Calculus: practice questions

Your actual exam is 2 hours and will consist of 11 questions, all compulsory and comparable to those appearing here. It is hoped that these specimen questions will be a useful aid to you in your revision, but you need to revise the notes and exercise sheets as well.

1. Assuming that
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 where $i = \sqrt{-1}$, show that
 $\cos^5 x = \frac{1}{16}\cos 5x + \frac{5}{16}\cos 3x + \frac{5}{8}\cos x$

Using the above result and Osborn's rule, state a formula for $\cosh^5 x$ in terms of $\cosh 5x$, $\cosh 3x$ and $\cosh x$.

2. Find an identity for $\cos^3 x$ in terms of $\cos 3x$ and $\cos x$, and hence find $\int_0^{\pi/2} \cos^3 x \, dx$.

3. Calculate the Maclaurin expansion of $\cos x$ up to and including the x^4 term. Use the series and the result of Question 1 to find the Maclaurin series of $\cos^5 x$ up to and including the x^4 term. All coefficients must be expressed as fractions in their lowest terms.

4. Find the binomial expansion of $(1 + t^2)^{-1/2}$ up to and including the term in t^6 . Using the fact that

$$\sinh^{-1} x = \int_0^x \frac{1}{\sqrt{1+t^2}} \, dt$$

show that the Maclaurin expansion of $\sinh^{-1} x$ is

$$\sinh^{-1} x = x - \frac{1}{6}x^3 + \frac{3}{40}x^5 - \frac{5}{112}x^7 + \cdots$$

Given that $\sin^{-1} x = -i \sinh^{-1}(ix)$ where $i = \sqrt{-1}$, deduce that

$$\sin^{-1} x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \cdots$$

5. Find the Maclaurin series for $\sin x$ up to and including the x^5 term and deduce the Maclaurin series for $\sin(x^2)$ up to and including the term in x^{10} . Hence find an approximate value for

$$\int_0^1 \sin(x^2) \, dx$$

giving your answer to four decimal places.

6. Give the definitions of the functions $\cosh x$ and $\sinh x$ in terms of exponentials and prove from these definitions that (i) $\sinh x$ is an odd function; (ii) $\cosh 2x = 2\sinh^2 x + 1$, (iii) $\cosh x + \sinh x = e^x$ and (iv) $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$. Also find $\int \sinh^2 x \, dx$.

7. Show that

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}).$$

Hence show that if $\sinh y = \tan x$ then

$$y = \ln(\sec x + \tan x).$$

8. Show that $\frac{d}{dx}\left(\sinh^{-1}\frac{x}{a}\right) = \frac{1}{\sqrt{x^2 + a^2}}$ and evaluate $\int \frac{dx}{\sqrt{x^2 - 4x + 20}}$.

9. If $\sinh x = -2$ find the values of $\cosh x$, $\tanh x$, $\operatorname{sech} x$, $\operatorname{cosech} x$ and $\coth x$. Show also that $\cosh \frac{1}{2}x = \sqrt{\frac{1}{2}(1 + \cosh x)}$.

10. Find the following limits:

(i)
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$
 (ii) $\lim_{x \to 0} \frac{\sin(\sin x)}{\sin x}$ (iii) $\lim_{x \to 0} \frac{\sqrt{1 + x} - 1 - \frac{1}{2}x}{x^2}$

11. Find the following limits:

(i)
$$\lim_{x \to 1} \frac{x^{1/3} - 1}{\sqrt{x} - 1}$$
 (ii) $\lim_{x \to 0} \frac{x^2}{\cos x - \cosh x}$ (iii) $\lim_{x \to 0} \frac{x - \ln(1 + x)}{x^2}$

12. Find the following limits, using a substitution for part (iii):

(i)
$$\lim_{x \to 1} \frac{e^{x-1} - 1}{\ln x}$$
 (ii) $\lim_{x \to 0} \frac{x - \ln(1+x)}{x \ln(1+x)}$ (iii) $\lim_{x \to \infty} x \sinh(3/x)$

13. Find the sum to infinity of the geometric series $\sum_{n=1}^{\infty} x^{n+1}$. By differentiating your answer twice and then multiplying by x show that, for -1 < x < 1,

$$\sum_{n=1}^{\infty} n(n+1)x^n = \frac{2x}{(1-x)^3}$$

and hence show that $\sum_{n=1}^{\infty} \frac{n(n+1)}{3^n} = \frac{9}{4}$.

14. Find the sum to infinity of $\sum_{n=0}^{\infty} t^n$ assuming |t| < 1. By integrating your result with respect to t between limits 0 and x, deduce the Maclaurin series for $\ln(1-x)$:

$$\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$

Hence show that $\sum_{n=0}^{\infty} \frac{1}{n+1} \left(\frac{e^2-1}{e^2}\right)^{n+1} = 2.$

15. Evaluate the integrals

(i)
$$\int_0^{\pi/4} \frac{\sin x}{\cos^3 x} dx$$
 (ii) $\int_0^{\pi/2} x \sin 4x \, dx$ (iii) $\int_2^4 \frac{x-2}{x(x+2)} \, dx$

16. Evaluate the integrals

(i)
$$\int_0^1 \frac{x^2}{(1+x^3)^2} dx$$
 (ii) $\int_1^4 \sqrt{x} \ln x \, dx$ (iii) $\int_0^{\sqrt{3}} \frac{3-x}{(x+2)(x^2+1)} \, dx$

17. Show that, if n is a positive integer, then

$$\int_0^{\pi/4} \tan^n x \, dx = \frac{1}{n-1} - \int_0^{\pi/4} \tan^{n-2} x \, dx$$

[You will find the identity $\tan^2 x = \sec^2 x - 1$ useful]. Hence evaluate $\int_0^{\pi/4} \tan^5 x \, dx$.

18. Suppose that $\lambda > 0$ and n is an integer with $n \ge 1$. Show that

$$\int_0^\infty x^n e^{-\lambda x} \, dx = (n/\lambda) \int_0^\infty x^{n-1} e^{-\lambda x} \, dx.$$

[You may assume that $x^n e^{-\lambda x} \to 0$ as $x \to \infty$]. Hence show that

$$\int_0^\infty x^4 e^{-\lambda x} \, dx = \frac{24}{\lambda^5}$$

19. Solve the following differential equations, expressing the solution in the form y = f(x):

(i)
$$\frac{dy}{dx} = -2y^2x$$

(ii) $\frac{dy}{dx} = (y^2 + 1)x^2$ subject to $y(0) = 1$
(...) $\frac{dy}{dx} = 2$

(iii)
$$\frac{y}{dx} + 3y = x$$

20. Solve the following differential equations, expressing the solution in the form y = f(x):

(i)
$$\frac{dy}{dx} = yx^3$$

(ii) $e^{2x}\frac{dy}{dx} = y^2$ subject to $y(0) = 1$
(iii) $x\frac{dy}{dx} - 2y = x^4e^{-x}$

21. Solve the differential equations:

(i)
$$\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 10y = 0$$

(ii) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = x^2 - 1$

22. Solve the differential equations:

(i)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$$
 subject to $y(0) = -2$ and $y'(0) = 1$
(ii) $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = \cos 2x$

23. By introducing the new variable u = y/x, solve the differential equation

$$x\frac{dy}{dx} = xe^{y/x} + y$$

24. Transform the differential equation

$$\frac{dy}{dx} + \frac{y}{x} = x^3 y^2$$

into a new differential equation involving only x, v and dv/dx, where v = 1/y. Hence solve the original differential equation.

25. Find $\partial z / \partial x$ and $\partial z / \partial y$ when

(a)
$$z = x^2 \ln y$$
, (b) $z = x^2 e^{-3y}$, (c) $z = \frac{x}{x^2 + y^2}$, (d) $z = \sin(x^2 + 5y)$, (e) $z = e^{xy} \ln y$

26. Show that $w = \ln(x^2 + y^2 + z^2)$ satisfies

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = \frac{2}{x^2 + y^2 + z^2}.$$

Answers/hints:

1. Since there are no products or implied products of sine terms, the hyperbolic equivalent is the same identity with cos replaced by cosh.

2.
$$\cos^3 x = \frac{1}{4}\cos 3x + \frac{3}{4}\cos x, \ \int_0^{\pi/2}\cos^3 x \, dx = \frac{2}{3}.$$

3. $\cos^5 x = 1 - \frac{5}{2}x^2 + \frac{65}{24}x^4 + \cdots.$
4. $(1+t^2)^{-1/2} = 1 - \frac{1}{2}t^2 + \frac{3}{8}t^4 - \frac{5}{16}t^6 + \cdots.$
5. $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots, \sin(x^2) = x^2 - \frac{x^6}{6} + \frac{x^{10}}{120} - \cdots, \ \int_0^1 \sin(x^2) \, dx \approx 0.3103.$
6. $\int \sinh^2 x \, dx = \frac{1}{4}\sinh 2x - \frac{1}{2}x + c.$
8. $\sinh^{-1}\left(\frac{x-2}{4}\right) + c$

9. $\cosh x = \sqrt{5}$, $\tanh x = -2/\sqrt{5}$, $\operatorname{sech} x = 1/\sqrt{5}$, $\operatorname{cosech} x = -1/2$, $\coth x = -\sqrt{5}/2$. For the last part find an identity that relates $\cosh x$ with $\cosh 2x$ and replace x by x/2.

- **10.** (i) 12, (ii) 1, (iii) $-\frac{1}{8}$.
- **11.** (i) $\frac{2}{3}$, (ii) -1, (iii) $\frac{1}{2}$.
- **12.** (i) 1, (ii) $\frac{1}{2}$, (iii) substitute x = 1/y, answer 3.

13. At A-Level the formula for summing an infinite geometric series is usually taught in the form

$$a + ar + ar^{2} + ar^{3} + \dots = \frac{a}{1 - r}$$
 for $|r| < 1$.

15. (i) $\frac{1}{2}$, (ii) $-\frac{\pi}{8}$, (iii) $2 \ln 3 - 3 \ln 2$.

16. (i)
$$\frac{1}{6}$$
, (ii) $\frac{32}{3} \ln 2 - \frac{28}{9}$, (iii) $\ln(\sqrt{3} + 2) - 2\ln 2 + \pi/3$.

17. For the first part, write the integrand as
$$\tan^{n-2} x \tan^2 x$$
.

$$\int_0^{\pi/4} \tan^5 x \, dx = \ln(\sqrt{2}) - \frac{1}{4} = \frac{1}{2} \ln 2 - \frac{1}{4}.$$
19. (i) $y = \frac{1}{x^2 - c}$, (ii) $y = \tan\left(\frac{x^3}{3} + \frac{\pi}{4}\right)$, (iii) $y = \frac{x}{3} - \frac{1}{9} + c e^{-3x}.$
20. (i) $y = Ae^{x^4/4}$, (ii) $y = \frac{2}{1 + e^{-2x}}$, (iii) $y = -x^2(x+1)e^{-x} + c x^2.$
21. (i) $y = Ae^{-5x} + Be^{-2x}$, (ii) $y = e^{-x}(A\cos 2x + B\sin 2x) + \frac{1}{5}x^2 - \frac{4}{25}x - \frac{27}{125}.$
22. (i) $y = e^{-x}(-2\cos 2x - \frac{1}{2}\sin 2x)$, (ii) $y = Ae^{-2x} + Be^x - \frac{3}{20}\cos 2x + \frac{1}{20}\sin 2x.$

23. $y = -x \ln(-\ln x + c)$.

24.
$$y = \frac{1}{cx - x^4/3}$$

25. (a) $2x \ln y$, x^2/y , (b) $2x e^{-3y}$, $-3x^2 e^{-3y}$, (c) $(y^2 - x^2)/(x^2 + y^2)^2$, $-2xy/(x^2 + y^2)^2$, (d) $2x \cos(x^2 + 5y)$, $5\cos(x^2 + 5y)$, (e) $y e^{xy} \ln y$, $e^{xy}/y + x e^{xy} \ln y$.