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Abstract.  Various methods exist for reducing correlation between classifiers in 
a multiple classifier framework. The expectation is that the composite classifier 
will exhibit improved performance and/or be simpler to automate compared 
with a single classifier. In this paper we investigate how generalisation is 
affected by varying complexity of unstable base classifiers, implemented as 
identical single hidden layer MLP networks with fixed parameters. A technique 
that uses recursive partitioning for selectively perturbing the training set is also 
introduced, and shown to improve performance and reduce sensitivity to base 
classifier complexity. Benchmark experiments include artificial and real data 
with optimal error rates greater than eighteen percent. 

 
1 Introduction 
 

The idea of combining multiple classifiers is based on the observation that achieving 
optimal performance in combination is not necessarily consistent with obtaining the 
best performance for a single classifier. However certain conditions need to be 
satisfied to realise the performance improvement, in particular that the constituent 
(base) classifiers be not too highly correlated, as discussed in [1]. Various techniques 
have been devised to reduce correlation between classifiers before combining, 
including:  (i) reducing dimension of training set to give different feature sets, (ii) 
incorporating different types of base classifier, (iii) designing base classifiers with 
different parameters for same type of classifier, (iv) resampling training set so each 
classifier is specialised on different subset, and (v) coding multi-class binary outputs 
to create complementary two-class problems. In this paper, we investigate how base 
classifier complexity affects generalisation in a framework that incorportes correlation 
reduction technique (iv), which uses different training sets.  In addition, we introduce 
a recursive partitioning technique that uses a measure of inconsistency of 
classification to extract a maximally separable subset and to identify inconsistently 
classified patterns.  We investigate the effect on combined classifier performance of 
leaving out inconsistently classified patterns from base classifier training sets.  

Training on subsets appears to work well for unstable classifiers, such as neural 
networks and decision trees, in which a small perturbation in the training set may lead 
to a significant change in constructed classifier. Effective methods based on 
perturbing the training set prior to combining, include Bagging and Boosting. 
Training set perturbation methods were generally developed with classification trees 
as base classifiers, and do not necessarily improve performance with neural network 
base classifiers, since random weight initialisation provides its own perturbation. 



2 Correlation Measure 

The partitioning method proposed here is based on a spectral representation of 2-class 
target vector with respect to individual binary classifier decisions. The transformation 
of binary data may be carried out using a variety of matrices that differ only in row 
ordering. For example, the Hadamard transform Tn with entries ∈ {-1,+1} is a 
complete orthogonal square matrix that can be expressed as a recursive structure:.  
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The Walsh and Rademacher-Walsh transform matrices have similar row entries but 
use a different ordering of the 2n functions that collectively constitute the closed set. 
The inverse for all these three orderings exists, but since our functions may be 
incompletely specified, noisy and contradictory we are interested in information 
content, and concentrate on spectral coefficients rather than computation of the 
inverse. We can therefore use any spectral ordering, and choose any binary coding 
instead of  {+1,-1}. Representing the transform by TnY = S, where Y is the target 
vector and if X = (x1, x2... xn), the subscript notation and corresponding meaning for 
coefficients up to third order is given in [2] as follows: 
s0     correlation between f(X) and constant   
si i=1...n    correlation between f(X) and xi 
sij i,j = 1...n, i≠j      correlation between f(X) and xi ⊕ xj 
sijk i,j,k = 1...n, i≠j≠k   correlation between f(X) and xj⊕ xk ⊕ xk 

(2) 

Interestingly, first order coefficients si in (2) provide a unique identifier if the function 
is linearly separable (Chow parameters), and although there is no known 
mathematical relationship between these parameters and weight/threshold values of a 
single perceptron,  implementation tables exist for n ≤ 7 .  

3 Extracting Separable subsets 

A constructive approach, similar to the Sequential Learning (SL) algorithm [3], is 
selected to partition the training data (for a review of constructive methods for binary 
data see [4]). The principle behind SL is to identify and remove a maximally 
separable subset of patterns at each partitioning step. It relies on finding a half-space 
consistent with all patterns of one class and a maximal subset of the other class - an 
NP-hard problem [5]. Various ways of approximating the algorithm can be found in 
the literature [6], and we select an approach based upon applying a necessary check 
for separability from threshold logic theory. 

By assigning one of two classes to each base classifier and repeating b times, each 
training pattern may be regarded as a vertex in the b-dimensional binary hypercube:  

),,,( 21 mbmmm xxxX �=    xmj and f(Xm) ∈ {0,1} (3) 



By comparing vertices in the hypercube, a value is assigned to each binary component 
xj in (3) that we call sensitivity (σ) according to the following rule (generalisation of 
the first stage of logic minimisation  originally described in [7]): 

 
For all  X1, X2   such that    f(X1) ≠ f(X2) 

Assign  |σj|
  =

1
2121

−⊕− XXxx jj  

where  σj is excitatory = σj
 + if  x1j= f(X1) 

                             σj is inhibitory = σj
 - if x1j ≠ f(X1) 

 

(4) 

  |σj|
  is therefore inversely proportional to Hamming Distance, and to keep excitatory 

and inhibitory contributions separate are labelled σj
 + and  σj

−, and summed over all 
patterns. The existence of j

X

σ∑ + > 0 and j
X

σ∑ − > 0 provides evidence that the set 

of patterns is not 1-monotonic in the jth component and therefore non-separable. A 
discussion of k-monotonicity as necessary and increasingly sufficient conditions for 
separability is given in [2] [8]. For a completely specified function and considering 
nearest neighbours only, summing σj

 + and  σj
− is identical to spectral summation, and 

j
X

σ∑ + and j
X

σ∑ − give the first order spectral coefficients, decomposed into 

excitatory and inhibitory contributions. Further details of calculating spectral 
contributions, with examples using simple Boolean functions can be found in [6]. 

To identify a maximal separable subset, each pattern is assigned a measure hmon1, 
representing its contribution to separability, based on the summation of evidence of 
each component, as follows: 
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where signum() ensures that sign of  the jth contribution to h  is based on the 

larger of ∑∑ −+

X
j

X
j σσ   and  .  

Figure 1 shows a typical plot of cumulative sum of patterns sorted by hmon1.  The 
peak is used as the threshold to extract each separable subset. For example in Figure 1 
(Gaussian), the second extracted subset for class 1 represented by the smaller peak, 
contains approx. 50 patterns which results from thresholding the larger class 1 peak at 
approx. 150 patterns. For experiments reported here, four separable subsets (two class 
1 and two class 2) are extracted and we refer to the remaining patterns as the 
inconsistently classified set (ICS). The first two class 1 (or class 2) extracted subsets 
contain unambiguously correctly and incorrectly classified patterns respectively, and 
for the two-dimensional artificial data of experiment 3 we were able to observe that 
patterns in ICS clustered around the Bayes boundary [9].  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Cumulative sum  hmon1 versus number of sorted patterns for two extracted subsets, class 
1 and class 2, Gaussian data (left) and Diabetes data. 

The ICS is split into approximately k equal subsets, each subset being left out of a 
base classifier training set to obtain the new ICS estimate for the next recursion:  

 
ICS(1) = ICS estimate after one recursion using empty ICS  (i.e. no patterns left out) 

ICS(m) = ICS estimate after one recursion using ICS(m-1),  m is recursion number 

3 Results 

Test and train error rates for varying base classifier complexity are presented for 
artificial data as well as real problems from Proben1 benchmark datasets (Diabetes, 
Cancer [10]). In particular the Diabetes data is difficult to improve with methods that 
perturb the training set, allegedly due to noise [11] [12]. Each experiment is repeated 
ten times, with a different random 50/50 training/testing split in experiment 1 and 2, 
and different random seed for train and test pattern generation in experiment 3. The 
artificial data is useful as a development tool for visualising decision boundaries, but 
appears much harder to overfit compared with experiment 1 and 2.  
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All experiments use conventional MLP base classifier with single hidden layer, 
Levenberg-Marquardt optimisation algorithm and random initial weights. The 
parameters of the base classifier are fixed, but the number of hidden nodes h and the 
number of epochs nepochs are systematically varied. The classifier is run b=50 times 
with a random subset (1/k) of ICS left out of the training set of each base classifier. 
Decisions of b base classifiers are combined by majority vote, which is reported for 
all experiments. Additionally we calculate a weighted combination of classifier 
outputs using a single layer perceptron. The orientation weights of the perceptron are 

fixed at values proportional to  ∑∑ −+

X
j

X
j σσ or     defined in (4). Although the 

spectral counting method described in (4) uses binary decisions to determine 
orientation weights, the bias weight is learned by gradient descent with real-valued 
classifier outputs (before decision-taking) applied to perceptron inputs. For the 
experiments reported here, we found no significant difference in the mean values of 
the two combiners, so we only report the majority vote.  

Experiment 1:   Cancer  50/50 training/testing 

For the cancer data the base classifier uses a single hidden node, h = 1. To quantify 
performance sensitivity with respect to nepochs and k, the following procedure is 
adopted. For each fixed value of k, ICS(1) is first estimated at nepochs = 64, and 
nepochs is reduced (log scale) after each recursion using the ICS estimate obtained at 
the previous higher value. Figure 2 (a) (b) show training error rate and test error rate 
respectively versus nepochs, at k = 2, 3,  ∞. The case k = ∞ indicates that no patterns 
are left out of base classifier training sets, i.e. correlation is reduced by random weight 
initialisation alone. Figure 2 (c) shows pre-combined and combined train and test 
error rates versus nepochs at k = 2. Figure 2 (d) shows pre-combined and combined  
training and test error rates versus k at  nepochs = 8. The pre-combined error rates are 
mean over b base classifiers. Combined rate refers to the majority vote combination. 
One std error bars are shown for the test rates in (c) (d).  

Experiment 2:  Diabetes 50/50 training/testing    

In the first Diabetes experiment k is fixed, k = 2 for h = 1, 2, 3, 4. For each fixed value 
of h, ICS(1) is estimated at nepochs = 64, and nepochs is reduced (log scale) after 
each recursion using the ICS estimate obtained at the previous higher value. Figure 3 
(a) (b) show training error rate and test error rate respectively versus nepochs, for h = 
4, 3, 2. Figure 3 (c) shows pre-combined and combined train and test error rates 
versus nepochs at h = 2. Figure 3 (d) shows pre-combined and combined train and test 
error rates versus h at  nepochs = 8.  

In the second Diabetes experiment k, h, nepochs are fixed at 2, 2, 8 respectively for 
each recursion. Figure 4 (a) (b) show training error rate and test error rate respectively 
versus number of recursions. Figure 4 (c) shows pre-combined and combined train 
and test error rates versus number of recursions. Figure 4 (d) shows number of 
patterns (%) in ICS versus number of recursions.  



 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.  Error rates cancer  data, h = 1 (a) train error  rates versus nepochs for k = 2,3, ∞ 
(b) test error rates versus nepochs for k = 2,3, ∞   (c) train (dashed) and test (solid) error rates 
before and after combining versus nepochs, k = 2  (d) train (dashed) and test (solid) error rates 
before and after combining versus k, nepochs = 8 

Experiment 3:  Gaussian   400 training & 30,000 test patterns 
evenly divided between class 1 & 2, nepochs = 50. 

To develop and understand the method of Section 3, we use the two-dimensional 
overlapping Gaussian data of [13], which has class 1{mean (0,0), variance 1}and 
class 2{mean (2,0), variance 4}. The Bayes boundary is circular for this problem with  
Bayes error rate of 18.49%. The advantage of this simple problem is that we can 
visualise decision boundaries and see how the Bayes boundary is approximated. 
Typical individual decision boundaries with respect to the circular Bayes boundary 
are given for a few base classifiers in figure 5, along with the combined decision 
boundary for ICS(2), k = 2, h = 3,  nepochs = 50.  
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Fig. 3.  Error rates Diabetes  data, k = 2  (a) train error rates versus nepochs for h = 2, 3, 4 
(b) test error rates versus nepochs for h = 2, 3, 4   (c) train (dashed) and test (solid) error rates 
before and after combining versus nepochs, h = 2  (d) train (dashed) and test (solid) error rates 
before and after combining versus h, nepochs = 8 

For the Gaussian data, higher values of h may be used and nepochs is fixed at 50. 
For each fixed value of k, ICS(1) is estimated at h =10, and h reduced after each 
recursion in single node steps, using the ICS estimate obtained at the previous higher 
node. Figure 6 (a) (b) show training error rate and test error rate respectively versus h, 
for k = 10, 5, 4. Figure 6 (c) shows pre-combined and combined train and test error 
rates versus h at k = 4. Figure 6 (d) shows pre-combined and combined train and test 
error rates versus k at h = 7.  
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Fig. 4.  Error rates Diabetes  data, k = 2, h = 2, nepochs = 8  (a) train rates versus number 
recursions  (b) test rates versus number recursions  (c) train (dashed) and test (solid) error rates 
before and after combining versus number recursions  (d) number  of patterns in ICS (%) 
versus number recursions. 

 
 
 
 
 
 
 
 

 

Fig. 5. Individual and combined boundaries, showing circular Bayes and  Gaussian centres (*). 
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Fig. 6.  Error rates Gaussian data, nepochs = 50  (a) train rates versus h for k = 10, 5, 4 
(b) test rates versus h for k = 10, 5, 4   (c) train (dashed) and test (solid) error rates before and 
after combining versus h, k = 4   (d) train (dashed) and test (solid) error rates before and after 
combining versus k, h = 7. 

4 Discussion and Conclusion 

Base classifier complexity is varied by reducing h or nepochs, while at the same time 
recursively leaving out a random subset of inconsistently classified patterns from 
classifier training sets. The number of patterns left out is determined by k, the number 
of random subsets.  

What ever value is chosen for k, including k = ∞, improvement as a result of  
combining compared with mean base classifier performance is quite dramatic (figure 
2 (c) (d), figure 3 (c) (d) and figure 6 (c) (d)). It appears that as k is decreased the 
neural net base classifier can become more complex, without overfitting. Also as k is 
decreased, generalisation becomes less sensitive to nepochs (Figure 2 (b)) and h 
(Figure 6(b)), so that the tuning required to achieve similar level of performance 
should be less difficult.  
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The experimental results in Section 3 do not include a comparison with Bagging 
and Boosting for these problems. However the case k = ∞ uses perturbation by 
random weight initialisation and is therefore similar to Bagging. Also for the two 
benchmark data sets results are reported elsewhere, and in particular performance 
with Boosting on Diabetes data is shown to be worse than Bagging [12]. 

In Figure 3 (d) we show the number of patterns in ICS, for successive recursions 
with fixed h, k, nepochs.  This is related to earlier work [9] which indicated that the 
stability of the ICS estimate may give information on selecting h, k, nepochs. 

The background behind the proposed approach is similar to the noisy transmission 
channel concept used in Error-Correcting Output Coding (ECOC), which models the 
prediction task as a communication problem [14]. ECOC is an example of correlation 
reduction technique (v) in  Section 1, and it should be possible to use ECOC codes to 
handle the multi-class case.  
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