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Abstract—Digital video has become affordable and attractive GP is an evolutionary optimization method [1]. Similar
to home users, but skill and manual labour are still requiredto to the more common Genetic Algorithm (GA), GP creates a
transform amateur footage into aesthetically pleasing maes. population of putative solutions (individuals) and “breéd

We present a novel algorithm for transforming raw home video the best individuals t ther t d vely i
footage into concise, temporally salient clips. We interpst the € best individuals together 10 produce successively Im-

sequence of editting operations applied to footage as a ‘pro  Proved generations of solutions [2]. With GP, however,
gram’ comprising cutting, panning and zooming constructs. the solutions are parse trees (programs) rather than points
We develop a Genetic Programming (GP) framework for rep-  in a fixed-dimensional search space. GP is well suited
resenting and evolving such programs. Under this framework to the problem of video editting, since the number and

the search for an aesthetically pleasing video edit becomes d f editti fi tv betw id
search for the optimal genetic program. Our aesthetic critgion oraer of editing operations may vary greatly between viaeo

promotes the inclusion of people in shots, whilst penalisjp ~ Se€quences. Furthermore, evolutionary algorithms such as
rapid shot changes or shot changes in the presence of camera GP are well suited to large search spaces in which the

motion. We present results on some representative home vids. combination of distinct yet locally optimal solutions (e.g

Keywords-genetic programming, consumer video, editting. partial video edits) are likely to yield globally preferabl
solutions. To the best of our knowledge, GP has not been
|. INTRODUCTION previously applied to the automated editting of home videos

. .. Section Il outlines our GP representation of an edit

Falling hardware costs have prompted an explosion in N .

- . . sequence. Our optimization process and aesthetic measure

casual digital video capture by domestic users. However, . . : :

N L are described in Section Ill. We present and discuss the

once captured, this video is infrequently accessed and ofte : : .

X , . .~ Tresults of applying our algorithm to representative home

lies dormant on the user’'s hard disk. One explanation is . . . L ;

i . . o videos in Section 1V, concluding in Section V.

that raw home video requires substantial editting to be

comparable, in terms of aesthetics and succinctness, witRh, Related Work
professional footage. For example, amateur home videos Automated video editing is closely related to research on

oftgn contain Iurc-hing pans as the camera operato_r SWitCh?ﬁdeo summarisation, which has gained momentum in recent
SUbJ?Ct’ datnd ;(;ijecttﬁ (t)ften su{fer fromblp otor fralt”nlhnga Th'i ears. Many such algorithms rely on shot detection to ektrac
can iead 10 vigeos that areé not enjoyable fo waich, despl epresentative key-frames from video [3]. Such techniques

th::‘Npenods 0{ mterlest }ivr:thwt] tTJem'th life int ' vid are well suited to movies exhibiting frequent cuts between
¢ present an aigonthm to breathe e Into USErs ViA€ogy, o5 bt are ill-suited to home videos (typically capdure
repositories by editting raw video footage into saliens-ae

X : ) ) as a single lengthy shot). An alternative is [4] who model
thetically pleasing clips. We are concerned with three $YPe\ideo as a trajectory through a high-dimensional appearanc
of editting operation:

space, cutting key frames at points of high curvature.

« Cut —frames are removed to shorten the video. Techniques that summarise video into shorter videos by
« Zoom —frames are spatially cropped to focus attention..cytting’ frames have been proposed. Lienhart defines a
« Pan —view-port moves to follow a subject. visual quality metric, creating an automatic digest of home

These operations may be applied to source video, with apsideos by selecting portions of video with good quality and
propriate parameters and in a specific sequence, to produasserting transition effects [5]. Girgensolat al.'s semi-
an editted video. We interpret this sequence of operationsautomatic “Hitchcock” system [6], [7] is similar to [5], but
as aprogram, and state finding the “best” program under defines quality in terms of camera stability; we incorporate
some aesthetic criterion (Sec. Ill) to be equivalent to figdi a similar cue in our work. Huat al. propose an automatic
an optimal edit sequence for a particular home video. Wevideo editing system that seeks to cut video to synchronise
contribute both a novel representation for such programanotion in selected sub-shots with music tempos [8]. Atten-
and a novel method for searching the space of programon models for video summarization were studied in [9],
using a Genetic Programming (GP) framework. [10], integrating visual, auditory, and linguistic cues.
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Figure 1. Representation for video editting. (a) cuttirtgg tsplit”, “take” (detail omitted) and “discard” operatiare used to create an editted video
comprising frames 1,2,4,5. (b) pan/zoom; the “take” operatpecifies a start and end crop window for each video fragmathen fragments are
concatenated, interpolation of window parameters is peréd by “split”.

Most recently researchers have looked beyond cutting, ttinked lists of frames to be an appropriate data structure
the framing of video content (e.g. zooming/cropping). Al- for managing fragments.
Hameset al. controlled multiple cameras to select and zoom- The split, take and discard operators form a basic edit-
in on meeting participants to “direct” a live video stream of ing system with cutting functionality. Fig. 1a provides an
a meeting [11]. Hospedales and Williams recently exploredllustrative example of a terminal set comprisiggit, take
Bayesian networks to learn director preferences for similaanddiscard operators. It is easy to prove the sufficiency of
real-time editting of streamed video [12]. Such techniqueghis representation. Taking an unedited sequence of arpitr
necessarily make temporally local editting decisions. Oulength we can, by creating a tree comprising the right
GP approach performs global optimization over all framesarrangement o$plit nodes, split the sequence into its indi-
of a pre-captured video. vidual constituent frames. We can then create any possible

output sequence by applyirigke anddiscard operators.

Il. REPRESENTATION OFVIDEO EDITS . .
B. Panning and Zooming

~ We represent an editting sequence as a program, Specif-|, aqgition to cutting (temporal cropping) we enable a
ically as a parse tree in which nodes act as operators th@itegree of freedom in the framing of video content through
either mz_;lnlpulatg or co_mbme video fragments to form the, spatial cropping mechanism. The effect of the cropping
qutput clip. In this section we develop our tree representaz, . hanism is to define a window around a portion of the
tion. frame, and then to scale that region to full frame size
_ when outputting the editted video. When the window is
A Cutting appropriately positioned, this has the effect of “zooming”
We begin by considering the basic cut operation, inin on interesting content (e.g. a person) and so improving
which frames are removed from a video sequence in orthe framing of the scene.
der to enhance its interest or aesthetic appeal. Under our We implement this operation by modifying thake ter-
tree representation, non-terminal nodes in the tree act awinal operator defined above. By specifying the cropping
“gplit” operators that divide a video fragment into two sub-window as operand on théake node, we are able to
parts, passing the resulting fragments to their childrére T specify the region of interest for cropping over each video
point of division is governed by an operand on the noderagment incorporated into the final editted video. Absence
[0,1] representing the normalised length of the input videoof cropping becomes a degenerate case; the crop window
fragment. Thussplit has three children; a childonstant  is simply positioned over the entire frame. To avoid visual
node specifying the real-valued division point, and two child artifacts we constrain the aspect ratio of the window to
operator nodes. Video fragments may be divided recursivelynatch the frame. The window’s position is thus defined by
by further non-terminalplit nodes. Terminal nodes may operandz,y, o]; centre(z, y) and a uniform scale factar.
then either tiscard” a fragment, or take” it i.e. incorporate  Specifying the cropping window geometry in this manner
it in the output sequence. The final editted video sequence iglso reduces our search space.
obtained via in-order traversal of the parse tree, appgndin Although camera pans are technically achievable by split-
video fragments asake nodes are encountered. We find ting video into individual frames, and carefully specifgin



crop windows, this is not practically achievable by our
GP optimization. Instead, we explicitly incorporate camer
“panning” through an extension of the cropping mecha-
nism. We extend thdake operator again, to now have
two operands: a crop window at the starting frame, and a
crop window at the ending frame of the fragment. When
outputting the final editting video, the window parameters
are Iine_arly interpolated between the start and end frarhes Qigure 2. Video meta-data is extracted as a pre-process; BEsuTe
each video fragment. Cropping thus becomes a degeneratferest through detection of people (left), and interfeamotion via optical
case of panning, where the start and end cropping windowfpw (right). ResultV’4 (Sec. IV-B)
are identical. Theaake terminal node thus has six constant
node operandgz;,ys,0s, Te, Ye, 0c], Where subscriptss ] ]
and e indicate start and end frame respectively. As withA. Fitness of a Video Edit
the division point on thesplit non-terminal operator, these  Our fitness measure for a putative video edit seeks to
parameters are represented by normalised constant térmirgstimate both the level of interest, and the aestheticseof th
nodes. Paramete(s, y) are normalised to frame width and editted output video.
height, whileo is normalised to range from half frame size  Qur fitness function incorporates two terms for measuring
(0) to full frame size (1). Figure 1b gives an illustrative interest; the total captured interest and the averageeistter
example. captured over selected frames. The first term promotes com-
pleteness of interests selected from the raw video footage,
while the second term promotes removal of “interest sparse”
Optimizations frequently result in parse trees that splittrames to produce feature rich video. The second term also
video into many small fragments, with similar but slightly encourages subjects of interest to be framed such that they
different cropping windows. This can result in a distragtin occupy most of the scene. With respect to aesthetics, Arijon
flicker and |nstab|||ty in the final video. To mltlgate agains [_‘]_3] notes that frequent short-term cuts within a sequence
this, we perform some interpolation on window parametersre unpleasant for the viewer. In some situations such cuts
when video fragments are concatenated by gpiet non-  are appropriate, e.g. fast action shots, but these are too

C. Concatenation of Video Fragments

terminal operator. specific for general home video editting. Scene and camera
Suppose two fragment®}, F», of durationsty, ¢2, and  motion should also be minimal at the points where shot

with window parametersv; = [z, ys, 0, Te, Ye, 0] @nd  poundaries are introduced. To incorporate these prefesenc

w2 = [Us,Vs,Ts,Ue, Ve, Te] are to be concatenated. A we introduce penalty terms for short cut sequences or cuts

straightforward approach is to replace the end and stafhade in the presence of large-scale motion.
windows of F} and F3 respectively with an interpolated | |ine with these heuristics, we specify the following

window wy: fitness function over all frame$F,, Es, ..., Ex} included
t t in the editted video:
wr = ! (wo —w1p) + 2 w9. Q)
t1 + to t1 +to pSsc N CI(El) (B
However, when a substantigiscard has been made be- F(E) = N (wl'CI(Ei)+w2' N >'€ T
tween fragments, it may be more appropriate to permit a =1 3)

discontinuity in the window geometry i.e. leaving and

w2 unmodifigd. , , i .. .captured interest within a frame (subsection I1-A1)M(.)
Our solution is to update the windows using a weightis "5 sym of the optical flow vector magnitudes within a
derived from the temporal distanekbetween the start and frame (Figure 2, right).SC(.) is a count of the number

end of F; and I, respectively: of short fragments within the editted sequence (belbw
second), and constitutes a penalty term on short clips when
0 < P < 1. The pairs of parameter®,~ and w; , are
weights on the aesthetics and interest terms respectively,
wherek = 0.5 provides interpolation over cuts up#o< 10  and may be adjusted to user preference. The latter weights

Where CI(.) is a normalised operator evaluating the

—kd(

wy — wi+e wr —wi)

Wy — w2—|—efkd(w1—w2) (2)

frames (i.e.~ % second duration). are empirically selected to find the trade-off between the
completeness and richness of captured interests. We give
Ill. GENETIC SEARCH FOR ANOPTIMAL EDIT typical values with results in Section IV.

We first describe the fitness function by which we measure 1) Captured Interest: Home video is predominantly used
the aesthetics of a video edit, and then provide the specifid® capture life events, and people (e.g. friends and family)
of our GP optimization process. are frequently the objects of interest in such footage. In ou



system we correlate interest with the presence of people in a
shot. Specifically, the greater the viewing area occupied by

images of people, the more “interesting” and thus optimal Gegzg‘utlea:gtnia'
our video is deemed to be. Person detection can be achieved i

in a number of ways, such as human face detection [14] ——
and upper-body detection [15]. We opt for the latter, since Soltions

face detection systems tend to perform poorly over the wide
variations in pose, scale and lighting typical in home msvie
Figure 2 (left) shows application of a popular cascade based
person detector [15] to typical source footage. We obtain
our value forCI(.) by averaging the probabilities of pixels
belonging to a person over the cropped window within the
editting frame.

More sophisticated definitions of interest exist — for
example considering temporal [16] and auditory [9] cues,
or even models of linguistic semantics [10]. Although

Significant
improvement over
past generations

Render video for
best solution

other normalised measures might be substituted, we find Generate random Stochastically
our measure suitable for the domain of home video. Our solten pi°k2¢pa'ems
method also has the advantage th&t(.) and M (.) may ——
be efficiently pre-computed by finding bounding regions (breed tree)

for people in each frame of video, and intersecting those
polygons with the cropping window to obtain the area of
overlap during optimization. However we emphasise that our
technical contribution is not in the interest measpee se, p et
but rather in demonstrating the feasibility of a GP framewor

for identifying optimal video edits.

Enough No

members for
next generation?

B. GP Optimization

Ideally a GP operator set should fulfil three criteria
identified in [17]. First, any operator should return a vadue Figure 3. Schematic of the GP optimization algorithm.
any input, called evaluation safety. Second, the operaior s
should be sufficient; it should have enough expressive power
to generate any possible solution to the problem. Third, thgopulation must be evaluated using eg. (3) to enable fitness-
operators should be type consistent, i.e., return values gfroportionate selection. Optimization can be halted when
the same type so as they can be freely interchangeable maximum fitness within the population shows negligible
breeding. improvement over several successive generations.

Criteria one and two are satisfied (Section IlI) however 1) Initialization: Individuals within the first generation
our constant terminal nodes return a different typ® fo  are initialised independently and randomly. In our exper-
that of the non-constant terminal and non-terminal nodegments we use a generation size of 500. An individual's
(video). This breaks the third condition of “type unity”. parse tree is constructed recursively by picking a node
Kozaet al. suggest use of eonstrained semantic structure  from the set of possible operatofgake, discard, split}.
in such cases; effectively performing separate cross-oveDperators requiring constant operands will have apprtpria
and mutation for constant and non-constant nodes [18]. Wehild nodes created. In the case of a non-terminal operator
follow this strategy in subsection I11-B3. being picked, further operators must be generated for the

An overview of the optimization is shown as a flowchart remaining child operands. The process recurses in a depth
in Fig. 3. We begin by randomly generating a large set offirst manner until a terminal operator is generated. When
programs (or “individuals”, collectively referred to aseth choosing an operator for a non-constant node, the decision
“population”). Each individual represents a putative olu,  on type of node is made stochastically according to depth of
in the form of our edit tree representation (Section Il). GP i recursion. Non-terminal nodes are less likely to be gerdrat
an iterative process, in which pairs of individuals arecielé  at deeper points on the tree. When generating a constant
from each generation stochastically — with a bias to fitnessiode, a value is picked uniformly at random, in rar@el ]

— and combined via a breeding process of “cross-over” anés all operands are normalised by design (Section II).
“mutation” to create a population for the next generation. 2) Elitism: At each iteration, the topv 1% fittest in-
Thus at each iteration, the fithess of all individuals in thedividuals pass through directly to the next generation. To
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Figure 4. lllustrating the breeding process. GP crossqament trees are traversed depth-first. Correspondingsrenttt their subtrees may be exchanged.
Constant node operands are carried with their operatoran@Btion; non-constant nodes and their subtrees are sghladth low probability. The value
of constant nodes are subjected to mild Gaussian noise.

maintain population diversity 5% of the next generationis we iterate through nodes iv; and N,, and will generate
reinitialised at random. The remainder of the next genemati an entirely new subtree for a node (using the method of
is bred from the current, using the processes of cross-ovesubsection 111-B1). Figure 4 illustrates this process. The
and mutation. probability of making such a mutation is 0.1 for all our

3) Cross-over: Cross-over is the mechanism by which €xperiments.
elements of parent individuals are mixed to produce off-
springs for the next generation. In GP this is achieved by
constructing two new parse trees using portions of the paren To evaluate the video editing system, we captured home
parse trees. videos covering a variety of events. Here we present the

Given two parentsl and B we create two new individuals esults of five videogV1 —V5)% In V1,V2 we disabled
N and N, initially by duplicating A and B. We then tra-  OUr zoo_mmg/pannlng mechanism to show the effec_ts of
verseN; in a depth-first manner, simultaneously traversingtn€ cutting operator alone. 1W3 — V5 the full system is
N, to create a one-one correspondence between nodes fyaluated.
N7 and Ns. Whe.re such a correspondence is po_ssnble ("(?A. Cutting Only
moves are possible from a parent node to a child node in~ ) )
both trees), we may swap the node and subtree below it Figure 5 depicts frames from our source videos, regularly
in N; with the corresponding node and its subtreeNip. ~ Sampled along a time-line running left-right. The presence

Figure 4 illustrates the process. (people), and red indicates portions of the source videe-tim

evaluation prob_Ilne that were selected and concatenated to create theakditt

IV. RESULTS ANDDISCUSSION

As our representation lacks type unity,

lems will be encountered if constant nodes are substituteSUtpUt' . .
with non-constant nodes during swapping. Thus when a The V1 and V2 source footage depicts family members

child node is swapped, its constant nodes are carried fror‘(f';r_t the pg\rk. Ingl_the ;:]ameraman perlr?dI(;IaIIy becomes
the source to the destination tree in situ (as if logically. |stract_e anb_ pomtsht € camer? at_(; € _f_ogr or ‘Tﬂ un-
part of the child node). Any non-constant operands are theH}terESt'r}g_ objects. The SY§tem ‘35 : enr;u e con_tlguoufs
recursively descended and swapped stochastically asebefor?!0CKS ©f interest in the video, and cut three sections o
Mutation introduces diversity into the population. en- the source time-line for concatenation into the final editte
. ) y POPU: ' video. Virtually all of the interest is captured in a minimal
abling exploration of the solution space. Again, due to

. number of cuts. InV2 cuts have been made not only to
the lack of type unity we must mutate constant and non- y

) . m?ximise the density of interest in the clip, but also to
constant nodes using a separate mechanism. In the case SYohibit rapid cutting in frames where detection of people
constant nodes, we iterate through nodesNin and N» P P 9 beop

adding Gaussian noise to the real value assigned to ea(i:?éintermittent. This is frequently the case using [15] when
9 9 ople’s backs are turned to the camera, or are of small

constant node encountered. The mean of the noise is tI*Ra
nOde,_S pre-mutaﬂ_on value, with a small standard deviation 1The source and editted videos are included in the supplement
(0.5) in our experiments. In the case of non-constant nodesaterial
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since the camera is already panning to follow the subject, no
additional panning is introduced. For these results, syste
parameters were set as in subsection IV-A, but with ratio
wy @ wy Set tol : 100. Figures 6,7 again show quick

‘ ‘ ‘ ‘ convergence, with negligible change in population fithass o
%0 oo A0 L2 250 800 diversity after~ 50 iterations. For our experiments we ran
the optimizations up to 1500 generations (300 are shown).

Population Fitness Std. Dev.

Figure 7.  Optimization results for videds1 — V'5, plotting standard
deviation (fitness diversity) for each generation. V. CONCLUSION
We have presented a novel tree representation for home
video editting, suitable for use in a Genetic Programming
scale. For these results, system parameters were set sugbp) optimization framework. Our representation incorpo-
that the ratiow; : w, was1: 10, P = 0.99, andy = 107°.  rates cutting, zooming and panning operations. Uniquely,
Figures 6,7 show convergence with negligible change inye search for a globally optimal video edit using GP,
population fitness or diversity after 20 iterations. maximising both aesthetics and interest within the final
clip. Our measures for aesthetics are grounded in common
directing practice, and our measure for interest is based on
For videosV3 — V5 we re-enabled the zooming/panning the presence of people; the most common subject of interest
mechanism to run the system with full functionality. Figbre for home videos.
shows the cuts made in the source video to isolate “inter- We have demonstrated the efficacy of our approach over
esting” parts of the time-line. Again, source video framessome representative examples of home video footage. Our
exhibiting a negligible or intermittent response from thesystem quickly converges to an acceptable edit sequence,
interest detector have been cut. Figure 5 also shows thequiring~ 50 generations / minute of source video. To cap-
position of the cropping window (red box) within frames. ture the subjectivity of video aesthetic, our fitness fumeti
Footage within the window is scaled to create the renderet governed by user parameters weighting desire for objects
output footage shown in Figure 8. In the casesVdf and  of interest against frequency of cuts, and motion. The short
V4, a crop window is created around the main subject whicloptimization times enable user experimentation to taste.
pans to follow the movement of the subject in the video. This paper has focused on GP optimization as a means
In the case of/5 a cropping window is also introduced for generating edit decisions. It has not explored the vi-
to zoom in and improve framing of the subject; howeversual rendering of those edits. Transition effects might be

B. Cutting, Zooming and Panning
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runs from left to right, annotated in blue to show presencéigfrest, and in red to show segments of video selected fipubiloy our editting process.
Frames have been sampled from the source video at reguéawals; the blue box indicates the areas of interest detettethe case o3 — V5 the
red box shows the cropping window.



introduced e.g. cross-fades when cutting. Future work may10] T. Mei, X. Hua, H. Zhou, and S. Li, “Modeling and mining of

explore alternative cropping operators, for example seam- users’ capture intention for home video$ZEE Transactions

carving, to accomodate multiple disjoint regions of ingtre on Multimedia, vol. 9, no. 1, pp. 66-77, 2007.

within a frame. . .. . [12] M. Al-Hames, B. Hornler, R. Muller, J. Schenk, and
Although our fitness measure lacks the sophistication "G, Rigoll, “Automatic multi-modal meeting camera selentio

of [9], [10], we find it suitable for demonstrating value for video-conferences and meeting browsers,Pioc. ICME,

in our GP editting framework, and for the purposes of 2007, pp. 2074-2077.

general home video editting. Extensions to this measure arﬁz] T. Hospedales and O. Williams, “An adaptive machine di-
a possible route for future work. A higher level temporal reémr,” in Proc. British Machine Vision Conference (BMVC),
constraint (e.g. preferring alternating cuts betweenexibj 2008.

during dialogue) might further enhance the aesthetic terms ) . .
within fitness function. However, within a subject domain as[13] D. Arijon, Grammar of the Film Language. = Silman-James
broad as home video, care should be taken to draw a sensible Fress. 1991.

compromise between the complexity of editting heuristics[l4] P. Viola and M. Jones, “Robust real-time face detection.

and the generality of footage that may be processed. J. Comput. Mision, vol. 57, no. 2, pp. 137-154, 2004.
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