research attention has been given to acoustic scene
classification recently [1], which has potentially wide ap-
plications such as audio surveillance. Audio signals from
different scenes are recognized by classification approaches
trained with tags. However, there are two difficulties in audio
data classification. Firstly, acoustic databases are not always
correctly labeled, which brings difficulties to model training
procedures. Unsupervised clustering algorithms could help
detect wrongly labeled data by comparing the clustering result
with the labels. Secondly, labeled data are not always available,
and supervised methods are no-longer useful. For example
when a large quantity of raw acoustic data need to be labeled
for the environments in which they are recorded, and manual
labelling is not always reliable and feasible with massive
data. Acoustic scene clustering, as an unsupervised method,
is needed in such scenarios.

Subspace clustering is a powerful technique for learning
class labels in high-dimensional data in an unsupervised
manner. A high dimensional dataset can be viewed as lying
in a low-dimensional intrinsic subspace [2], and subspace
clustering methods aim at grouping them according to their
intrinsic subspace distributions. Subspace clustering has drawn
increasing research attention recently, and induced solutions
towards problems with high-dimensional data [3], such as im-
age segmentation [4] and motion segmentation [5]. A number
of subspace clustering algorithms have been developed such
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as Generalised PCA [6], Agglomerative Lossy Compression
[7] and Low-Rank Representation [8].

Recently, spectral clustering based subspace clustering
methods attract increasing attention. Because they can be
solved by standard linear algebraic methods and clustering
results outperform other traditional clustering approaches [9].
Unlike clustering algorithms such as k-means [10] and fuzzy
clustering [11] which rely on the distances between data points
and centroids of the clusters, spectral clustering-based methods
utilise distances or correlations among points, without regard
to the centroids. In spectral clustering based algorithms, an
affinity matrix is constructed to exploit the relativeness among
data samples, then spectral clustering [9] is implemented by
their Laplacian Graph, with segmentation strategies such as
ratio cut [12] and normalised cut [13].

Sparse Subspace Clustering (SSC) [14], an approach based
on spectral clustering, was shown to be a promising algorithm
for subspace clustering, with good clustering accuracy and
robustness to noise, and therefore is our focus here.

Features of audio sequences are usually of high dimension.
To reduce the computational cost with the high dimensional
datasets, a dimensionality reduction process can be performed.
Conventional method like Principal Component Analysis [15]
includes operations on covariance matrix and eigenvalue de-
composition, and still has high computational complexity with
high dimensional audio data.

In this paper, a random sketching (RS) method is proposed
to address the high computational burden of SSC. The whole
system is easy to implement and with low computational cost.
Experimental results on unlabeled acoustic data reveal that
with a proper sketching rate, the clustering accuracy of sparse
subspace clustering can be retained while the computing-time
is reduced significantly.

II. BACKGROUND

The SSC algorithm and some complexity reduction methods
for SSC are reviewed in this section.

A. §SC

SSC is a spectral clustering based algorithm, where an
affinity matrix determining the similarities among data points
is needed to build up the graph Laplacian [9].



Based on the observation that a data point x; lies in
a d;-dimensional subspace can be represented by a linear
combination of d; other points in general directions from the
same subspace, SSC tries to represent each data point as a
sparse combination of other data points, and assume that the
sparse combination can guarantee that data points representing
x; lie in the same subspace as x;. In [16] and [17], the
condition and bound of this assumption were provided. To
generate the affinity matrix for spectral clustering, SSC seeks
for the sparse representation of each data point, and estimate
the correlation among points by the coefficients of the sparse
representation.

In other words, let {z;}Y, denote data points embedded
in a subspace with lower dimension than the ambient space,
each data point x; can be expressed as a linear combination
of other points in the same subspace,

T, = Z CiT; (1)
j=1

where x; denotes a point in the same subspace as ;. Data
matrix X = {x1,...,xy} is set as the dictionary matrix
[14]. SSC seeks for the sparse representation of each point by
the others in the set, for example, by the following objective
function,

argmin ||Cllo st. X =XC, diag(C)=0 (2)
c

where C' is the coefficient matrix for the sparse representation.
Because solving the ¢p-norm based sparse optimization is NP-
hard, the ¢y-norm is often relaxed to ¢1-norm, then C' can be
obtained by optimizing the following cost function,

. A
arg min [Cll + Z11X — XCllz (3)

This objective can be optimized with Alternating Direction
Method of Multipliers (ADMM) method [18].

To guarantee the symmetry, the affinity matrix for spectral
clustering algorithm which can reveal neighbourhood rela-
tionship among points is obtained by E = |C| + |CT|,
where | - | takes the modulus of each element of the matrix.
Afterwards, clustering results can be obtained by performing
spectral clustering on the affinity matrix E.

SSC is simple to implement, and has good clustering
accuracy as well as robustness to noise and outliers [19], [16],
[17]. However, its computational complexity increases sharply
with the growth of data dimension and data size. Thus it is
vital to perform a dimensionality reduction process before SSC
is applied in this scenario.

B. Computational Simplification Methods for SSC

The time complexity of a typical SSC method [16] with
ADMM solver is O(N3 + N2D), in which N is the total
number of data-points to be clustered and D is the dimen-
sionality of data. In our case, the dimensionality of features
of an audio clip is very high (D > N), so the time complexity
is approximated to O(N?2D).

Algorithms have been proposed to accelerate the com-
putation procedure of SSC. Peng et al. [20] introduced a
scalable-SSC framework to simplify the computation of SSC
by decreasing the size of the affinity matrix. The algorithm
randomly picks out some data out of the whole database as in-
sample data. The in-sample data are clustered by SSC. Other
out-of-sample data are classified by a classification method
to existing clusters. The scalable-SSC is appropriate for data
set of massive number of points. Nevertheless, this method
includes a data classification procedure based on sparse rep-
resentation, which introduces additional computational cost.

Traganitis and Giannakis [21] introduced a sketching
method based on Johnson-Lindenstrauss transform (JLT, e.g.,
multiply the data matrix by a Gaussian random matrix). In the
algorithm, the optimization equation becomes

. Ao o
arg min 1Al + 51X - BA|I% 4)

In which X is the compressed matrix transformed from X
by JLT, and has fewer rows than X. B is the dictionary
matrix compressed from X , and has fewer columns than X.
After solving (4), the affinity matrix for SSC is constructed
according to the neighbourhood relationships of A.

Traganitis et al. [3] proposed a sketching and validation
algorithm. The algorithm randomly picks out a subset X
with n columns from the original dataset X. SSC is then
performed on X. Performance of SSC is then estimated by
kernel density estimation [22]. This is based on the intuition
that the underlying probability density function (pdf) of X
is expected to be multi-modal. Thus the discrepancy of this
pdf is compared with a uni-modal pdf. The random picking is
performed repeatedly and the one with the largest discrepancy
is used for SSC. The complementary set of X is associated
with clusters by the residual minimization method [20] or by
finding the closest subspace.

Mao and Gu [23] introduced a random compression method
to reduce the data dimensionality by a random projection
procedure. The data matrix X is compressed after being
multiplied by a Gaussian random matrix.

Because the main challenge of the audio dataset here is
the overwhelmingly high dimensionality D, the algorithms
proposed by [20] [3] focus on reducing the size of N in
computation and are inappropriate for the audio dataset. The
algorithms in [21] [23] reduce the dimensionality D by Gaus-
sian random projection, and are tested in our experiment. The
experimental result shows that SSC with our random sketching
algorithm outperforms the Gaussian random projection method
in terms of accuracy.

III. A RANDOMLY SKETCHED SSC

Different from the above mentioned works, we introduce
a new method for dimensionality reduction with a random
sketching strategy. To explain the idea, we show an example
of data distribution in Fig. 1.

In Fig. 1 (a), two clusters of points (red and blue) lie in
a 3-dimensional space spanned by three axes (x, y, and z).
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Fig. 1. (a) Points of two groups in a 3-D space. (b)(c)(d) Two dimensions
of the ambient space are retained by abandoning information of the third
dimension. It can be observed that these points are still splittable.

In (b)(c)(d), by projecting all points into three 2-dimensional
planes, which are spanned by axes xzy, £z, and yz, we can
see that points are still splittable on each plane. It indicates
that in this case, by retaining 2 dimensions and abandoning
the 3rd dimension, points can still be clustered by the SSC.
This observation gives us the intuition that, high dimensional
SSC can be accelerated by taking a random sketching of the
dimensions. By sketching a large enough size of original di-
mensions, SSC can be implemented with a good performance,
and computational time cost can be saved simultaneously.

The random sketching algorithm aims to pick out a union
of rows from a data matrix X € RP*N randomly, and these
rows are then ranked. Assume d number of rows are to be
sketched out, and F' € R?*P is the random sketching matrix,
then

r ... 00 -~ 0
F=QP=|: -~ : : . :|P 0
o ....1.0 --- 0

where the left part of @ is an identity matrix of d x d and
the right part of @ is a zero matrix of d x (D — d). P is a
random permutation matrix of order D.

The procedure used to sketch a data point {z;}Y; is
denoted by

where {w;}Y, is the sketched data vector. Equivalently, the
procedure of random sketching on dataset X is denoted by

W =FX 7

where W is the sketched data matrix, and W is then used as
the input of the SSC.

With random sketching, a union of rows are selected from
the data matrix X randomly, to generate a new data matrix
W, which retains some features of X with a lower dimension.
With an appropriate rate of sketching, the preserved features

could be sufficient for subspace clustering algorithms to detect
different subspaces. It is easy to imagine that sketching higher-
dimensional features obtains a higher clustering accuracy with
higher time cost, or vice-versa.

Unlike algorithms mentioned in Section II-B, our algo-
rithm focuses only on dimensional reduction because the
overwhelmingly high dimension of the acoustic data is the
main challenge here. Moreover, the RS-SSC algorithm takes
a random sketch of the original data without the formation
of a Gaussian random matrix. The biggest advantage of the
proposed random sketching algorithm is that it is rather simple
to implement, has low computational cost, and enjoys good
performance with the acoustic scene data. To minimise the
time cost and guarantee accuracy simultaneously, we need to
study the feature-preserving ability of random sketching. In
this paper, we study the performance of random sketching
algorithm for acoustic scene clustering to be presented later.

A. Practical implementation

By applying the SSC on an acoustic scene dataset, we
observed that the subspace distribution changes from scene to
scene and the performance of SSC is unstable with different
scenes. To address this, a scheme which can adjust automati-
cally the parameters in SSC is proposed.

According to [16], the A in (3), which serves as the trade
off between the sparsity constraint and the fitting error, can be
obtained from

o
A= ®)
min max |x; ;|
i g

where x; and «; are arbitrary column vectors from the data
matrix X, and « is a constant larger than 1, which is used to
balance the optimization result.

Empirically, abandoning some trivial elements in the self-
representing coefficient matrix C' can improve the perfor-
mance of SSC. Hence, a threshold value p € (0,1] can be
set to filter out some small elements in C. Assume that the
sum of modulus of each element in a column vector ¢; is
sum;. We can retain the elements of the largest modulus that
sum up to p - sum,; while discarding the remaining elements
that are regarded as trivial based on the choice of p.

To evaluate the SSC performance with a certain pair of
« and p, we compare the clustering result with a “ground
truth”. The “ground truth” is obtained from the clustering
result of the k-means algorithm, which is suitable with low-
dimensional data hence it was implemented with frame-based
features. Features for the whole chunk of audio data is high-
dimensional and k-means does not perform well on them.
Whether an audio clip belongs to a cluster is decided by
“majority voting”. That is, the cluster-belonging is determined
based on the cluster which occupies the largest proportion of
frames. Intuitively, an audio clip with a greater majority of
frames of one cluster is more likely to belong to this cluster
than another with a relatively lower proportion of the majority
frames. Experimental results support this intuition. So we pick
out several frames with the highest majority proportion as
“ground truth”, then adjust parameters accordingly.



IV. EVALUATIONS

In this section we present the simulation results of RS-SSC
for audio scene clustering. The performance of RS-SSC is
compared with the Gaussian Random Projection SSC method.

A. Database and performance index

TUT Acoustic Scenes 2017 data set [24], [25], which was
used as the dataset for taskl of DCASE 2017 challenge
is chosen for the evaluation of our algorithm. The acoustic
signal was recorded from 15 different urban scenes with two
channels. Recording environments include: lakeside beach,
bus, cafe/restaurant, car, city center, forest path, grocery store,
home, library, metro station, office, urban park, residential
area, train, and tram. Each scene has 312 audio clips of 10
seconds. Original sampling rate is 44100Hz.

The performance of each algorithm is estimated by error
rate. Additionally, the time cost of the sketching algorithm is
estimated by Relative time cost, which is defined as

time cost of RS-SSC
time cost with full dimensional data

€))

B. Feature extraction

Mel-Frequency Cepstral Coefficients (MFCC) [26] are de-
rived from the original database. Audio clips are re-sampled
to 16kHz. Then they are filtered by mel-filter bank of 24
filters after taking a Fast Fourier Transform (FFT) of length
256. Frame length is set as 256 samples and the hop size is
set as 160 samples. Twelve DCT coefficients of the logarithm
are kept. As differential and acceleration coefficients could
improve the recognition performance of MFCC [27], we took
the 15t and 2% order time differential derivatives. As a result,
36 features per frame are obtained.

The features for original data clips are frame-based. 995
frames are obtained and each frame has 36 features. Those
36 x 995 features are the input of the SSC system.

C. SSC and dimensionality reduction

For each audio clip, the input data for SSC has a dimension
of 36 x995. Conventionally, this is transformed into a vector of
35820 elements, which however brings heavy computational
cost for SSC because of its high dimension. To simplify the
computation, we used the random sketching based SSC (RS-
SSC), which is compared with the Gaussian random projection
based SSC (GRP-SSC) [23]. In this section, fixed parameters
are used (a=300, p=0.7) to save the computational time.

The obtained 35820 dimensional features are used as input
data points. In total, there are 15 subjects (scenes). Each
subject has 312 data points which are the audio clips in the
raw data. We take out 200 feature points from 4 subjects (50
points from each subject), then test the performance in terms
of the error rate.

Data samples are randomly picked out from the original
database, and the whole process is run for 200 trials. We
take the average of the error-rate. The reduced dimensionality
changes from 1000 to 12000.

error rate

—
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Fig. 2. Error-rate (%) of RS-SSC, GRP-SSC, and SSC with database of 4
subspaces. Dimensionality of RS-SSC and GRP-SSC changes from 1000 to
12000.
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Fig. 3. Relative time cost of RS-SSC with database of 2 subspaces, 4
subspaces and 8 subspaces. Dimensionality changes from 1000 to 12000.

As presented in Fig. 2, RS-SSC obtains lower error rate than
GRP-SSC with this dataset. Their computational complexities
are the same. When the sketched dimensionality comes to
12000, the accuracy of RS-SSC is close to SSC with full-
dimensional data, while saving a lot computational time si-
multaneously.

By taking out 50 audio clips from each scene as input data
points, the relative time costs of RS-SSC of 2 subspaces, 4
subspaces and 8 subspaces are observed and presented by Fig.
3. When the sketched dimensionality is below 10000, more
than 90% of the computational time is saved.

We evaluate the performance of RS-SSC on this dataset
with 2, 4, and 8 subjects. Each subject has 50 data points. The
reduced dimensionality is set as 10000. Simulation results are
presented in Table L.

The error-rate of SSC for full dimensionality on 2 subspaces
is 14.9%. Using the RS-SSC algorithm, with the sketched
dimensionality set as 10000, 93% of the computational time
can be saved with only a low loss in clustering accuracy.

D. Improve the performance by parameter-tunning

In the implementation process of SSC, many parameters
need to be adjusted to achieve a fine accuracy. However,
attributes of acoustic data vary from scene to scene, which

TABLE I
AVERAGE ERROR-RATE (%) OF RS-SSC FOR 2, 4, AND 8 SUBJECTS.
subjects number 2 4 8
clustering error-rate | 15.67 | 40.58 | 69.78




TABLE 11
AVERAGE ERROR-RATE (%) OF RS-SSC WITH DIFFERENT SCENES FOR 2
SUBJECTS. WITH PARAMETERS FIXED OR ADJUSTED.

Scenes beach bus cafe car city
Fixed 16.76 12.54 20.64 5.10 15.01
Adjusted | 14.74 11.82 19.11 4.99 13.92
Scenes forest | grocery home library | metro
Fixed 10.52 13.53 17.37 17.26 17.54
Adjusted | 10.38 12.02 14.95 16.92 16.55
Scenes office park residential train tram
Fixed 20.72 16.04 16.95 21.55 13.57
Adjusted | 18.87 15.80 13.66 21.04 | 12.50

means proper values of parameters change significantly with
different scenes.

We utilize the parameter updating method discussed in
Section III-A to improve the performance of RS-SSC, as
shown in Table II where the results obtained by using fixed
parameters (a=300, p=0.7) are also given. In our experiment,
50 points from each subspace are taken. The result reveals that
the parameters could be optimized to improve the performance
of RS-SSC considerably.

V. CONCLUSION

We have presented a random sketching algorithm to reduce
the dimensionality of audio features for scene classification.
This has significantly reduced the computational cost of SSC
while maintaining its performance. The RS-SSC has the same
time cost as the GRP-SSC, while performing better in terms
of clustering results.

Our future work will include the development of a the-
oretical frame of the proposed random sketching algorithm,
and the evaluation of the algorithm for other datasets, such as
AudioSet [28].
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