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Abstract

Recently, a joint array and spatial sparsity approach has been presented for direction
of arrival (DoA) estimation. Here, we propose a Fisher Information Matrix (FIM) con-
strained version of this method. In the step of sparse array optimisation, a constraint with
FIM is considered to reduce the error before scaling the observed signal by the weight
coefficients, followed by the spatial sparsity reconstruction, where the difference between
the reconstruted result and the desired beam response is constrained by a statistic ex-
pression. The simulation results show that some small improvements can be obtained by
imposing the proposed method.

1. Introduction

In acoustic environments, one of the most important tasks is to localise the source signal.
Direction of arrival (DoA) estimation based on array signal processing has attracted
great interests in applications, such as underwater acoustic detection, target tracking
and environmental monitoring [1] [2]. Traditionally, Capon beamformer, high-resolution
and multiple signal classification (MUSIC) algorithm are three main methods for DoA
estimation [3] [4] [5]. Recently, Spatial sparse representation (SSR) has been addressed to
reconstruct source signal by extracting meaningful lower-dimensional information from
high-dimensional data [6]. A typical implementation for SSR is to use compressive sensing
(CS) [7], where the activity of source is assumed to be sparse and the sparsity is enforced
by a constraint based on l1 norm of a vector of the coefficients corresponding to the
source activities in the spatial domain [8].

Previously our work [9] has proposed a joint optimisation of sparse array and spatial
sparsity, to achieve source detection in a subset of space with as few sensors as possible.
The benefits of using partial array sensors include reducing the cost for array design and
manufacturing, limiting the sensor storage and physical space, and countering against
sensor failure.

In this paper we impose statistic constraints on the existing joint approach, where the
Fisher Information Matrix is used to express the Maximum Likelihood Estimation (MLE)
of the source signal [10] [11]. Through limiting the difference between the reconstruction
result and the MLE of desired response, the performance of sparse optimisation can be
improved .



2. Background

2.1. Signal Model

We assume that a narrowband source signal arrives in one half of the plane and the
array is expected to have a perfect baffle, which means the arrival directions are from -90
degrees to +90 degrees along the plane of the array elements, reflecting as a vector for the
DoA xk = (xk1, xk2, · · · , xkM )

−1
, where M is the number of potential source directions

and 0 degree is the normal to the line of the array. At each time step k , the observed
signal is denoted as yk = (yk1, yk2, · · · , ykN )

−1
, where N is the number of potential

sensors. A linear array is used and each array element is supposed to have an equivalent
sensitivity.

The dictionary matrix A to describe the possible global source directions is created
with the size of A ∈ CN×M , where N � M . The nm-th element of A is defined by

Anm =
1√
N
exp [−j2πµn sin θm] (2.1)

where j ≡
√
−1, µn =

dn
cTs

and Ts stands for the sampling period at n = 1, 2, · · · ,N ,

dn denotes the distance between the n-th sensor and the middle sensor, c is the speed
of wave propagation, and θm = πm

M − π/2 is the DoA of the m-th hypothetical source to
the n-th sensor in the array.

Therefore, the N dimensional source signal can be defined as the array model

yk = Axk + nk (2.2)

where nk is the vector of random noise produced at each k . Here we consider isotropic
noise in the assumed half plane as used in our experiments.

2.2. Fisher Information Matrix

In statistics, the Fisher Information Matrix (FIM) [11], which is a method to calculate
the Maximum Likelihood Estimation (MLE), can be defined as follow.

F(x) = E{(∂logy(x)

∂x
)(
∂logy(x)

∂x
)T } (2.3)

where (·)T denotes the transpose of a matrix.

3. FIM Constrained Joint Sparse Optimisation

According to our recent work [9] [12], the CS-based narrowband array optimisation for
the sparse complex vector weight coefficients, i.e. w = wR + wI j, can be solved by
minimising the l1 norm of the weight coefficients [13]. A FIM constraint here is used to
limit the difference between the MLE of yk and the scaled diag(w)yk, so that in the next
step yk can be replaced by diag(w)yk more strictly. The constrained l1 norm is written
as below.

min ‖wR‖1 + ‖wI‖1
subject to ‖p− (wR + wIj)

H
A‖2 ≤ α

‖f(x)− diag(w)y‖1 ≤ βN (3.1)

where p ∈ CM is the vector holding the desired beam response at the sampled angular
points θm for the frequency of interest Ω. To be specific, p = [p(Ω, θ1), · · · , p(Ω, θM )],
where p(Ω, θ) is a desired response at the direction θ and frequency Ω. f(x) is the N
dimensional vector holding the values of each element in the column of F(x)T and the
expectation is chosen by calculating the average values, α ∈ <+ is a threshold measuring



Implementation of statistic constrained joint sparse approach

Input: observed signal yk
Output: weight coefficients for sensors: w

spatial sparsity: xk and estimated DoA: p
Initialisation: generate p ∈ C1×M at random degrees,
Run:

for k = 1, 2, 3, · · ·
for kk = 1, 2

optimise (3.1) to obtain wR and wI
w = wR + wI i
obtain D as in (3.4)
form W as in (3.3)
optimise (3.2) to obtain xk

reconstruct p as in (3.5)
preconstruct = p

end
end

Table 1. The proposed statistic constrained joint sparse approach.

the similarity between the designed response and the desired response, β ∈ <+ is also a
threshold, (·)H is a Hermitian operator, ‖ · ‖1 and ‖ · ‖2 are respectively the `1 and `2
norm of their arguments.

With the result of estimated w in (3.1), the spatial sparsity based DoA estimation can
be achieved by a sequential Bayesian technique based on the least absolute shrinkage and
selection operator (LASSO) algorithm [14] [15], where the input of narrowband signal yk
at time k can be scaled [9]. A constraint to improve the performance of reconstruction
is added to the LASSO function.

argmin
xk,vm

‖Wyk −Axk‖22 + µ‖Dxk‖1

subject to ‖f(x)TA− preconstruct‖1 ≤ γM (3.2)

with

W = diag(|w|) (3.3)

D = σ2V, V = diag(v) (3.4)

preconstruct = (Axk)HA (3.5)

where D and V are the matrices holding the coefficients vector v = (v1, v2, . . . , vM)T ,
which corresponds to the source activity in the source space, µ is a regularization pa-
rameter, and σ2 is the noise variance [15]. The value of MLE is used to constraint the
similarity between the DoA reconstruction and the expression that MLE of yk maps on
the matrix A, so that the DoA estimation can be more robust. Similar to β, γ ∈ <+ is
a constrained parameter.

Both cost functions (3.1) and (3.2) are implemented by the CVX toolbox in Matlab
[16]. The alternating procedure of the statistic constrained joint sparse optimisation is
presented as Table, where the initial input beam response p can be set randomly.

4. Numerical Simulations

In this section, the proposed FIM constrained joint sparse optimisation for DoA estima-
tion is performed on a simulated narrowband moving source signal, which starts from
50 degrees and decreases uniformly to -49 degrees. The intialised input beam response is



MSEarray MSE spatial Active SNR
(dB) (dB) sensors (dB)

Baseline -64.56 -13.99 20.78 -

FIM constrained -64.56 -13.99 20.78 -

Baseline -54.36 -12.36 20.76 20

FIM constrained -56.70 -12.93 20.76 20

Baseline -62.94 -14.43 20.75 30

FIM constrained -63.11 -14.43 20.73 30

Baseline -64.20 -15.47 20.80 40

FIM constrained -64.49 -14.25 20.76 40

Table 2. Comparison between the proposed FIM constrained method and the baseline
method without FIM constraints.

at 20 degrees. We assume the source direction is changing at a constant range, hence no
Doppler shift is considered in this paper.

The underwater speed of sound used in this model is set to be 1500 m/s, and the
frequency of the sources is 200 Hz. A linear array with the grid of 100 potential sensors is
used. The seperation distance between adjacent sensors is 0.05λ (λ is the wavelength) and
the maximum running step is K = 100. The inter-sensor spacing and length of running
time are chosen according to the number of sensors and the complexity of source signals
to ensure convergence. The constraint value of α used in (3.1) is 0.3, the value of β is
0.3 and the value of γ in (3.2) is 0.1. A series of experiments for the baseline method
without the FIM constraints are also tested.

The performance index in terms of Mean Square Errors (MSEs) for sparse array opti-
misation and spatial sparsity optimisation are used according to functions (3.1) and (3.2)
as

MSEarray = 20log10

(
‖p−wHA‖22

M

)
dB,MSE spatial = 20log10

(
‖yHk A− p‖22

M

)
dB

(4.1)
where M is the number of potential source directions. Both MSEs are measured along
the time length K and the average value is calculated.

From Table 2, it can be observed that for the moving source, the FIM constrained
joint sparse optimisation gives a satisfatory performance. With the increase of noise level
(Signal to Noise Ratio (SNR)), the DoA estimations become more similar to the desired
beam response. The FIM constrained method offers small improvements over the baseline
method.

5. Conclusion and Future Work

This paper considers an idea of adding FIM constraints to the two-step joint array and
spatial sparsity optimisation. The constraints are used to reduce the error when scaling
the observed signal and to limit the difference between the reconstruction result and the
desired beam response. The results show the potential of the proposed FIM constrained
method, which worths further investigation in our future work.
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