
DICTIONARY LEARNING AND UPDATE BASED ON SIMULTANEOUS CODEWORD
OPTIMIZATION (SIMCO)

Wei Dai� Tao Xu† Wenwu Wang†

�Department of Electrical and Electonic Engineering, Imperial College London, London, United Kingdom
Email:wei.dai1@imperial.ac.uk

†Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, United Kingdom
Emails:[t.xu; w.wang]@surrey.ac.uk

ABSTRACT

Dictionary learning aims to adapt elementary codewords di-

rectly from training data so that each training signal can

be best approximated by a linear combination of only a

few codewords. Following the two-stage iterative processes:

sparse coding and dictionary update, that are commonly used,

for example, in the algorithms of MOD and K-SVD, we pro-

pose a novel framework that allows one to update an arbitrary

set of codewords and the corresponding sparse coefficients

simultaneously, hence termed simultaneous codeword opti-
mization (SimCO). Under this framework, we have developed

two algorithms, namely the primitive and the regularized

SimCO. Simulations are provided to show the advantages

of our approach over the K-SVD algorithm in terms of both

learning performance and running speed.

1. INTRODUCTION

The basic assumption underlying sparse coding is that a nat-

ural signal can be approximated by the combination of only a

small number of elementary components, called codewords or

atoms, chosen from a dictionary (i.e., the collection of all the

codewords). The issue of dictionary design is of practical im-

portance in many applications. As compared with predefined

dictionaries based on e.g. discrete cosine transform (DCT),

dictionaries learned from training data have the potential to

offer better performance, as the codewords are derived to cap-

ture the salient information directly from the signals.

The dictionary learning problem can be formulated as fol-

lows. Let Y ∈ R
m×n be the training data, where each col-

umn of Y corresponds to a training sample, one seeks for the

solution to the following optimization problem

min
D∈Rm×d, X∈Rd×n

‖Y −DX‖2F ,

subject to ‖D:,i‖2 = 1, ∀1 ≤ i ≤ d. (1)

where the matrices D and X are often referred to as the dic-

tionary and the corresponding coefficients respectively, and

D:,i denotes the ith codeword of the dictionary. The prob-

lem is usually solved via a two-stage iterative process: sparse

coding and dictionary update, such as in the well-known al-

gorithms of MOD [1] and K-SVD [2], among many others.

In this paper, we focus on the dictionary update stage and

propose a novel framework for dictionary learning. Specifi-

cally, we formulate dictionary update as an optimization prob-

lem on manifolds. Different from the existing algorithms,

such as the MOD and the K-SVD, this framework allows us

to update an arbitrary subset of the codewords and the corre-

sponding coefficients simultaneously, hence termed simulta-
neous codeword optimization (SimCO). We develop two algo-

rithms: the primitive and the regularized SimCO (in Sections

2 and 3 respectively). We study numerically (in Section 4)

the problem of ill-conditioned dictionary associated with the

K-SVD and the primitive SimCO, and show that the regular-

ized SimCO can overcome such a problem. We also provide

empirical results (in Section 4) to show the advantages of the

proposed technique.

2. PRIMITIVE SIMCO

The goal of the sparse coding stage in dictionary learning is

to find a sparse X to minimize ‖Y −DX‖2F for a given dic-

tionary D. In practice, the sparse coding problem is often

approximately solved by using either �1-minimization [3] or

greedy algorithms, e.g., the OMP [4] and SP [5] algorithms.

The focus of this paper is on the dictionary update stage. Dif-

ferent from the MOD and K-SVD algorithms, the key charac-

teristic of our approach is to update the arbitrary set of code-

words and the corresponding non-zero coefficients simultane-
ously. Similar to K-SVD, however, we fix the sparsity pattern,

which refers to the support set Ω ⊂ [d]×[n] containing the in-

dices of non-zero entries in X , i.e., Xi,j �= 0 for all (i, j) ∈ Ω
and Xi,j = 0 for all (i, j) /∈ Ω. In dictionary learning algo-

rithms, Ω ⊂ [d]× [n] is often obtained from the sparse coding

stage. Let I ⊂ [d] be an index set, D:,I denote the sub-matrix

of D formed by the columns of D indexed by I, and XI,: be

the sub-matrix of X consisting of the rows of X indexed by

2037978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

I. Then the optimization problem that only updates D:,I and

XI,: becomes

min
D:,I , XI,:

‖Y −DX‖2F , s.t. ‖D:,i‖2 = 1, ∀i ∈ I,

and Xi,j = 0, ∀ (i, j) /∈ Ω. (2)

Define

Yr = Y −D:,IcXIc,:.

fI (D) = min
XI,:: Xi,j=0, ∀(i,j)/∈Ω

‖Y −DX‖2F .

where Ic is a set complementary to I. It is clear that

fI (D) = min
XI,:: Xi,j=0, ∀(i,j)/∈Ω

‖Yr −D:,IXI,:‖2F . (3)

Hence, the optimization problem (2) can be written as

min
D:,I

fI (D) subject to ‖D:,i‖2 = 1, ∀i ∈ I. (4)

The gradient descent method is used to solve (4), which

contains two steps: respectively gradient computation and

line search. First, the gradient of fI (D) with respect to D:,i,

i ∈ I, can be computed as

∇D:,ifI (D) = −2 (Y −DX∗):,Ω(i,:) X
∗T
i,Ω(i,:)

= −2 (Y −DX∗)X∗T
i,: . (5)

where Ω(i, :) = {j : (i, j) ∈ Ω} which gives the columns of

Y whose sparse representation involves the codeword D:,i.

The optimal X∗ admits the following closed-from

X∗
i,j = 0, ∀ (i, j) /∈ Ω, X∗

Ic,: = XIc,:

X∗
I∩Ω(:,j),j = D†

:,I∩Ω(:,j) (Yr):,j , ∀j ∈ [n] , (6)

where the superscript † denotes the pseudo-inverse of a ma-

trix.

Significantly different from the standard line search mech-

anism for the Euclidean space, we perform the line search

over the product space of Grassmann manifolds, as it can be

shown that fI is indeed a function defined on the product of

Grassmann manifolds. For convenience, we use the symbol

gi to denote ∇D:,ifI (D), and further define

ḡi = gi −D:,iD
T
:,igi, ∀i ∈ I. (7)

According to [6], ḡi is in fact the gradient of f with respect

to D:,i on the Grassmann manifold. The line search path for

dictionary update, say D (t), t ≥ 0, is therefore defined as⎧⎨
⎩

D:,i (t) = D:,i if i /∈ I or ‖ḡi‖2 = 0,
D:,i (t) = D:,i cos (‖ḡi‖2 t)− (ḡi/ ‖ḡi‖2) sin (‖ḡi‖2 t)

if i ∈ I and ‖ḡi‖2 �= 0.
(8)

where gi = ∇D:,ifI (D) is computed via (5).

3. REGULARIZED SIMCO

As will be detailed in Section 4.1, both K-SVD and the primi-

tive SimCO may result in ill-conditioned dictionaries. We say

the dictionary D is ill-conditioned with respect to the fixed

sparsity pattern Ω if

0 ≈ λmin

(
D:,Ω(:,j)

) � λmax

(
D:,Ω(:,j)

)
for some j ∈ [n]. Here, the matrix D:,Ω(:,j) contains the

codewords for representing Y:,j , and λmin (·) and λmax (·)
give the smallest and largest singular values of a matrix, re-

spectively. To mitigate the problem of the ill-conditioned D,

we propose to optimise a regularized objective function

f̃I (D)

= min
XI,:: Xi,j=0, ∀(i,j)/∈Ω

(
‖Y −DX‖2F + μ ‖XI,:‖2F

)

=
n∑

j=1

min
XI∩Ω(:,j),j

(∥∥∥(Yr):,j −D:,I∩Ω(:,j)XI∩Ω(:,j),j

∥∥∥2
2

+μ
∥∥XI∩Ω(:,j),j

∥∥2
2

)
︸ ︷︷ ︸

˜fI,j(D)

.

(9)

where μ > 0 is a constant. The motivation is as follows:

when λmin

(
D:,I∩Ω(:,j)

) ≈ 0 for some j, the correspond-

ing optimal X̃∗
I∩Ω(:,j),j to solve fI,j (D) is large; after the

regularized term μ
∥∥XI∩Ω(:,j),j

∥∥2
2

is introduced, the optimal

X̃∗
I∩Ω(:,j),j to solve f̃I,j (D) is uniformly bounded. As a re-

sult, the optimization of f̃I (D) over D tends to provide a

well-conditioned D with small ‖XI,:‖2F .

As compared with the primitive SimCO in Section 2, the

only changes need to be made for the regularized SimCO

are the computation of f̃I (D) and the corresponding gra-

dient ∇D f̃I (D). Let mj = |I ∩ Ω(:, j)|. It is clear that

D:,XI∩Ω(:,j),j
∈ R

m×mj and XI∩Ω(:,j),j ∈ R
mj . Define

Ỹr,j =

[
(Yr):,j
0mj

]
, and D̃j =

[
D:,I∩Ω(:,j)√

μ · Imj

]
,

where 0mj is the zero vector of length mj , and Imj is the

mj × mj identity matrix. The optimal X̃∗
I∩Ω(:,j),j to solve

(9) is given by

X̃∗
I∩Ω(:,j),j = D̃†

j Ỹr,j (10)

Hence, f̃I (D) and ∇D f̃I (D) are computed as follows

f̃I (D) =
∥∥∥Yr −DX̃∗

∥∥∥2
F
+ μ ·

∥∥∥X̃∗
I,:

∥∥∥2
F
. (11)

∇D:,I f̃I (D) = −2
(
Y −DX̃∗

)
X̃∗T

I,: . (12)

2038

0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

of iterations

||
Y

 −
 D

*X
 ||

2 F

Function values v.s. # of iterations

Ksvd
Primitive SimCO
Regularized SimCO

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

of iterations

||∇
f||

F
 /

||Y
||2 F

Relative norm of the gradient v.s. # of iterations

Ksvd
Primitive SimCO
Regularized SimCO

0 50 100 150 200
10

0

10
1

10
2

10
3

of iterations

C
on

di
tio

n
N

um
be

r

Condition number v.s. # of iterations

Ksvd
Primitive SimCO
Regularized SimCO

Fig. 1: Starting with the same point, the behaviors of the K-SVD, the primitive SimCO and the regularized SimCO are different.

The regularized SimCO is obtained by replacing (3) and (5)

in the primitive SimCO with (11) and (12) respectively, while

remaining other steps unchanged. If μ = 0, the regularized

SimCO reduces to the primitive one. As shown in the next

section, the two versions of SimCO can be used jointly in

practice.

4. EMPIRICAL TESTS

We numerically test the proposed algorithms, i.e., the prim-

itive and the regularized SimCO, using synthetic data1, and

compare them with the baseline method K-SVD. To simplify

the comparison, for both the primitive and the regularized

SimCO, we set I = [d]. In Section 4.1, we show that both

the K-SVD and the primitive SimCO may result in an ill-

conditioned dictionary while adding a regularized term can

avoid this problem. Empirical experiments on synthetic data

are detailed in Section 4.2. The results demonstrate the excel-

lent learning performance of the regularized SimCO.

4.1. Ill-Conditioned Dictionaries

We handpick a particular example to show that both the

K-SVD and the primitive SimCO may converge to an ill-

conditioned dictionary. In the example, the training samples

Y ∈ R
16×78 are computed via Y = DtrueXtrue, where

Dtrue ∈ R
16×32 is a dictionary, Xtrue ∈ R

32×78 is the cor-

responding sparse coefficient matrix, and each column of X
contains exactly 4 nonzero elements. To test the performance

of the three different algorithms, we randomly generate the

initial dictionary D0 from the uniform distribution on the

product of the Stiefel manifolds
∏32 U16,1, and the initial co-

efficient matrix X0 from the standard Gaussian distribution

so that X0 and X have the exactly same sparsity pattern. All

the tested algorithms start with the same input Y , D0 and

X0. For the regularized SimCO, μ is set to 0.01.

The numerical results are presented in Figure 1. In the left

sub-figure, though both the K-SVD and the primitive SimCO

1Experiments on real data and theoretical analysis of the proposed algo-

rithms can be found from http://arxiv.org/abs/1109.5302.

minimize f (D) = minX ‖Y −DX‖2F while the regular-

ized SimCO minimizes f̃ (D) = minX ‖Y −DX‖2F +

μ ‖X‖2F , we compare only the quantities ‖Y −DX‖2F . In

the middle sub-figure, we depict ∇Df (D) for the K-SVD

and the primitive SimCO, and ∇D f̃ (D) for the regularized

SimCO as the search direction depends on the gradient. In

the right sub-figure, we show the condition number of the

dictionary defined as

κ (D) = max
1≤j≤d

λmax

(
D:,Ω(:,j)

)
/λmin

(
D:,Ω(:,j)

)
.

Here, note that κ (Dtrue) = 3.39. Figure 1 shows that the reg-

ularized SimCO avoids the convergence to an ill-conditioned

dictionary as compared with the other two algorithms. In ad-

dition, when the number of iterations exceeds 50, the gra-

dients in both the K-SVD and the primitive SimCO surpris-

ingly increase slightly with further iterations. This implies

that these two methods do not converge to local minimizers.

4.2. Experiments on Synthetic Data

In the synthetic data tests, we assume that Y = DtrueXtrue

where the columns of Dtrue are randomly generated from the

Stiefel manifold Um,1, and each column of Xtrue contains

exactly S many non-zeros that are Gaussian distributed. We

fix m = 16, d = 32, and S = 4. We change the number

of training samples n. For each value of n, we run 100 ran-

dom tests. In each random test, we also randomly generate an

initial dictionary D0 and an initial coefficient matrix X0.

We first test the performance of dictionary update with-

out considering the effect of sparse coding. In particular, we

assume the true sparsity is known by setting the sparsity pat-

tern of X0 the same as that of Xtrue. Noting the relation

between the primitive and the regularized SimCO, the ideal

way to test the regularized SimCO is to sequentially decrease

μ to zero and let the regularized SimCO converge for each

value of μ. In practice, we choose the following simple strat-

egy: the total number of iterations is set to 400; we set μ to

0.1, 0.01, 0.001, and 0.0001, for iterations 1-100, 101-200,

201-300, and 301-400, respectively. For fair comparison, we

2039

60 70 80 90 100 110 120
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

n : # of training samples

||
Y

 −
 D

*X
 ||

F2
 /

n

Synthetic Data Test without OMP: m=16, d=32, S=4, # of realization=200, # of iterations=400

K−SVD
Regularized SimCO

(a) Dictionary update only

50 100 150 200 250 300 350 400 450 500 550
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

n : # of training samples

||
Y

 −
 D

 X
 ||

 F2
 /

n

Synthetic Data Test with OMP: m=16, d=32, S=4, # of realization=50, # of iterations=50

K−SVD
Regularized SimCO

(b) With sparse coding

Fig. 2: Performance comparison of the K-SVD and the regularized SimCO.

also set the number of iterations in K-SVD dictionary update

to 400. The numerical results of ‖Y −DX‖2F /n versus n
are presented in Figure 2. The average performance of the

regularized SimCO is consistently better than that of K-SVD.

Then we evaluate the overall dictionary learning perfor-

mance by combining the dictionary update and sparse coding

stages. For sparse coding, we adopt the OMP algorithm [4]

as it has been intensively used for testing the K-SVD method

in [2, 7]. We refer to the iterations between sparse coding and

dictionary learning stages as outer-iterations, and the itera-

tions within the dictionary update stage as inner-iterations. In

our test, the numbers of outer-iterations are set to 50 for both

the K-SVD and the regularized SimCO, and in each outer iter-

ation, the numbers of inner-iterations of both algorithms are

set to 1. Furthermore, in the regularized SimCO, the regu-

larized constant is set to μ = 0.1 during the first 30 outer-

iterations, and μ = 0 during the rest 20 outer-iterations. The

simulation results of ‖Y −DX‖2F /n versus n are depicted

in Figure 2. Again, the average performance of the regular-

ized SimCO is consistently better than that of the K-SVD.

It is empirically observed that the regularized SimCO runs

much faster than K-SVD. In our tests, both algorithms are

implemented in Matlab codes. For Figure 2(a), it takes 4.10

hours by the regularized SimCO and 20.93 hours by the K-

SVD algorithm. For Figure 2(b), it takes 5.98 hours by the

regularized SimCO and 6.45 hours by K-SVD2. The faster

running speed of the regularized SimCO is mainly due to the

complexity reduction from singular value decomposition (re-

quired in K-SVD) for solving the least square problem.

5. CONCLUSION

We have presented a new codeword optimization algorithm

and its extended version for dictionary learning, where an ar-

2The difference in the running time is much less significant compared to

the other cases because the running time of OMP dominates in this case.

bitrary set of codewords and their corresponding coefficients

are allowed to be updated simultaneously. The numerical re-

sults, measured for the learning performance and the running

speed, have shown that the proposed technique, in particular,

the regularized SimCO, outperforms the K-SVD algorithm.

6. REFERENCES

[1] K. Engan, S. Aase, and J. H. Husøy, “Method of optimal

directions for frame design,” in IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, vol. 5, 1999, pp. 2443–

2446.

[2] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD:

An algorithm for designing overcomplete dictionaries

for sparse representation,” IEEE Trans. Signal Process.,
vol. 54, no. 11, pp. 4311–4322, 2006.

[3] E. Candes and T. Tao, “Decoding by linear program-

ming,” vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[4] J. Tropp and A. C. Gilbert, “Signal recovery from random

measurements via orthogonal matching pursuit,” IEEE
Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[5] W. Dai and O. Milenkovic, “Subspace pursuit for com-

pressive sensing signal reconstruction,” IEEE Trans. In-
form. Theory, vol. 55, pp. 2230–2249, 2009.

[6] A. Edelman, T. A. Arias, and S. T. Smith, “The geom-

etry of algorithms with orthogonality constraints,” SIAM
J. MATRIX ANAL. APPL., vol. 20, no. 2, pp. 303–353,

1999.

[7] M. Elad and M. Aharon, “Image denoising via sparse

and redundant representations over learned dictionaries,”

IEEE Transactions on Image Processing, vol. 15, no. 12,

pp. 3736 –3745, dec. 2006.

2040

