Fibonacci Numbers and The Golden Section in Art, Architecture and Music

This section introduces you to some of the occurrences of the Fibonacci series and the Golden Ratio in architecture, art and music.

Contents of this page

The Things To Do icon means there is a Things to do investigation at the end of the section.

1·61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ..More.. Calculator

The Golden section in architecture

The Parthenon and Greek Architecture

The ancient Greeks knew of a rectangle whose sides are in the golden proportion (1 : 1.618 which is the same as 0.618 : 1). It occurs naturally in some of the proportions of the Five Platonic Solids (as we have already seen). A construction for the golden section point is found in Euclid's Elements. The golden rectangle is supposed to appear in many of the proportions of that famous ancient Greek temple, the Parthenon, in the Acropolis in Athens, Greece but there is no original documentary evidence that this was deliberately designed in. (There is a replica of the original building (accurate to one-eighth of an inch!) at Nashville which calls itself "The Athens of South USA".)

Stuart  Revett - Greek Temples (HC)
Greek Temples (HC)
Stuart Revett
Buy This Art Print At

The Acropolis (see a plan diagram or Roy George's plan of the Parthenon with active spots to click on to view photographs), in the centre of Athens, is an outcrop of rock that dominates the ancient city. Its most famous monument is the Parthenon, a temple to the goddess Athena built around 430 or 440 BC. It is largely in ruins but is now undergoing some restoration (see the photos at Roy George's site in the link above).
Again there are no original plans of the Parthenon itself. It appears to be built on a design of golden rectangles and root-5 rectangles: However, due to the top part being missing and the base being curved to counteract an optical illusion of level lines appearing bowed, these are only an approximate measures but reasonably good ones.
The Panthenon image here shows clear golden sections in the placing of the three horizontal lines but the overall shape and the other prominent features are not golden section ratios. Libero Patrignani - Pantheon
Pantheon, Libero Patrignani


WWW: There is a wonderful collection of pictures of the Parthenon and the Acropolis at Indiana University's web site.
WWW: Dr Ann M Nicgorski of the Department of Art and Art History at Williamette University in the USA has a large collection of links to Parthenon pictures with many details of the building.
WWW: David Silverman's page on the Parthenon has lots of information. Look at the plan of the Parthenon. The dividing partition in the inner temple seems to be on the golden section both of the main temple and the inner temple. Apart from that, I cannot see any other clear golden sections - can you?
WWW: Allan T Kohl's Art Images for College Teaching has a lot of images on ancient art and architecture.

Modern Architecture

The Eden Project's new Education Building

Visit the Eden Project Eden Project view The Eden Project in St. Austell, between Plymouth and Penzance in SW England and 50 miles from Land's End, has some wonderfully impressive greenhouses based on geodesic domes (called biomes) built in an old quarry.
They are building a £13 million new Education Centre that has been designed using Fibonacci Numbers and plant spirals to reflect the nature of the site - plants from all over the world.
Keep a watch on their web pages for its opening late on in 2005!

California Polytechnic Engineering Plaza

plaza plan The College of Engineering at the California Polytechnic State University have plans for a new Engineering Plaza based on the Fibonacci numbers and several geometric diagrams you will also have seen on other pages here. There is also a page of images of the new building.
The designer of the Plaza and former student of Cal Poly, Jeffrey Gordon Smith, says
As a guiding element, we selected the Fibonacci series spiral, or golden mean, as the representation of engineering knowledge.
The start of construction is currently planned for late 2005 or early in 2006.

The United Nations Building in New York

The architect Le Corbusier deliberately incorporated some golden rectangles as the shapes of windows or other aspects of buildings he designed. One of these (not designed by Le Corbusier) is the United Nations building in New York which is L-shaped. Although you will read in some books that "the upright part of the L has sides in the golden ratio, and there are distinctive marks on this taller part which divide the height by the golden ratio", when I looked at photos of the building, I could not find these measurements. Can you?

[With thanks to Bjorn Smestad of Finnmark College, Norway for mentioning these links.]

More Architecture links

WWW: University of Wisconsin's Library of Art History images
is an excellent source of architecture images and well worth checking out! It has many images of the Parthenon, pictures of its friezes and other details. Use their searcher selecting the Period Ancient Greece: Classical and the Site Athens. Note: the images cannot be copied or even made into links, only viewed on their page!
WWW: June Komisar's page of architectural links from the University of Michigan.
She points to the Great Building Collection which has some excellent photo images on their Parthenon page. Do check this out as they have a FREE 3D viewer to download and lots of buildings in 3D to view. You can take your own virtual walk through the Parthenon!
WWW: The Kings Tomb
in Egypt and the golden section.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. Calculator

The Golden Section and Art

Luca Pacioli (1445-1517) in his Divina proportione (On Divine Proportion) wrote about the golden section also called the golden mean or the divine proportion:
The line AB is divided at point M so that the ratio of the two parts, the smaller MB to the larger AM is the same as the ratio of the larger part AM to the whole AB.
We have seen on earlier pages at this site that this gives two ratios, AM:AB which is also BM:AM and is 0.618... which we call phi (beginning with a small p). The other ratio is AB:AM = AM:MB = 1/phi= 1.618... or Phi (note the capital P). Both of these are variously called the golden number or golden ratio, golden section, golden mean or the divine proportion. Other pages at this site explain a lot more about it and its amazing mathematical properties and it relation to the Fibonacci Numbers.
Pacioli's work influenced Leonardo da Vinci (1452-1519) and Albrecht Durer (1471-1528) and is seen in some of the work of Georges Seurat, Paul Signac and Mondrian, for instance.

desert isle art Many books on oil painting and water colour in your local library will point out that it is better to position objects not in the centre of the picture but to one side or "about one-third" of the way across, and to use lines which divide the picture into thirds. This seems to make the picture design more pleasing to the eye and relies again on the idea of the golden section being "ideal".

Leonardo's Art

The Uffizi Gallery's Web site in Florence, Italy, has a virtual room of some of Leonardo da Vinci's paintings and drawings. I suggest the following two of Leonardo Da Vinci's paintings to analyse for yourself:
The Annunciation
is a picture that looks like it is in a frame of 1:sqrt(5) shape (a root-5 rectangle). Print it and measure it - is it a root-5 rectangle? Divide it into a square on the left and another on the right. (If it is a root-5 rectangle, these lines mark out two golden-section rectangles as the parts remaining after a square has been removed). Also mark in the lines across the picture which are 0·618 of the way up and 0·618 of the way down it. Also mark in the vertical lines which are 0·618 of the way along from both ends. You will see that these lines mark out significant parts of the picture or go through important objects. You can then try marking lines that divide these parts into their golden sections too.
Leonardo's Madonna with Child and Saints
is in a square frame. Look at the golden section lines (0·618 of the way down and up the frame and 0·618 of the way across from the left and from the right) and see if these lines mark out significant parts of the picture. Do other sub-divisions look like further golden sections?

Modern Art

Graham Sutherland's Tapestry in Coventry Cathedral

tapestry behind high altar, Coventry Cathedral
Graham Sutherland's (1903-1980) huge tapestry of Christ The King behind the altar in Coventry Cathedral here in a picture taken by Rob Orland.

It seems to have been designed with some clear golden sections as I've shown on Rob's picture:

Show golden sections on the picture:
  • The figure of Christ is framed by an oval with a flattened top. At the golden section point vertically is the navel indicated at the narrowest part of the waist and also the lower edge of the girdle (belt or waist-band), shown by blue arrows.
  • The bottom the the girdle (waist-band) is also at a golden section point for the whole figure from the top of the head to the soles of the feet, shown by purple arrows.
    Since this is also the position of the navel in the human body, this indicates the figure is standing.
  • The top of the girdle and the line of the chest are at golden sections between the base of the girdle and the top of the garment (the shoulders) shown by red arrows.
  • The face also has several golden sections in it, the line of the eyes and the nostrils being at the major golden sections, shown by yellow lines.
  • The two ovals forming the apron and the face are positioned vertically at golden section points apart and at golden sections in size as shown by the green arrows.
  • The other two ovals, the sleeves, have a width that is 0.618 of the distance between the sleeves, shown by grey arrows.
Can you find any more golden sections?

WWW: More information on the tapestry.
WWW: Take a virtual tour of the Cathedral.
WWW: Purchase this print from Rob Orland's website

Links to Art sources

Links specifically related to the Fibonacci numbers or the golden section (Phi):
WWW: A ray traced image based on Fibonacci spirals and rectangles
WWW: the Web Museum pages on Durer, Famous Painting Virtual Exhibition. their long list of famous artists and their works.
WWW: There is a very useful set of mathematical links to Art and Music web resources from Mathematics Archives that is worth looking at.

Links to major sources of Art on the Web:

WWW:'s List of the top art sources on the web is an excellent place for links to good art sources on the web. Highly recommended!
WWW: The Metropolitan Museum of Art in New York houses more than 2 million works of art.
WWW: The Fine Arts Museums of San Francisco site has an Image base of 65,000 works of art. It includes art from Ancient to Modern, from paintings to ceramics and textiles, from all over the world as well as America.
WWW: A Guide to Art Collections in the UK
WWW: Michelangelo is famous for his paintings (such as the ceiling in the Sistine Chapel) and his sculptures (for instance David). This site has links to several sources and images of his works and some links to sites on the golden section.
Using the picture of his David sculpture, measure it and see if he has used Phi - eg is the navel ("belly button") 0·618 of the David's height?
WWW: Why not visit the Leonardo Museum in the town of Vinci (Italy) itself from which town Leonardo is named, of course.
There are many sketches and paintings of Leonardo's at The WebMuseum, Paris too.

The work of modern artists using the Golden Section

WWW: Billie Ruth Sudduth is a North American artist specialising in basket work that is now internationally known. Her designs are based on the Fibonacci Numbers and the golden section - see her web page JABOBs (Just A Bunch Of Baskets). Mathematics Teaching in the Middle School has a good online introduction to her work (January 1999).
WWW: Kees van Prooijen of California has used a similar series to the Fibonacci series - one made from adding the previous three terms, as a basis for his art.
WWW: Ned May picture Ned May has generated some beautiful pictures based on Fibonacci Spirals using Visual Basic (an example is shown here on the right).

Fibonacci and Phi for fashioning Furniture

WWW: Pietro Malusardi and Karen Wallace have a web page showing some elegant applications of the golden section in furniture design.
WWW: Custom Furniture Solutions have a Media cabinet designed using golden section proportions.
Article: A recent edition (Jan/Feb 2003) of the Ancient Egypt Magazine contained an article on Woodworking in Ancient Egypt where the author, Geoffrey Killen, explains how a box (chest) exhibits the golden section in its design but is not sure if this is coincidence or design.
WWW: Fletcher Cox is a craftsman in wood who has used the golden section in his birds-eye maple wooden plate.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. Calculator

Fibonacci in Films

The Russian Sergie Eisenstein directed the classic silent film of 1925 The Battleship Potemkin (a DVD or video version of this 75 minute film is now available, both in PAL format). He divided the film up using golden section points to start important scenes in the film, measuring these by length on the celluloid film.
Jonathan Berger of Stanford University's Center for Computer Research in Music and Acoustics used this as an illustration of Fibonacci numbers in a lecture course.
Dénes Nagy, in a fascinating article entitled Golden Section(ism): From mathematics to the theory of art and musicology, Part 1 in Symmetry, Culture and Science, volume 7, number 4, 1996, pages 337-448 talks about whether we can percieve a golden section point in time without being initially aware of the whole time interval. He gives a reference to his own work on golden section perception in video art too (page 418 of the above article).

1·61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ..More.. Calculator

Fibonacci Numbers and Poetry

The first section here is inspired by Dr Rachel Hall's Multicultural mathematics course syllabus at St Joseph's University in Philadelphia, USA. (Read more about it with some nice maths puzzles in this pdf document.)

Stress, Meter and Sanskrit Poetry

In English, we tend to think of poetry as lines of text that rhyme, that is, lines that end with similar sounds as in this children's song:
Twinkle twinkle little star
How I wonder what you are.
Up above the world, so high
Like a diamond in the sky
Also we have the rhythm of the separate sounds (called syllables). Words like twinkle have two syllables: twin- and -kle whereas words such as star have just one. Some syllables are emphasized or stressed more than others so that they sound louder (such as TWIN- in twinkle), whereas others are unstressed and quieter (such as -kle in twinkle). Dictionaries will often show how to pronounce a word by separating it into syllables, the stressed parts shown in capital as we have done here, e.g. DIC-tion-ar-y to show it has 4 syllables with the first one only being stressed.
If we let S stand for a stressed syllable and s an unstressed one, then the stress-pattern of each line of the song or poem is its meter (rhythm). In the song above each line has the meter SsSsSsS.

In Sanskrit poetry syllables are are either long or short.
In English we notice this in some words but not generally - all the syllables in the song above take about the same length of time to say whether they are stressed or not, so all the lines take the same amount of time to say.
However cloudy sky has two words and three syllables CLOW-dee SKY, but the first and third syllables are stressed and take a longer to say then the other syllable.
Let's assume that long syllables take just twice as long to say as short ones.
So we can ask the question:

in Sanskrit poetry, if all lines take the same amount of time to say, what combinations of short (S) and long (L) syllables can we have?
This is just another puzzle of the same kind as on the Simple Fibonacci Puzzles page at this site.

For one time unit, we have only one short syllable to say: S = 1 way
For two time units, we can have two short or one long syllable: SS and L = 2 ways
For three units, we can have: SSS, SL or LS = 3 ways
Any guesses for lines of 4 time units? Four would seem reasonable - but wrong! It's five!
the general answer is that lines that take n time units to say can be formed in Fib(n) ways.

This was noticed by Acarya Hemacandra about 1150 AD or 70 years before Fibonacci published his first edition of Liber Abaci in 1202!

Article: Acarya Hemacandra and the (so-called) Fibonacci Numbers Int. J. of Mathematical Education vol 20 (1986) pages 28-30.

Virgil's Aeneid

Martin Gardner, in the chapter "Fibonacci and Lucas Numbers" in Mathematical Circus (Penguin books, 1979 or Mathematical Assoc. of America 1996) mentions Prof George Eckel Duckworth's book Structural patterns and proportions in Virgil's Aeneid : a study in mathematical composition (University of Michigan Press, 1962). Duckworth argues that Virgil consciously used Fibonacci numbers to structure his poetry and so did other Roman poets of the time.

1·61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ..More.. Calculator

Fibonacci and Music

Trudi H Garland's [see below] points out that on the 5-tone scale (the black notes on the piano), the 8-tone scale (the white notes on the piano) and the 13-notes scale (a complete octave in semitones, with the two notes an octave apart included). However, this is bending the truth a little, since to get both 8 and 13, we have to count the same note twice (C...C in both cases). Yes, it is called an octave, because we usually sing or play the 8th note which completes the cycle by repeating the starting note "an octave higher" and perhaps sounds more pleasing to the ear. But there are really only 12 different notes in our octave, not 13!

Various composers have used the Fibonacci numbers when composing music - more details in Garland's book.

Golden sections in Violin construction

The section on "The Violin" in The New Oxford Companion to Music, Volume 2, shows how Stradivari was aware of the golden section and used it to place the f-holes in his famous violins.

Baginsky's method of constructing violins is also based on golden sections.

Did Mozart use the Golden mean?

This is the title of an article in the American Scientist of March/April 1996 by Mike Kay. He reports on the analysis of many of Mozart's sonatas and finds they divide into two parts exactly at the golden section point in almost all cases. Was this a conscious choice (his sister said he was always playing with numbers and was fascinated by mathematics) or did he do this intuitively?

Article: The Mathematics Magazine Vol 68 No. 4, pages 275-282, October 1995 has an article by Putz on Mozart and the Golden section in his music.

Beethoven's Fifth

Article: In an interesting little article in Mathematics Teaching volume 84 in 1978, Derek Haylock writes about The Golden Section in Beethoven's Fifth on pages 56-57.
He finds that the famous opening "motto" appears not only in the first and last bars (bar 601 before the Coda) but also exactly at the golden mean point 0·618 of the way through the symphony (bar 372) and also at the start of the recapitulation which is phi or 0·382 of the way through the piece! He poses the question:
Was this by design or accident?

Bartók, Debussy, Schubert, Bach and Satie

There are some fascinating articles and books which explain how these composers may have deliberately used the golden section in their music:
Article: Duality and Synthesis in the Music of Bela Bartók
by E Lendvai on pages 174-193 of Module, Proportion, Symmetry, Rhythm G Kepes (editor), George Brazille, 1966;
Article: Some striking Proportions in the Music of Bela Bartók
in Fibonacci Quarterly Vol 9, part 5, 1971, pages 527-528 and 536-537.
Book: Bela Bartók: an analysis of his music
by Erno Lendvai, published by Kahn & Averill, 1971; has a more detailed look at Bartók's use of the golden mean.
Book: Debussy in Proportion - a musical analysis
by Roy Howat, Cambridge Univ. Press,1983, ISBN = 0 521 23282 1.
WWW: Concert pianist Roy Howat's Web site has more information on his Debussy in Proportion book and others works and links.
Article: Adams, Coutney S. Erik Satie and Golden Section Analysis.
in Music and Letters, Oxford University Press,ISSN 0227-4224, Volume 77, Number 2 (May 1996), pages 242-252
Book: Schubert Studies, (editor Brian Newbould) London: Ashgate Press, 1998
has a chapter Architecture as drama in late Schubert by Roy Howat, pages 168 - 192, about Schubert's golden sections in his late A major sonata (D.959).
Article: The Proportional Design of J.S. Bach's Two Italian Cantatas,
Tushaar Power, Musical Praxis, Vol.1, No.2. Autumn 1994, pp.35-46.
This is part of the author's Ph D Thesis J.S. Bach and the Divine Proportion presented at Duke University's Music Department in March 2000.
Article: Proportions in Music by Hugo Norden in Fibonacci Quarterly vol 2 (1964) pages 219-222
talks about the first fugue in J S Bach's The Art of Fugue and shows how both the Fibonacci and Lucas numbers appear in its organization.
Article: Per Nørgård's 'Canon' by Hugo Norden in Fibonacci Quarterly vol 14 (1976), pages 126-128 says the title piece is an "example of music based entirely and to the minutest detail on the Fibonacci Numbers".

WWW: There is a very useful set of mathematical links to Art and Music web resources from Mathematics Archives that is worth looking at.

The Golden String as Music

The Golden String is a fractal string of 0s and 1s that grows in a Fibonacci-like way as follows:
After the first two lines, all the others are made from the two latest lines in a similar way to each Fibonacci numbers being a sum of the two before it. Each string (list of 0s and 1s) here is a copy of the one above it followed by the one above that. The resulting infintely long string is the Golden String or Fibonacci Word or Rabbit Sequence. It is interesting to hear it in musical form and I give two ways in the section Hear the Golden sequence on that page. In that same section I mention the London based group Perfect Fifth who have used it in a piece called Fibonacci that you can hear online too .

Other Fibonacci and Phi related music

John Biles, a computer scientist at Rochester university in New York State used the series which is the number of sets of Fibonacci numbers whose sum is n to make a piece of music. He wrote about it and has a link to hear the piece online. The series looks like this:
It has some fractal properties in that the graph can be seen in sections, each beginning and ending when the graph dips down to lowest points on the y=1 line. Each section begins and ends with a copy of the section two before it (and moved up a bit), and in between them is a copy of the previous section again moved up.
I've written more about this series in a section called Sumthing about Fibonacci Numbers on the Fibonacci Bases and other ways of representing integers.

1·61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ..More.. Calculator

Miscellaneous, Amusing and Odd places to find Phi and the Fibonacci Numbers

TV Stations in Halifax, Canada

In Halifax, Nova Scotia, there are 4 non-cable TV channels and they are numbered 3, 5, 8 and 13! Prof. Karl Dilcher reported this coincidence at the Eighth International Conference on Fibonacci Numbers and their Applications in summer 1998.

Turku Power Station, Finland

Turku Joerg Wiegels of Duesseldorf told me that he was astonished to see the Fibonacci numbers glowing brightly in the night sky on a visit to Turku in Finland. The chimney of the Turku power station has the Fibonacci numbers on it in 2 metre high neon lights! It was the first commission of the Turku City Environmental Art Project in 1994. The artist, Mario Merz (Italy) calls it Fibonacci Sequence 1-55 and says "it is a metaphor of the human quest for order and harmony among chaos."

The picture here was taken by Dr. Ching-Kuang Shene of Michigan Technological University and is reproduced here with his kind permission from his page of photos of his Finland trip.

Designed in?

UniS credit cards visa,mcard logos Nat Geog logo fuel 90 bike KitKat
Click on the images to find out more in a new window

/ Things to do /

  1. What other logos can you find that are golden rectangles?
  2. Where else have you found the golden rectangle?
Email me with any answers to these questions and I'll try to include them on this page.

1·61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ..More.. Calculator

A Controversial Issue

There are many books and articles that say that the golden rectangle is the most pleasing shape and point out how it was used in the shapes of famous buildings, in the structure of some music and in the design of some famous works of art. Indeed, people such as Corbusier and Bartók have deliberately and consciously used the golden section in their designs.
However, the "most pleasing shape" idea is open to criticism. The golden section as a concept was studied by the Greek geometers several hundred years before Christ, as mentioned on earlier pages at this site, But the concept of it as a pleasing or beautiful shape only originated in the late 1800's and does not seem to have any written texts (ancient Greek, Egyptian or Babylonian) as supporting hard evidence.
At best, the golden section used in design is just one of several possible "theory of design" methods which help people structure what they are creating. At worst, some people have tried to elevate the golden section beyond what we can verify scientifically. Did the ancient Egyptians really use it as the main "number" for the shapes of the Pyramids? We do not know. Usually the shapes of such buildings are not truly square and perhaps, as with the pyramids and the Parthenon, parts of the buildings have been eroded or fallen into ruin and so we do not know what the original lengths were. Indeed, if you look at where I have drawn the lines on the Parthenon picture above, you can see that they can hardly be called precise so any measurements quoted by authors are fairly rough!

So this page has lots of speculative material on it and would make a good Project for a Science Fair perhaps, investigating if the golden section does account for some major design features in important works of art, whether architecture, paintings, sculpture, music or poetry. It's over to you on this one!

Article: George Markowsky's Misconceptions about the Golden ratio
in The College Mathematics Journal Vol 23, January 1992, pages 2-19 is an important article that points out the weaknesses in parts of "the golden-section is the most pleasing shape" theory.
This is readable and well presented. Perhaps too many people just take the (unsupportable?) remarks of others and incorporate them in their works? You may or may not agree with all that Markowsky says, but this is a good article which tries to debunk a simplistic and unscientific "cult" status being attached to Phi, seeing it where it really is not! This is not to deny that Phi certainly is genuinely present in much of botany and the mathematical reasons for this are explained on earlier pages at this site.
Article: How to Find the "Golden Number" without really trying
Roger Fischler, Fibonacci Quarterly, 1981, Vol 19, pages 406 - 410.
Another important paper that points out how taking measurements and averaging them will almost always produce an average near Phi. Case studies are data about the Great Pyramid of Cheops and the various theories propounded to explain its dimensions, the golden section in architecture, its use by Le Corbusier and Seurat and in the visual arts. He concludes that several of the works that purport to show Phi was used are, in fact, fallacious and "without any foundation whatever".
Article: The Fibonacci Drawing Board Design of the Great Pyramid of Gizeh Col. R S Beard in Fibonacci Quarterly vol 6, 1968, pages 85 - 87;
has three separate theories (only one of which involves the golden section) which agree quite well with the dimensions as measured in 1880.
Article: Golden Section(ism): From mathematics to the theory of art and musicology, Part 1, Dénes Nagy in Symmetry, Culture and Science, volume 7, number 4, 1996, pages 337-448
Section 2.1 says there are at least nine different theories about the shape of the Great Pyramid of Pharoah Khufu (the Great Pyramid of Cheops), two of which refer to the golden section:
The angle of the slope of the faces is
  • the angle whose cosine is 0·618... which is about 51·82°
  • the angle whose tangent is twice 0·618... which is about 51·027°
although a better fit is provided by a mathematical problem in the Rhind Papyrus which, in our notation is
  • the angle whose tangent is 28/22 which is about 51·84°
All of the material at this site is about Mathematics so this page is definitely the odd one out! All the other material is scientifically (mathematically) verifiable and this page (and the final part of the Links page) is the only speculative material on these Fibonacci and Phi pages.

References and Links on the golden section in Music and Art

Book: a book
article: an article in a magazine or
a paper in an academic journal
WWW: a website


Book: Fascinating Fibonaccis by Trudi Hammel Garland,
Dale Seymours publications, 1987 is an excellent introduction to the Fibonacci series with lots of useful ideas for the classroom. Includes a section on Music.
Article: An example of Fibonacci Numbers used to Generate Rhythmic Values in Modern Music
in Fibonacci Quarterly Vol 9, part 4, 1971, pages 423-426;

Links to other Music Web sites

Gamelan music
WWW: Gamelan
is the percussion oriented music of Indonesia. The American Gamelan Institute has lots of information including a Gongcast recorded online music so you can hear Gamelan music for yourself.
WWW: New music
from David Canright of the Maths Dept at the Naval Postgraduate School in Monterey, USA; combining the Fibonacci series with Indonesian Gamelan musical forms.
WWW: Some CDs
on Gamelan music of Central Java (the country not the software!).
Other music
WWW: Martin Morgenstern has a large and interesting list of books and articles on the golden section and music with abstracts, some of which is in German.
WWW: The Fibonacci Sequence
is the name of a classical music ensemble of internationally famous soloists, who are the musicians in residence at Kingston University (Kingston-upon-Thames, Surrey, UK). Based in the London (UK) area, their current programme of events is on the Web site link above.
WWW: Casey Mongoven is a composer who has used Fibonacci numbers and golden sections in his own musical compositions. You can hear them and read more on his web site. Casey has an impressively large collection of pieces, most of them a few seconds only in length but they are fascinating to listen to and very different from conventional music. The pitches of his notes are often based on powers of Phi and their order is fixed by a number sequence, such as the Fibonacci numbers, or R(n) - the number of Fibonacci representations of n or on many other sequences that are described here on my Fibonacci site.
His scores too are images that illustrate many of the series you will have seen here. You can experiment for yourself with the Fibonacci Sequence Visualiser that was designed specifically for Casey's works.
WWW: Ted Froberg explains how he used the Fibonacci numbers "mod 7" (that is the remainders when we divide each Fibonacci number by 7) to make a "theme" which he then harmonizes and has made into a Fibonacci waltz.
Book: A Mathematical History of the Golden Number by Roger Herz-Fischler, Dover 1998, ISBN 0486400077. A scholarly study of all major references in an attempt to trace the earliest references to the "golden section", its names, etc.
Book: Education through Art (3rd edition) H Read,
Pantheon books,1956, pages 14-22;
Book: The New Landscape in Art and Science G Kepes
P Theobald and Co, 1956, pages 329 and 294;
Book: H E Huntley's, The Divine Proportion: A study in mathematical beauty,
is a 1970 Dover reprint of an old classic.
Book: C. F. Linn, The Golden Mean: Mathematics and the Fine Arts,
Doubleday 1974.
Book: Gyorgy Doczi, The Power of Limits: Proportional Harmonies in Nature, Art, and Architecture
Shambala Press, (new edition 1994).
Book: M. Boles, The Golden Relationship: Art, Math, Nature, 2nd ed.,
Pythagorean Press 1987.

Valid HTML 4.01! © 1996-2006 Dr Ron Knott email
updated 17 May 2006