
An Evolutionary Approach to Automatic Video Editing

Tinghuai Wang, Andrew Mansfield, Rui Hu, John P. Collomosse
Centre for Vision, Speech and Signal Processing

University of Surrey
Guildford, UK

{tinghuai.wang, r.hu, j.collomosse}@surrey.ac.uk

Abstract—Digital video has become affordable and attractive
to home users, but skill and manual labour are still requiredto
transform amateur footage into aesthetically pleasing movies.
We present a novel algorithm for transforming raw home video
footage into concise, temporally salient clips. We interpret the
sequence of editting operations applied to footage as a ‘pro-
gram’ comprising cutting, panning and zooming constructs.
We develop a Genetic Programming (GP) framework for rep-
resenting and evolving such programs. Under this framework,
the search for an aesthetically pleasing video edit becomesa
search for the optimal genetic program. Our aesthetic criterion
promotes the inclusion of people in shots, whilst penalising
rapid shot changes or shot changes in the presence of camera
motion. We present results on some representative home videos.

Keywords-genetic programming, consumer video, editting.

I. I NTRODUCTION

Falling hardware costs have prompted an explosion in
casual digital video capture by domestic users. However,
once captured, this video is infrequently accessed and often
lies dormant on the user’s hard disk. One explanation is
that raw home video requires substantial editting to be
comparable, in terms of aesthetics and succinctness, with
professional footage. For example, amateur home videos
often contain lurching pans as the camera operator switches
subject, and subjects often suffer from poor framing. This
can lead to videos that are not enjoyable to watch, despite
the periods of interest within them.

We present an algorithm to breathe life into users’ video
repositories by editting raw video footage into salient, aes-
thetically pleasing clips. We are concerned with three types
of editting operation:

• Cut – frames are removed to shorten the video.
• Zoom – frames are spatially cropped to focus attention.
• Pan – view-port moves to follow a subject.

These operations may be applied to source video, with ap-
propriate parameters and in a specific sequence, to produce
an editted video. We interpret this sequence of operations
as aprogram, and state finding the “best” program under
some aesthetic criterion (Sec. III) to be equivalent to finding
an optimal edit sequence for a particular home video. We
contribute both a novel representation for such programs,
and a novel method for searching the space of programs
using a Genetic Programming (GP) framework.

GP is an evolutionary optimization method [1]. Similar
to the more common Genetic Algorithm (GA), GP creates a
population of putative solutions (individuals) and “breeds”
the best individuals together to produce successively im-
proved generations of solutions [2]. With GP, however,
the solutions are parse trees (programs) rather than points
in a fixed-dimensional search space. GP is well suited
to the problem of video editting, since the number and
order of editting operations may vary greatly between video
sequences. Furthermore, evolutionary algorithms such as
GP are well suited to large search spaces in which the
combination of distinct yet locally optimal solutions (e.g.
partial video edits) are likely to yield globally preferable
solutions. To the best of our knowledge, GP has not been
previously applied to the automated editting of home videos.

Section II outlines our GP representation of an edit
sequence. Our optimization process and aesthetic measure
are described in Section III. We present and discuss the
results of applying our algorithm to representative home
videos in Section IV, concluding in Section V.

A. Related Work

Automated video editing is closely related to research on
video summarisation, which has gained momentum in recent
years. Many such algorithms rely on shot detection to extract
representative key-frames from video [3]. Such techniques
are well suited to movies exhibiting frequent cuts between
shots, but are ill-suited to home videos (typically captured
as a single lengthy shot). An alternative is [4] who model
video as a trajectory through a high-dimensional appearance
space, cutting key frames at points of high curvature.

Techniques that summarise video into shorter videos by
‘cutting’ frames have been proposed. Lienhart defines a
visual quality metric, creating an automatic digest of home
videos by selecting portions of video with good quality and
inserting transition effects [5]. Girgensohnet al.’s semi-
automatic “Hitchcock” system [6], [7] is similar to [5], but
defines quality in terms of camera stability; we incorporate
a similar cue in our work. Huaet al. propose an automatic
video editing system that seeks to cut video to synchronise
motion in selected sub-shots with music tempos [8]. Atten-
tion models for video summarization were studied in [9],
[10], integrating visual, auditory, and linguistic cues.



(a)

0.6

0.0 1.0

0.66

1.00.0

OUTPUT

TAKESPLIT

TAKE DISCARD

SPLIT

=

0.66

0.6

(b)
s s s e e e s s s e e e

OUTPUT

Intra−fragmentIntra−fragment Inter−fragment

INTERPOLATION

End Window Start Window End WindowStart Window

SPLIT

σ σx y x y σ σx y x y

TAKETAKE

=

... ...

Figure 1. Representation for video editting. (a) cutting; the “split”, “take” (detail omitted) and “discard” operators are used to create an editted video
comprising frames 1,2,4,5. (b) pan/zoom; the “take” operator specifies a start and end crop window for each video fragment. When fragments are
concatenated, interpolation of window parameters is performed by “split”.

Most recently researchers have looked beyond cutting, to
the framing of video content (e.g. zooming/cropping). Al-
Hameset al. controlled multiple cameras to select and zoom-
in on meeting participants to “direct” a live video stream of
a meeting [11]. Hospedales and Williams recently explored
Bayesian networks to learn director preferences for similar
real-time editting of streamed video [12]. Such techniques
necessarily make temporally local editting decisions. Our
GP approach performs global optimization over all frames
of a pre-captured video.

II. REPRESENTATION OFV IDEO EDITS

We represent an editting sequence as a program, specif-
ically as a parse tree in which nodes act as operators that
either manipulate or combine video fragments to form the
output clip. In this section we develop our tree representa-
tion.

A. Cutting

We begin by considering the basic cut operation, in
which frames are removed from a video sequence in or-
der to enhance its interest or aesthetic appeal. Under our
tree representation, non-terminal nodes in the tree act as
“split” operators that divide a video fragment into two sub-
parts, passing the resulting fragments to their children. The
point of division is governed by an operand on the node
[0,1] representing the normalised length of the input video
fragment. Thussplit has three children; a childconstant
node specifying the real-valued division point, and two child
operator nodes. Video fragments may be divided recursively
by further non-terminalsplit nodes. Terminal nodes may
then either “discard” a fragment, or “take” it i.e. incorporate
it in the output sequence. The final editted video sequence is
obtained via in-order traversal of the parse tree, appending
video fragments astake nodes are encountered. We find

linked lists of frames to be an appropriate data structure
for managing fragments.

The split, take and discard operators form a basic edit-
ing system with cutting functionality. Fig. 1a provides an
illustrative example of a terminal set comprisingsplit, take
anddiscard operators. It is easy to prove the sufficiency of
this representation. Taking an unedited sequence of arbitrary
length we can, by creating a tree comprising the right
arrangement ofsplit nodes, split the sequence into its indi-
vidual constituent frames. We can then create any possible
output sequence by applyingtake anddiscard operators.

B. Panning and Zooming

In addition to cutting (temporal cropping) we enable a
degree of freedom in the framing of video content through
a spatial cropping mechanism. The effect of the cropping
mechanism is to define a window around a portion of the
frame, and then to scale that region to full frame size
when outputting the editted video. When the window is
appropriately positioned, this has the effect of “zooming”
in on interesting content (e.g. a person) and so improving
the framing of the scene.

We implement this operation by modifying thetake ter-
minal operator defined above. By specifying the cropping
window as operand on thetake node, we are able to
specify the region of interest for cropping over each video
fragment incorporated into the final editted video. Absence
of cropping becomes a degenerate case; the crop window
is simply positioned over the entire frame. To avoid visual
artifacts we constrain the aspect ratio of the window to
match the frame. The window’s position is thus defined by
operand[x, y, σ]; centre(x, y) and a uniform scale factorσ.
Specifying the cropping window geometry in this manner
also reduces our search space.

Although camera pans are technically achievable by split-
ting video into individual frames, and carefully specifying



crop windows, this is not practically achievable by our
GP optimization. Instead, we explicitly incorporate camera
“panning” through an extension of the cropping mecha-
nism. We extend thetake operator again, to now have
two operands: a crop window at the starting frame, and a
crop window at the ending frame of the fragment. When
outputting the final editting video, the window parameters
are linearly interpolated between the start and end frames of
each video fragment. Cropping thus becomes a degenerate
case of panning, where the start and end cropping windows
are identical. Thetake terminal node thus has six constant
node operands[xs, ys, σs, xe, ye, σe], where subscriptss
and e indicate start and end frame respectively. As with
the division point on thesplit non-terminal operator, these
parameters are represented by normalised constant terminal
nodes. Parameters(x, y) are normalised to frame width and
height, whileσ is normalised to range from half frame size
(0) to full frame size (1). Figure 1b gives an illustrative
example.

C. Concatenation of Video Fragments

Optimizations frequently result in parse trees that split
video into many small fragments, with similar but slightly
different cropping windows. This can result in a distracting
flicker and instability in the final video. To mitigate against
this, we perform some interpolation on window parameters
when video fragments are concatenated by thesplit non-
terminal operator.

Suppose two fragmentsF1, F2, of durationst1, t2, and
with window parametersω1 = [xs, ys, σs, xe, ye, σe] and
ω2 = [us, vs, τs, ue, ve, τe] are to be concatenated. A
straightforward approach is to replace the end and start
windows of F1 and F2 respectively with an interpolated
window ωI :

ωI =
t1

t1 + t2
(ω2 − ω1) +

t2

t1 + t2
ω2. (1)

However, when a substantialdiscard has been made be-
tween fragments, it may be more appropriate to permit a
discontinuity in the window geometry i.e. leavingω1 and
ω2 unmodified.

Our solution is to update the windows using a weight
derived from the temporal distanced between the start and
end ofF2 andF1 respectively:

ω1 ← ω1 + e−kd(ωI − ω1)

ω2 ← ω2 + e−kd(ωI − ω2) (2)

wherek = 0.5 provides interpolation over cuts up tod ≤ 10
frames (i.e.∼ 1

2 second duration).

III. G ENETIC SEARCH FOR ANOPTIMAL EDIT

We first describe the fitness function by which we measure
the aesthetics of a video edit, and then provide the specifics
of our GP optimization process.

Figure 2. Video meta-data is extracted as a pre-process; we measure
interest through detection of people (left), and inter-frame motion via optical
flow (right). ResultV 4 (Sec. IV-B)

A. Fitness of a Video Edit

Our fitness measure for a putative video edit seeks to
estimate both the level of interest, and the aesthetics of the
editted output video.

Our fitness function incorporates two terms for measuring
interest; the total captured interest and the average interest
captured over selected frames. The first term promotes com-
pleteness of interests selected from the raw video footage,
while the second term promotes removal of “interest sparse”
frames to produce feature rich video. The second term also
encourages subjects of interest to be framed such that they
occupy most of the scene. With respect to aesthetics, Arijon
[13] notes that frequent short-term cuts within a sequence
are unpleasant for the viewer. In some situations such cuts
are appropriate, e.g. fast action shots, but these are too
specific for general home video editting. Scene and camera
motion should also be minimal at the points where shot
boundaries are introduced. To incorporate these preferences,
we introduce penalty terms for short cut sequences or cuts
made in the presence of large-scale motion.

In line with these heuristics, we specify the following
fitness function over all frames{E1, E2, ..., EN} included
in the editted video:

F(E) =
PSC

N

N
∑

i=1

(

w1 · CI(Ei) + w2 ·
CI(Ei)

N

)

·e−γM(Ei)

(3)
Where CI(.) is a normalised operator evaluating the

captured interest within a frame (subsection III-A1).M(.)
is a sum of the optical flow vector magnitudes within a
frame (Figure 2, right).SC(.) is a count of the number
of short fragments within the editted sequence (below1

2
second), and constitutes a penalty term on short clips when
0 ≤ P < 1. The pairs of parametersP, γ and w1,2 are
weights on the aesthetics and interest terms respectively,
and may be adjusted to user preference. The latter weights
are empirically selected to find the trade-off between the
completeness and richness of captured interests. We give
typical values with results in Section IV.

1) Captured Interest: Home video is predominantly used
to capture life events, and people (e.g. friends and family)
are frequently the objects of interest in such footage. In our



system we correlate interest with the presence of people in a
shot. Specifically, the greater the viewing area occupied by
images of people, the more “interesting” and thus optimal
our video is deemed to be. Person detection can be achieved
in a number of ways, such as human face detection [14]
and upper-body detection [15]. We opt for the latter, since
face detection systems tend to perform poorly over the wide
variations in pose, scale and lighting typical in home movies.
Figure 2 (left) shows application of a popular cascade based
person detector [15] to typical source footage. We obtain
our value forCI(.) by averaging the probabilities of pixels
belonging to a person over the cropped window within the
editting frame.

More sophisticated definitions of interest exist — for
example considering temporal [16] and auditory [9] cues,
or even models of linguistic semantics [10]. Although
other normalised measures might be substituted, we find
our measure suitable for the domain of home video. Our
method also has the advantage thatCI(.) and M(.) may
be efficiently pre-computed by finding bounding regions
for people in each frame of video, and intersecting those
polygons with the cropping window to obtain the area of
overlap during optimization. However we emphasise that our
technical contribution is not in the interest measureper se,
but rather in demonstrating the feasibility of a GP framework
for identifying optimal video edits.

B. GP Optimization

Ideally a GP operator set should fulfil three criteria
identified in [17]. First, any operator should return a valueon
any input, called evaluation safety. Second, the operator set
should be sufficient; it should have enough expressive power
to generate any possible solution to the problem. Third, the
operators should be type consistent, i.e., return values of
the same type so as they can be freely interchangeable in
breeding.

Criteria one and two are satisfied (Section II) however
our constant terminal nodes return a different type (ℜ) to
that of the non-constant terminal and non-terminal nodes
(video). This breaks the third condition of “type unity”.
Koza et al. suggest use of aconstrained semantic structure
in such cases; effectively performing separate cross-over
and mutation for constant and non-constant nodes [18]. We
follow this strategy in subsection III-B3.

An overview of the optimization is shown as a flowchart
in Fig. 3. We begin by randomly generating a large set of
programs (or “individuals”, collectively referred to as the
“population”). Each individual represents a putative solution,
in the form of our edit tree representation (Section II). GP is
an iterative process, in which pairs of individuals are selected
from each generation stochastically — with a bias to fitness
— and combined via a breeding process of “cross-over” and
“mutation” to create a population for the next generation.
Thus at each iteration, the fitness of all individuals in the

Pre−compute
video metadata

Population
Generate Initial

Solutions
Evaluate Edit

Significant
improvement over
past generations?

next generation?

Enough
members for

No

Yes

Render video for

next generation
Top 1% pass to

rand() > 0.05?

solution
Generate random Stochastically

Add to next
generation

Yes No

(breed tree)
Cross−over

Perform tree
mutation

pick 2 parents

Yes

No

best solution

Figure 3. Schematic of the GP optimization algorithm.

population must be evaluated using eq. (3) to enable fitness-
proportionate selection. Optimization can be halted when
maximum fitness within the population shows negligible
improvement over several successive generations.

1) Initialization: Individuals within the first generation
are initialised independently and randomly. In our exper-
iments we use a generation size of 500. An individual’s
parse tree is constructed recursively by picking a node
from the set of possible operators{take, discard, split}.
Operators requiring constant operands will have appropriate
child nodes created. In the case of a non-terminal operator
being picked, further operators must be generated for the
remaining child operands. The process recurses in a depth
first manner until a terminal operator is generated. When
choosing an operator for a non-constant node, the decision
on type of node is made stochastically according to depth of
recursion. Non-terminal nodes are less likely to be generated
at deeper points on the tree. When generating a constant
node, a value is picked uniformly at random, in range[0, 1]
as all operands are normalised by design (Section II).

2) Elitism: At each iteration, the top∼ 1% fittest in-
dividuals pass through directly to the next generation. To



Figure 4. Illustrating the breeding process. GP crossover;parent trees are traversed depth-first. Corresponding nodes and their subtrees may be exchanged.
Constant node operands are carried with their operators. GPmutation; non-constant nodes and their subtrees are replaced, with low probability. The value
of constant nodes are subjected to mild Gaussian noise.

maintain population diversity,∼ 5% of the next generation is
reinitialised at random. The remainder of the next generation
is bred from the current, using the processes of cross-over
and mutation.

3) Cross-over: Cross-over is the mechanism by which
elements of parent individuals are mixed to produce off-
springs for the next generation. In GP this is achieved by
constructing two new parse trees using portions of the parent
parse trees.

Given two parentsA andB we create two new individuals
N1 andN2, initially by duplicatingA andB. We then tra-
verseN1 in a depth-first manner, simultaneously traversing
N2 to create a one-one correspondence between nodes in
N1 and N2. Where such a correspondence is possible (i.e.
moves are possible from a parent node to a child node in
both trees), we may swap the node and subtree below it
in N1 with the corresponding node and its subtree inN2.
The swap is made with probability 0.2 in our experiments.
Figure 4 illustrates the process.

As our representation lacks type unity, evaluation prob-
lems will be encountered if constant nodes are substituted
with non-constant nodes during swapping. Thus when a
child node is swapped, its constant nodes are carried from
the source to the destination tree in situ (as if logically
part of the child node). Any non-constant operands are then
recursively descended and swapped stochastically as before.

Mutation introduces diversity into the population, en-
abling exploration of the solution space. Again, due to
the lack of type unity we must mutate constant and non-
constant nodes using a separate mechanism. In the case of
constant nodes, we iterate through nodes inN1 and N2

adding Gaussian noise to the real value assigned to each
constant node encountered. The mean of the noise is the
node’s pre-mutation value, with a small standard deviation
(0.5) in our experiments. In the case of non-constant nodes,

we iterate through nodes inN1 and N2, and will generate
an entirely new subtree for a node (using the method of
subsection III-B1). Figure 4 illustrates this process. The
probability of making such a mutation is 0.1 for all our
experiments.

IV. RESULTS AND DISCUSSION

To evaluate the video editing system, we captured home
videos covering a variety of events. Here we present the
results of five videos(V 1 − V 5)1. In V 1, V 2 we disabled
our zooming/panning mechanism to show the effects of
the cutting operator alone. InV 3 − V 5 the full system is
evaluated.

A. Cutting Only

Figure 5 depicts frames from our source videos, regularly
sampled along a time-line running left-right. The presence
of blue below the time-line indicates detection of interests
(people), and red indicates portions of the source video time-
line that were selected and concatenated to create the editted
output.

The V 1 and V 2 source footage depicts family members
at the park. InV 1 the cameraman periodically becomes
distracted and points the camera at the floor or at un-
interesting objects. The system has identified contiguous
blocks of interest in the video, and cut three sections of
the source time-line for concatenation into the final editted
video. Virtually all of the interest is captured in a minimal
number of cuts. InV 2 cuts have been made not only to
maximise the density of interest in the clip, but also to
prohibit rapid cutting in frames where detection of people
is intermittent. This is frequently the case using [15] when
people’s backs are turned to the camera, or are of small

1The source and editted videos are included in the supplementary
material



50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18
x 10

8

Generation

M
ax

im
um

 P
op

ul
at

io
n 

F
itn

es
s

 

 video #1
video #2
video #3
video #4
video #5

Figure 6. Optimization results for videosV 1 − V 5, plotting maximum
fitness in each generation.

50 100 150 200 250 300
0

2

4

6

8

10

x 10
8

Generation

P
op

ul
at

io
n 

F
itn

es
s 

S
td

. D
ev

.

 

 video #1
video #2
video #3
video #4
video #5

Figure 7. Optimization results for videosV 1 − V 5, plotting standard
deviation (fitness diversity) for each generation.

scale. For these results, system parameters were set such
that the ratiow1 : w2 was1 : 10, P = 0.99, andγ = 10−5.
Figures 6,7 show convergence with negligible change in
population fitness or diversity after∼ 20 iterations.

B. Cutting, Zooming and Panning

For videosV 3− V 5 we re-enabled the zooming/panning
mechanism to run the system with full functionality. Figure5
shows the cuts made in the source video to isolate “inter-
esting” parts of the time-line. Again, source video frames
exhibiting a negligible or intermittent response from the
interest detector have been cut. Figure 5 also shows the
position of the cropping window (red box) within frames.
Footage within the window is scaled to create the rendered
output footage shown in Figure 8. In the cases ofV 3 and
V 4, a crop window is created around the main subject which
pans to follow the movement of the subject in the video.
In the case ofV 5 a cropping window is also introduced
to zoom in and improve framing of the subject; however

Figure 8. Final editted clip results from footageV 3 − V 5. Upper strip:
Blue box indicates interest detection, red box indicates cropping window.
Lower strip: Footage is rendered from within the red window to output the
final clip.

since the camera is already panning to follow the subject, no
additional panning is introduced. For these results, system
parameters were set as in subsection IV-A, but with ratio
w1 : w2 set to 1 : 100. Figures 6,7 again show quick
convergence, with negligible change in population fitness or
diversity after∼ 50 iterations. For our experiments we ran
the optimizations up to 1500 generations (300 are shown).

V. CONCLUSION

We have presented a novel tree representation for home
video editting, suitable for use in a Genetic Programming
(GP) optimization framework. Our representation incorpo-
rates cutting, zooming and panning operations. Uniquely,
we search for a globally optimal video edit using GP,
maximising both aesthetics and interest within the final
clip. Our measures for aesthetics are grounded in common
directing practice, and our measure for interest is based on
the presence of people; the most common subject of interest
for home videos.

We have demonstrated the efficacy of our approach over
some representative examples of home video footage. Our
system quickly converges to an acceptable edit sequence,
requiring∼ 50 generations / minute of source video. To cap-
ture the subjectivity of video aesthetic, our fitness function
is governed by user parameters weighting desire for objects
of interest against frequency of cuts, and motion. The short
optimization times enable user experimentation to taste.

This paper has focused on GP optimization as a means
for generating edit decisions. It has not explored the vi-
sual rendering of those edits. Transition effects might be



Figure 5. Evaluating our system over videos (V 1 − V 5), from top to bottom. ForV 1 and V 2 we disabled zooming/panning. A time-line (in frames)
runs from left to right, annotated in blue to show presence ofinterest, and in red to show segments of video selected for output by our editting process.
Frames have been sampled from the source video at regular intervals; the blue box indicates the areas of interest detected. In the case ofV 3 − V 5 the
red box shows the cropping window.



introduced e.g. cross-fades when cutting. Future work may
explore alternative cropping operators, for example seam-
carving, to accomodate multiple disjoint regions of interest
within a frame.

Although our fitness measure lacks the sophistication
of [9], [10], we find it suitable for demonstrating value
in our GP editting framework, and for the purposes of
general home video editting. Extensions to this measure are
a possible route for future work. A higher level temporal
constraint (e.g. preferring alternating cuts between subjects
during dialogue) might further enhance the aesthetic terms
within fitness function. However, within a subject domain as
broad as home video, care should be taken to draw a sensible
compromise between the complexity of editting heuristics
and the generality of footage that may be processed.

ACKNOWLEDGEMENT

We are grateful to HP Labs Bristol for funding this re-
search under HP’s IRP programme. Thanks to David Slatter,
Phil Cheatle and Darryl Greig for fruitful discussions.

REFERENCES

[1] J. Koza, “Genetic programming: A paradigm for genetically
breeding populations of computer programs to solve prob-
lems,” in Stanford University Computer Science Department
technical report STAN-CS-90-1314, 1990.

[2] D. Goldberg,Genetic Algorithms in Search Optimization and
Machine Learning. Addison-Wesley, 1989.

[3] A. Nagasaka and Y. Tanaka, “Automatic video indexing and
full-video search for object appearances,” inProc. VDB, 1991,
pp. 113–127.

[4] D. DeMenthon, V. Kobla, and D. Doermann, “Video summa-
rization by curve simplification,” inACM Multimedia. New
York, NY, USA: ACM, 1998, pp. 211–218.

[5] R. Lienhart, “Abstracting home video automatically,” in ACM
Multimedia. New York, NY, USA: ACM, 1999, pp. 37–40.

[6] A. Girgensohn, J. Boreczky, P. Chiu, J. Doherty, J. Foote,
G. Golovchinsky, S. Uchihashi, and L. Wilcox, “A semi-
automatic approach to home video editing,” inUIST ’00:
Proceedings of the 13th annual ACM symposium on User
interface software and technology. New York, NY, USA:
ACM, 2000, pp. 81–89.

[7] A. Girgensohn, S. Bly, F. Shipman, J. Boreczky, and L. Wilcox,
“Home video editing made easy balancing automation and
user control,” inIn Human-Computer Interaction INTERACT
’01. IOS. Press, 2001, pp. 464–471.

[8] X. Hua, L. Lu, and H. Zhang, “Optimization-based automated
home video editing system,”IEEE Trans. Circuits Syst. Video
Techn., vol. 14, no. 5, pp. 572–583, 2004.

[9] Y. Ma, L. Lu, H. Zhang, and M. Li, “A user attention model
for video summarization,” inACM Multimedia. New York,
NY, USA: ACM, 2002, pp. 533–542.

[10] T. Mei, X. Hua, H. Zhou, and S. Li, “Modeling and mining of
users’ capture intention for home videos,”IEEE Transactions
on Multimedia, vol. 9, no. 1, pp. 66–77, 2007.

[11] M. Al-Hames, B. Hornler, R. Muller, J. Schenk, and
G. Rigoll, “Automatic multi-modal meeting camera selection
for video-conferences and meeting browsers,” inProc. ICME,
2007, pp. 2074–2077.

[12] T. Hospedales and O. Williams, “An adaptive machine di-
rector,” in Proc. British Machine Vision Conference (BMVC),
2008.

[13] D. Arijon, Grammar of the Film Language. Silman-James
Press, 1991.

[14] P. Viola and M. Jones, “Robust real-time face detection,” Int.
J. Comput. Vision, vol. 57, no. 2, pp. 137–154, 2004.

[15] V. Ferrari, M. Marin-Jiminez, , and A. Zisserman, “Progres-
sive search space reduction for human pose estimation,” in
Proc. CVPR. IEEE, June 2008, pp. 1–8.

[16] R. Oami, A. Benitez, S. Chang, and N. Dimitrova, “Under-
standing and modeling user interests in consumer videos,” in
Proc. ICME, 2004, pp. 1475–1478.

[17] R. Poli, W. Langdon, and N. McPhee,A Field Guide to
Genetic Programming. Lulu, 2008.

[18] J. Koza and R. Poli,Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques.
Springer, 2005.


