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ABSTRACT

We propose an algorithm for the estimation of reverberation
time (RT) from the reverberant speech signal by using a max-
imum likelihood (ML) estimator. Based on the analysis of an
existing RT estimation method, which models the reverber-
ation decay as a Gaussian random process modulated by a
deterministic envelope, a Laplacian distribution based decay
model is proposed in which an efficient procedure for locat-
ing free decay from reverberant speech is also incorporated.
Then the RT is estimated from the free decays by the ML es-
timator. The method was motivated by our observation that
the distribution pattern for temporal decay of the reverberant
hand clap is much closer to the Laplace distribution. The es-
timation accuracy of the proposed method is evaluated using
the experimental results and is in good agreement with the
RT values measured from room impulse responses.

1. INTRODUCTION

Reverberation time (RT) is an important parameter for char-
acterising the enclosed auditory environments. It is com-
monly used to determine the level of reverberations of a
room. The RT of an enclosed environment is defined as
the time for which a sound prevails after it has been turned
off, due to its multiple reflections from the different surfaces
within the environment. The RT is usually referred to as the
time for the sound level to drop to 60 dB below its original
value [4], [10]. Reverberation leads to speech distortion both
in terms of its envelop and fine structure, therefore RT is an
important parameter that measures the listening quality of the
enclosed environment, i.e., room.

Different methods have been employed to measure the
RT. In the early days of the 20th century, Sabine [12] imple-
mented an empirical formula for the calculation of RT based
entirely on the geometry of the environment (i.e., volume
and surface area) and the absorption attributes of its surfaces.
Later on, Sabine’s RT equation has been modified and its
accuracy has been improved (refer to [4] for the details of
the modifications). However, such methods require that the
room geometry and absorptive characteristics of the room be
determined first. When these can not be determined easily, it
is important then to find some method which is based on the
test sound signal radiated in the enclosed environment.

Such methods are based on sound decay curves, e.g., the
interrupted noise method [16], in which a burst of noise hav-
ing broad or narrow band is radiated into the test room. In the
time instant where the sound field attains the steady state, the
noise source is switched off and the decay curve is obtained.

The slope of the decay curve is used to estimate the RT. As
the noise source signal has fluctuations, the decay curve ob-
tained will differ from trial to trial. Hence to estimate the
reliable RT, averaging must be applied to the large number
of obtained decay curves. In order to overcome this issue,
Schroeder developed an integrated impulse response method
in 1965 [13] in which the excitation signal is a pulse either
broad band or narrow band. Schroeder proved that there is a
certain integral relation between the impulse response of the
room and the overall average of the decay curves obtained
via the interrupted noise method, and hence the repeated tri-
als were inessential. Both the methods require controlling
environment for the experiment, particularly a prior suitable
excitation signal must be accessible.

Although Schroeder’s method has been used immensely
over the past few decades for the estimation of RT, there is a
need of some blind method that can estimate room RT from
the available microphone signals, i.e., without any infor-
mation about the room geometry and absorption attributes,
or when the test sound signal is not available. Such blind
method which works with speech sound directly will be very
useful for incorporating in hands free telephony devices or
hearing aids. Several methods have been developed recently
that can estimate RT blindly, i.e., directly from the recorded
reverberant signals [5, 6, 11, 10, 15]. These methods are
based on the statistical modelling of the sound decay such
that the maximum likelihood (ML) estimator can be used to
determine the RT. Some partially blind methods have also
been developed where the room characteristics are ‘learned’
using neural network approaches [14, 7, 1].

Ratnam et al. [10] developed an algorithm for the blind
estimation of RT based entirely on the available recorded
sound, by modelling the reverberation characteristics of the
enclosure using a noise decay curve model. A running es-
timate of RT is achieved by continuously processing the
sounds in the test environment employing the ML parameter
estimation procedure. A decision making step is then applied
to obtain the estimates of RT over a period of time and the
most probable RT is attained using an order statistics filter.
However correctly detecting the sound decay from a rever-
berant speech signal is a challenging problem and the method
in [10] used an iterative approach for that purpose, which
makes the algorithm computationally expensive. Later on
Ratnam et al. presented another algorithm in [11] based on
their original model in [10] in order to improve the compu-
tational efficiency of their method. Very recently Lollmann
et al. [5] presented an algorithm for the blind estimation of
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RT from reverberant speech signals. The method is using a
statistical model for the sound decay developed in [10], fol-
lowed by the ML estimation approach to estimate the decay
rate presented in [11]. However, the method of Lollmann
et al. is employing a pre-selection mechanism to detect the
possible sound decay which makes the estimation robust and
computationally efficient. The method we presented in this
work for the blind estimation of RT is based on Lollmann et
al. method and using the Laplace distribution for modelling
the decay rate along with a pre-selectionmechanism to detect
the possible sound decays.

The rest of the paper is organized as follows. Section 2
presents the sound decay model and ML estimation proce-
dure used by the proposed method followed by the efficient
RT estimation procedure in Section 3. Section 4 evaluates
the performance of the proposed method and reports the ex-
perimental results followed by a conclusion in Section 5.

2. PROPOSED SOUND DECAYMODEL ANDML
ESTIMATION

Before describing the proposed method, an example is pro-
vided here to motivate the work. A hand clap sound sig-
nal is convolved with the RIR from the AIR database [2]
recorded in a lecture room with a source-microphone dis-
tance of 7.1 m. The resulting reverberant hand clap sound
is shown in Figure 1(a). Then the histogram of this sound
is shown in Figure 1(b). Theoretical probability density
functions (PDFs) histograms are also plotted in Figure 1(b)
for Gaussian and Laplacian distribution with mean and vari-
ance equal to that of the reverberant hand clap sound signal.
The distribution pattern for temporal decay of the hand clap
shows that it is much closer to the Laplace distribution, and
hence different from the state of the art methods, in this work
the statistical model used for modelling the energy decay of
the reverberant signal is based on the Laplace distribution.
Also the findings in [8] show that the amplitude distribution
of the reverberant speech is better modeled by Laplace dis-
tribution when the level of reverberations falls in a certain
range.

Therefore, the reverberant tail of a decaying sound is
modeled using a sequence of random variables with Laplace
distributionL (θ ,β ), where θ is the mean considered as zero
here and β is the variance of the Laplace distribution. The
model is based on the assumption that the reverberation tail
of a decaying sound denoted here as y is the product of a
fine structure denoted as x that is a random process, and an
envelop a that is deterministic. Suppose x(n) is a random se-
quence for n ≥ 0, of independent and identically distributed
(i.i.d.) random variables having Laplace distribution with
zero mean and variance β , L (0,β ). Similarly for each n a
deterministic sequence is defined as a(n)> 0. As a result, the
model for the room decay y is represented as y(n) = a(n)x(n)
[10]. As a(n) is a time varying term, y(n) are independent but
not identically distributed, with probability density function
L (0,βa(n)).

In order to estimate the decay rate, consider a finite se-
quence of observations, n = 0, ...,N− 1. For notational con-
venience, N-dimensional vectors of y and a are denoted as y
and a respectively. Hence the likelihood function of y (the
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Figure 1: (a) Temporal decay of a reverberant hand clap gen-
erated from the room impulse response of the AIR database
recorded in a lecture room. (b) Distribution of the decay of
a reverberant hand clap shown in (a) (red line), and two the-
oretical distributions (green line for Gaussian and blue for
Laplace) with the same mean and variance.

joint probability density), parameterized by a and β , is [3]

L(y;a,β ) =

1

a(0) · · ·a(N− 1)

(

1

2β

)N

× exp

(

−
∑N−1
n=0 | y(n)/a(n) |

β

)

(1)

where a and β are the (N+ 1) unknown parameters that are
required to be estimated from the observation y. As the main
goal here is to model the sound decay in a room and the likeli-
hood function obtained in Equation (1) can be further simpli-
fied. Suppose that a single decay rate ρ defines the damping
of the sound envelop during the regions of free decay (i.e.,
the period following the sharp offset of a speech sound) in-
stead of those regions where the sound is actually ongoing,
onset, or gradually declining speech offsets. As a result the
sequence a(n) is determined by [10]

a(n) = exp(−n/ρ) (2)
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Hence, the N-dimensional parameter a(n) can be replaced by
a single scalar parameter a which is denoted by ρ as

a= exp(−1/ρ) (3)

As a result Equation (2) can be written as

a(n) = an (4)

Now Equation (1), after incorporating Equation (4) be-
comes

L(y;a,β ) =

(

1

2a(N−1)/2β

)N

× exp

(

−
∑N−1
n=0 | a−ny(n) |

β

)

(5)
ML approach is then used to estimate the parameters a

and β . Firstly, the logarithmof Equation (5) is taken to obtain
the log-likelihood function

lnL(y;a,β ) =−Nln(2)−
N−1

∑
n=0

ln(an ·β )−
1

β

N−1

∑
n=0

a−n | y(n) |

(6)
To get the maximum of ln(L), we differentiate the log-
likelihood function in Equation (6) with respect to a to obtain
the score function SFa [9]

SFa(a;y,β ) =
∂ lnL(y;a,β )

∂a
=

−
1

a

N−1

∑
n=0

n+
1

β

N−1

∑
n=0

n | y(n) | a−n−1 (7)

Let ∂ lnL(y;a,β )/∂a = 0, then the log-likelihood function
attains the extremum, given as

−
1

a

N−1

∑
n=0

n+
1

β

N−1

∑
n=0

n | y(n) | a−n−1 = 0 (8)

Denote the estimate of a by â(ML) which should satisfy
Equation (8). It can be verified that the second derivative

∂ 2lnL(y;a,β )/∂a2 |
a=â(ML)< 0, i.e., the estimate â(ML) max-

imizes the log-likelihood function.
Similarly differentiate the log-likelihood function in

Equation (6) with respect to β ,

SFβ (β ;y,a) =
∂ lnL(y;a,β )

∂β
=−

N

β
+

1

β 2

N−1

∑
n=0

a−n | y(n) |

(9)
When ∂ lnL(y;a,β )/∂β = 0, the log-likelihood function
achieves the extremum, which results in

β =
1

N

N−1

∑
n=0

a−n | y(n) | (10)

Using the score function SFβ , the log-likelihood function can

be maximized for β also in the same way as done above by
taking the second derivative.

It can be observed that Equation (8) is an implicit expres-
sion and a can not be solved explicitly, while Equation (10)
provides the explicit estimate of β if a is known. As defined
in Equation (3) already, ρ is a time constant to be estimated.

It is noted that a ∈ [0,1) maps one-to-one onto ρ ∈ [0,∞).
Here, we use a similar method to that in [10] and [11] for the
estimation of a based on quantisation. First the given range
of a is quantized such that the bins of the histogram of a are
formed. Then the likelihood values are calculated, and the
highest likelihood is assigned to that bin in the histogram.

Let the range of a ∈ [0,1) be quantized into Q values, so
that a j is obtained with j = 1, ...,Q. Then, for each a j, the
log-likelihood given by Equation (6) can be calculated as

lnL(a j;y) =−Nln(2)−
N−1

∑
n=0

ln(anj ·β )−
1

β

N−1

∑
n=0

a−n
j | y(n) |

(11)

And â(ML) can be selected as

â(ML) =max
a

{lnL(a j;y)} (12)

Finally the estimate of the decay rate ρ̂ML is obtained using
Equation (3), followed by the calculation of the RT value,

i.e., T̂
(ML)
60 using the following formula [10]

T̂
(ML)
60 = 6.908× ρ̂ML (13)

3. EFFECTIVE RT ESTIMATION

As the original method presented in [10] used an iterative ap-
proach to estimate the sound decay rate which makes the al-
gorithm computationally very demanding. The method pre-
sented in [11] improves the computational efficiency of the
original method, however it uses the whole recorded rever-
berant speech signal for the ML estimation of the sound de-
cay rate instead of using only the free sound decay regions.
To further improve the computational efficiency it would be
helpful to first capture the free sound decay regions in the
reverberant speech signal so that only the detected sound de-
cay regions are used for the ML estimation of the decay rate.
Lollmann et al. [5] devised an estimation procedure which
can be used for this purpose. Such a procedure also has the
advantage in reducing the effects of the outliers on the es-
timated RT value. We have used this efficient procedure in
our proposed method to improve the ML estimation of the
Laplacian parameters.

The reverberant speech signal z(n), where n is the dis-
crete time index, is processed on a frame by frame basis. The
sequence is divided into the frames of B samples shifted by
instants of ∆B samples [5], given as

Z(λ ,b) = z(λ ∆B+ b) with b= 0,1, ...,B− 1 (14)

where λ ∈ N. In the first step, pre-selection is carried out
to detect the possible sound decays. In order to achieve this,
the current frame Z(λ ,b) is divided into L = B/P ∈ N sub
frames

V (λ , lsub,ksub) = Z(λ , lsubP+ ksub) (15)

where ksub = 0,1, ...,P− 1 and lsub = 0,1, ...,L− 1 are sub-
frame indices. Now it is examined whether the maximum
energy and minimum energy values of a sub-frame deviates
from the succeeding sub-frames according to [5]

P−1

∑
ksub=0

V 2(λ , lsub,ksub)> τlsub ·
P−1

∑
ksub=0

V 2(λ , lsub+ 1,ksub)

(16a)
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max
ksub

{V (λ , lsub,ksub)}> τlsub ·max
ksub

{V (λ , lsub+ 1,ksub)}

(16b)
min
ksub

{V (λ , lsub,ksub)}< τlsub ·min
ksub

{V (λ , lsub+ 1,ksub)}

(16c)
where 0 ≤ τlsub ≤ 1 is a weighting factor. If one of these
conditions is violated, it is examined whether the counter lsub
has reached a minimum value 1 < lsubmin < L− 2. If this is
not the case, the comparison is terminated and the next signal
frame Y (λ + 1,b) is processed. Otherwise, the sequence of
sub-frames for which Equation (16) applies is detected as a
possible sound decay. For this detected frame, the RT, i.e.,

T̂
(ML)
60 is calculated using Equations (11), (12), (3), and (13)
for a finite set of RT values (decay rates).

To improve the estimation accuracy with low complexity,
a histogram with a bin size 10 containing the estimated RT

values obtained above (i.e., T̂
(ML)
60 ) is generated, and updated

each time when another RT value (i.e., T̂
(ML)
60 ) is obtained.

The current RT estimate T̂
(ML)
60 is associated with the max-

imum of this histogram (The maximum instead of the first
peak can be taken as this histogram contains no significant
number of outliers as for the Ratnam et al. method [10], due
to the pre-selection). The variance for the estimated RT is
reduced by a recursive smoothing such that the final estimate
is given by

T̂
(ML)
60 (λ ) = α · T̂

(ML)
60 (λ − 1)+ (1−α) · T̂

(ML)
60 (λ ) (17)

where 0.9< α < 1. The final RT value is estimated by

T̂60 =mean(T̂
(ML)
60 (λ )) (18)

The proposed blind RT estimation algorithm using the
Laplacian distribution based energy decay model is summa-
rized in Table 1.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

The performance of the proposed method for blind estima-
tion of RT shall be illustrated by some simulation exam-
ples. Ten different anechoic speech signals randomly se-
lected from the TIMIT database, uttered by 5 males and 5
females all sampled at 16 KHz, are convolved with the real
RIRs from the AIR database [2] to generate the different
reverberant speech files. The RIRs were recorded in four
different room environments, namely booth, office, meet-
ing, and lecture (Note that the stairway case from the AIR
database is not considered here, as the mean RT values for the
stairway are not reported in the original paper that describes
the AIR database [2]). For each room environment, a pair
of source-microphone distances {D1,D2} m respectively, are
selected, i.e., {0.5, 1.5}, {1, 3}, {1.45, 2.8}, and {2.25, 7.1}.
Other parameters used are given as : Q = 10, L = 7, lsubmin
= 3, α = 0.995, B = 1631 (corresponds approximately to a
time span of 0.10 s), P = 233, ∆B = 67 (corresponds approx-
imately to a frame shift of 0.0042 s), and τlsub = 1.

For each room environment and each source-microphone
distance, ten different reverberant speech signals have been
generated and then tested for the RT estimation. For each
room type and source-microphone distance, the average re-
sults of the estimated RT over the ten different signals, are
given in Figures 2 and 3 respectively, where the RT estimated

directly fromRIRs based on Schroeder’s method [13] and the
mean RT reported in [2] are also plotted for comparison pur-
pose. For estimated RT based on Schroeder’s method, the
recorded RIRs in four different rooms for distances D1 and
D2 have been used to estimate the RT value. On the other
hand, the mean RT values are obtained from the results re-
ported in [2], which are calculated for each room by taking
the average of the RT values obtained over all positions of
source-microphone in the room (further details can be found
in [2]).
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Figure 2: Performance measurement of different RT estima-
tion methods in terms of accuracy obtained for different room
environments from the AIR database. The mean RT is shown
by red bars, the RT estimated from the RIRs by Schroeder’s
method [13] is shown by blue bars, the RT estimated by the
Lollmann et al. method [5] is shown by yellow bars, and
the RT estimated by our proposed method is shown by green
bars. The distances between source and microphone for all
of the four rooms are D1={0.5, 1.0, 1.45, 2.25} m respec-
tively. The standard deviations are also plotted as short lines
on top of the yellow and green bars.

Note that the results shown in Figure 2 are obtained for
the shorter source-microphone distances from the above used
pairs, i.e., D1, while the results in Figure 3 are obtained for
the longer source-microphone distances from the pairs, i.e.,
D2. It can be observed that the difference between the RT es-
timated using our proposed method and the mean RT (shown
by red bars) is small in different room environments. For ex-
ample, for the office room at D1, the RT value obtained by
our proposed method is 0.43 seconds and the measured RT
value is 0.37 seconds, and similarly for the office room at
D2, the RT value estimated by our proposed method is 0.46
seconds and the measured RT value is 0.48 seconds. Over-
all, the proposed method achieves comparable performance
to the baseline method by Lollmann et al.

5. CONCLUSION

A new approach has been presented for the blind estimation
of RT. The method is built on a Laplacian distribution based
statistical model for the sound decay and a maximum like-
lihood approach for parameter estimation. As shown in our
experiments, the results obtained using our proposed method
with the real data using speech signals are in good agree-
ment with the measured reverberation times. The proposed
method achieves comparable results to the state-of-the-art
method.
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Table 1: The proposed blind RT estimation method

Task: Use Laplacian distribution based energy decay model for the estimation of RT.
Input: Reverberant speech, i.e., z(n).
Output: Estimated RT, i.e., T̂60.
Initialization: 1) In (14), B = 1631 and ∆B = 67 are used.

2) In (15), P = 233 is used.
3) In (17), α = 0.995 is used.
4) In (11) and (12), j = 1, ...,Q while Q = 10 is used.

Case: The goal is to estimate the RT from reverberant speech signal. The steps are:
1) Use (14)-(16) to detect the free decay regions indexed by frame number λ .

2) For the detected regions, use (11), (12), (3), and (13) to obtain T̂
(ML)
60 (λ ).

3) Apply recursive smoothing via (17) to the estimated RT values, i.e., T̂
(ML)
60 (λ ).

Output: Compute T̂60 according to (18).
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Figure 3: Performance measurement of different RT estima-
tion methods in terms of accuracy obtained for different room
environments from the AIR database. The mean RT is shown
by red bars, the RT estimated from the RIRs by Schroeder’s
method [13] is shown by blue bars, the RT estimated by the
Lollmann et al. method [5] is shown by yellow bars, and
the RT estimated by our proposed method is shown by green
bars. The distances between source and microphone for all
of the four rooms are D2={1.5, 3.0, 2.8, 7.1} m respectively.
The standard deviations are also plotted as short lines on top
of the yellow and green bars.
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