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Abstract

This paper presents an approach to object tracking which, given a single ex-
ample of a target, learns a hierarchical constellation model of appearance
and structure on the fly. The model becomes more robust over time as ev-
idence of the variability of the object is acquired and added to the model.
Tracking is performed in an optimised Lucas-Kanade type framework, using
Mutual Information as a similarity metric. Several novelties are presented: an
improved template update strategy using Bayes theorem, a multi-tier model
topology, and a semi-automatic testing method. A critical comparison with
other methods is made using exhaustive testing. In all 11 challenging test
sequences were used with a mean length of 568 frames.

1 Introduction
The aim of this work is to track non-rigid objects using appearance in real-time without a
pre-learned model. The tracker should be robust to noise, changes in lighting conditions,
occlusions, background clutter and changes in the appearance of the object due to its non-
rigidity and pose variation. Moreover, recovery from tracking failure should be possible,
as should failure detection.

Extensive research has been dedicated to tracking non-rigid objects. Even within con-
trolled environments with pre-learned models and without real-time constraints, this is a
difficult problem. Some examples of successful appearance based approaches with less
binding constraints, include that of Okuma et al. [9], who use a pre-learned model to
detect and track ice-hockey players despite their small size in certain views. The WSL
tracker of Jepson et al. [6] tracks objects without a pre-learned model in spite of occlusion
by maintaining a 3 component model for each pixel in the template and shifting between
the components using Expectation Maximisation (EM). However, the use of EM com-
bined with a large model means it is too expensive for real-time use. The discriminative
tracker of Collins et al. [2] also builds a model on the fly. The use of different combi-
nations of RGB channels to form multiple features results in a robust tracker. However,
the method assumes the foreground to be a rectangle centred in a rectangular background
region, which makes tracking irregularly shaped objects that vary in pose difficult. Also,
the use of many features (125) makes real-time tracking of large objects difficult.

The simpler approach of using Lucas-Kanade (LK) type tracking [7] has often proven
to be effective despite using only a very simple model (a single template) to track. This



is particularly so in its modern manifestation such as the strategic update method of
Matthews et al. [8]. Moreover, modern formulations of registration algorithms use quasi-
Newton methods and many of the more-expensive operations are pre-computed, thereby
allowing above real-time performance. Notable examples are the Inverse Compositional
approach of Baker and Matthews [1] and the parametric models of Hager and Belhumeur
[5]. However these methods tend to suffer from drift.

Clearly a multi-faceted approach is required to achieve the aims of the problem state-
ment. Our approach has its distant roots in the LK tracking method but uses multiple
component models. Pixel level models have been avoided for the sake of speed. Instead,
multi-tier structure-appearance models have been used, which are somewhat richer than
single scale appearance templates.

In many tracking applications, a template is aligned to the current image by minimis-
ing some appearance similarity metric. In §2 the choice of similarity metric is discussed,
as are several methods for modelling the appearance of a feature. The approach here uses
a Bayesian method for clustering appearance exemplars together. Next a multi-tier exten-
sion of the SMAT algorithm [3] is presented in §3 where structure and appearance models
are sandwiched together. Two hierarchical topologies are considered. Exhaustive tests
were performed using a semi-automated testing method discussed in §4. The results are
given in §5 before the paper concludes in 6.

2 Template Tracking
To begin, the problem of tracking is formalised as an optimisation problem. Given a
motion sequence of Nm frames, let Sm(x) represent the intensity at position x in frame Sm.
A warp w, with parameters v, is sought that minimises some distance function d between
a template Tn and Sm:

vopt = argn,v min d[Tn(x),Sm(w(x,v))] (1)

with d measuring the similarity between Tn and the region in Sm it overlaps. Several
templates indexed by n may exist, hence the minimisation over n as well in (1). This
general entails multiple minimisations over v for several values of n.

2.1 Distance functions and warps
Several constraints affect the choice of d. The evaluation of d must be fast, it should be
relatively robust to outlier pixels and the basin of convergence should have sufficient gra-
dient to allow rapid convergence without giving ambiguous results. The ability to obtain
a Hessian rapidly is also a consideration. Mutual Information (MI) suits these specifi-
cations admirably, since an analytic derivative for it has recently become available [4].
Hence MI was the first choice for this work. The widely used Sum of Square Differences
(SSD) also has good characteristics and is presented here as well. Distance functions that
increase with greater similarity may be trivially converted for a minimisation framework
by multiplying by -1.

SSD entails summing the square of the differences between each pixel in T and the
corresponding pixel in Sm:

dssd(v) = N−1
x ∑
∀x∈T

[T (x)−Sm(w(x,v))]2 (2)
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where Nx is the number of pixels in T . SSD can be prone to outliers and assumes that the
intensities in T and Sm are linearly related.

In contrast, MI treats each image as a random sample of intensities, measuring the
information shared between the two sets of samples [10]. This is estimated from the
joint-histogram of intensities hst :

dmi =−N−1
st ∑
∀s,t

hst(s, t) log(
hst(s, t)

hs(s)ht(t)
) (3)

where the intensities of the two images Sm and T are s ∈ [1;Ns] and t ∈ [1;Nt ] respec-
tively. Nst = NsNt is the number of bins in the joint-histogram. The single histograms are
obtained from the joint using row and column sums: hs = ∑t hst and ht = ∑s hst .

MI is only slightly more expensive than SSD to obtain: O(Nx + Nst) and O(Nx) re-
spectively. The Hessians also have comparable costs, and we obtained speeds similar to
those reported by Matthews et al. for SSD [1] for both metrics. Since a Hessian was
cheaply available, the Levenberg-Marquardt method with a sparse pre-search step was
used for minimisation of the similarity metrics.

Four types of warps were considered in this work: translation, Euclidean, similarity
and affine warps. These respectively have 2,3,4 and 6 degrees of freedom (DoF). Using
higher order warps does not necessarily add robustness, since for small image patches the
problem becomes under-constrained.

2.2 One and two template models
Initially, only one template from the first frame exists, i.e. n ∈ {1}. After optimisation for
v in each successive frame the matching region, Xm, may be extracted as a new exemplar
for possible use as a template. The collection of templates forms an appearance model.

Perhaps the simplest model is one that is never updated, consisting only of the single
template extracted from the first frame, i.e. T1 = X0, as shown in Fig. 1a. We call this the
no update model, and will only work as long as the template closely resembles the feature
being tracked. Typically the resemblance is fleeting, and tracking fails due to a mismatch.

One alternative is the naive update model, where the template is updated after every
frame, i.e.: T1 = Xm = Sm(w(x,vopt)), as shown in Fig. 1b. Sub-pixel errors inherent to
each match are stored in each update and these errors gradually accumulate resulting in
the template drifting off the feature.

A recent strategic update approach that trades off mis-match error and drift has re-
cently been proposed by Matthews et al. [8], which is a simple and effective extension of
the naive update. The updated template is used for an initial alignment, but the template
from the first frame is then used in an error correction phase after alignment using the up-
dating template. If the size of the correction is too large, the algorithm acts conservatively
by preventing the updating template from being updated from the current frame n. The
strategic update model is illustrated in Fig. 1c.

2.3 Simultaneous Modelling and Tracking
The inclusion of a second template in the strategic update model improves tracking results
substantially. Simultaneous Modelling and Tracking (SMAT) extends this by storing all
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(a) No update (b) Naive Update

Sequence

Exemplars

(c) Strategic Update (d) SMAT Update

{Templates

{
Templates

Templates

Figure 1: Building models using various update strategies

the exemplars extracted from each frame, selecting templates from amongst the exem-
plars to solve (1) and locate the feature, as illustrated in Fig. 1d for four templates. To
limit the computational cost, the collection of exemplars is clustered on the fly, with each
cluster, Cn, being represented by its median, µn. Only the cluster medians are ever used
as templates, limiting n in (1) to n ∈ [1;Nn], where Nn is the number of clusters. The
median rather than the mean is used to avoid the pixel blurring inherent to the averaging
of multiple intensity values.

A weighting, wn, is also associated with each cluster, which represents the estimated
a priori likelihood of the cluster resembling the current appearance of the feature being
tracked. So the propability of the model matching the current feature appearance may
be treated as a sum of likelihoods: P = ∑

Nn
n=1 wn

p( f g|d(Xm,µn))
p(bg|d(Xm,µn)) . The weights satisfy the

constraint, ∑n wn = 1.
Two examples of such models are shown in Fig. 2, with the exemplars represented as

dots in 2D analog of appearance space, where the distance between two appearances is
represented by dMI . Using Fig. 2, the construction of the model, P, is now described.

In each new frame, Sm+1, the tracked feature will change in appearance as conditions
such as pose and lighting vary, with a corresponding shift in the feature’s position in
appearance space. In the examples of Fig. 2a and b, the new positions are indicated by
stars. Updates to single template models serve only to move the position of the model in
appereance space, rather than properly describe the occupation of X . Ideally each new
exemplar is added to the nearest cluster, otherwise clusters become overly inflated and
unspecific to the feature. Moreover, some exemplars can result from tracking failure and
not be representive of the true feature. Either way mis-representation error can ensue, so
a method to determine membership to a particular cluster is required.

Membership is determined by the ratio of the distance between the new exemplar and
a cluster median indicating a foreground or background appearance:

p( f g|d(Xm,µn),ν f g)
p(bg|d(Xm,µn),νbg)

(4)

The normal distribution of foreground distances, ν f g is obtained from the distances be-
tween the median and each cluster member. The normal distribution of background dis-
tances, νbg is obtained by calculating the variance of d values between the median and all
exemplars offset from vopt by one pixel. These values represent positions possibly within
the basin of convergence but not at the minimum and are hence most likely to cause con-
fusion. This is an improvement on [3], which required a pre-selected bound factor. The
bounds of the cluster produced by this ratio are indicated by the ellipses in Fig. 2.

In general newly created clusters are less reliable than previously established ones,
since they have fewer samples and may be the result of an earlier tracking failure. To
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(a) New appearance matches
existing component

(b) New appearance requires
new component

w=0.5
C1

C2

C1 C4

C2w=0.3

w=0.5

w=0.3

w=0.2

C3

w=0.2

C3

Key:

New Exemplar

Median Exemplar

Exemplar

Threshold of matching cluster after update

Thresholds of unmatching clusters

Threshold of matching cluster before update

Figure 2: Diagram of Simultaneous Modelling and Tracking, showing 3 clusters of exem-
plars (dots) in appearance space. The tracked feature has a new appearance (star), which
in (a) is within the bounds of Cluster 2 after minimisation, which is appropriately updated.
In (b) no cluster achieves a successful match, so a new cluster is created.

model the effects of increasing relevance and reliability, the weights of each cluster are
updated after selecting the matching cluster as follows:

wn←
{ wn+α

1+α
n = nmatch

wn
1+α

n 6= nmatch
(5)

where α is a learning parameter. This allows frequently successful clusters to dominate
in the model, but allows obsolete clusters to be gradually removed.

To reduce computational expense further, a greedy approach is used to explore the
clusters. Alignment using (1) is attempted starting with the highest weighted cluster. If a
match within the membership boundary (4) is obtained, as in Fig. 2a, the new examplar
of appearance is added to the current cluster with appropriate updates to the weightings,
median, ν f g and νbg. Otherwise alignment is attempted using the next highest weighted
cluster and so on.

If none of the existing clusters achieves a successful match, as in Fig 2b, the most
recently extracted exemplar is used as a template: as this is the most likely to resemble
the feature in its current form. A new cluster is then formed using the template, Xm−1,
and the newly extracted region Xm, with an initial weight of zero. The number of clusters
is limited. If this limit is exceeded the lowest weighted existing cluster is replaced.

3 N-tier hierarchical models
In the case of large non-rigid objects, using the single appearance model of §2 requires
large numbers of clusters to represent the variation in object appearance. Not only is this
computationally expensive, but it is poorly representative as each cluster will have few
exemplars due to the highly variable appearance. Higher order warp parameterisations
can reduce the number of clusters required, but these are still somewhat limited in their
descriptiveness. An alternative is a bag-of-features approach: where the object consists
of several smaller features that are independently tracked and modelled. However, small
features are more prone to failure, as they consist of fewer pixels and complete occlusions
are more likely. Another alternative is to use a hierarchical approach, to track a larger
region and use this to pre-align smaller child features, but it is difficult to tell if this
induces tracking failure.
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vs.

feature by shift in parent

1. Align "face" feature

2. Offset "bottom face"

3. Align "bottom face" feature

4. Offset "left corner" and "right

corner" features by shift in parent

of "left and right corner" appearances

model, with possibility of blocking update

6. Check agreement with "bottom face" 

features

5. Align "left corner" and "right corner" 

Figure 3: Illustration of the structure of a 3 tier shape model and how the shape model is
used to recursively align and update the appearance models at each tier.

N-tier SMAT overcomes this by combining all these ideas and using the relative po-
sitions of parents and children in a tree structure to build up a model of shape. An ex-
ample of a 3 tier structure used to model a face is shown in Fig. 3. Using the shape
model, a likelihood may be attached to the position of the child features, and hence to the
probability of tracking failure. This allows tracking failures to be corrected and possible
erroneous feature updates to be blocked. N-tier SMAT thereby combines the advantages
of tracking large features (robust to noise, occlusions and large motions) with those of
tracking multiple small features (rich object description and accurate modelling of artic-
ulated structures). The shape model is also treated as a collection of weighted clusters:
pshp = ∑n wnν(µn,σn)).

A recursive alignment is applied starting at the root-parent feature, in a manner illus-
trated in Fig. 3 for a human face. First the largest “head” feature is aligned using the
SMAT process discussed in §2.3. Second, the children features of the head (the “fore-
head” and “mouth region”) are offset from their positions in the previous frame by the
interframe shift of their parent. Third, a SMAT alignment is applied to each child as
per §2.3, except the update is held in abeyance. Steps two and three are repeated for the
“mouth region” children: “left mouth corner” and “right mouth corner”, again with their
respective SMAT updates held in abeyance.

In step six the positions of the “left mouth corner” and “right mouth corner” are con-
catenated into a vector describing the “mouth region” shape, which is fitted to each cluster
of the shape model. If the current shape fits an existing cluster, the shape model is ap-
propriately updated and the appearance updates for the child features that were held in
abeyance are applied. If the current shape does not fit the existing model, a new cluster is
generated, but the appearance updates of the children are blocked. In addition, the current
shape is corrected to fit the nearest cluster, and the corrected positions are applied to the
children features. Step six is applied again at the level of the parent feature.

The above shape update process is very similar to the SMAT appearance modelling
process of §2.3, with some slight differences. Firstly, a PCA model is fitted to each
cluster of shape exemplars, and Mahalanobis distance is use to measure the similarity of
structures. Secondly, “background” and “foreground” shape scores are not available as
they are for appearance, so a hard bound is required to establish cluster membership. We
used a bound of 2σ , which worked well for all the sequences tested.
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The shape model consists of children’s positions relative to their parent, despite the
use of different warps for each object, so a central feature or average position is not
required for a coordinate system base as it was in [3]. This is an important advantage,
since the use of a central feature makes tracking dependent on that feature’s reliability.
Similarly, use of a central position means that one outlying point in the shape can deform
the entire shape and induce tracking failure in the remaining features.

The above structure model is referred to as a thick structure model. A similar hier-
archical alignment is possible that does not explicitly model the structure of the object,
but the relative shift of parent objects is applied to the initial positions of child objects.
This still implicitly models the dependence of child objects on their parents. We refer
to this as the thin structure model. Both methods yielded significant improvements over
independently tracked features. However, the use of a thick structure model allows more
frequent recovery from tracking failures in small child features.

4 Testing Methodology
Testing tracking applications typically involves the researcher hand selecting the positions
of features in each frame. Such an operation is time consuming, so testing using the large
numbers of long sequences necessary for comprehensive evaluation is impractical. More-
over, hand selected positions are not necessarily a true reflection of tracking performance,
due to a human’s use of context, which is unavailable to trackers.

The zig test can overcome these difficulties. This uses the idea that the only position
known with absolute certainty from the tracker’s point of view is that of the selected
feature in the first frame. Any comparison against position in a frame is absolute as
well. The zig test uses this property by tracking a frame through a sequence from frame
0 to frame Nm and then by reversing the sequence back to frame 0. We refer to the
second instance of frame 0 as frame 2Nm. The overlap between the X2Nm and X0 gives an
indication of how far the tracker has drifted from its original target.

Tracking error generally increases with sequence length, however re-acquistion after
failure can occur in the reverse direction, giving a false “success”. Hence hand selected
ground truth positions are used at 1

10Nm
intervals to flag failures automatically when the

tracker drifts too far from the feature. Although not fully automatic, this approach still
makes testing less laborious. Tracking performance was gauged from the area of overlap
between X0 and X2Nm : A(X0∩X2Nm )

max(A(X0),A(X2Nm )) .
Eleven long (568 frames on average) and challenging sequences of various subjects

were obtained. Eight sequences were used to track single features and three sequences
were used to track 3-tier structure models of features. Objects tracked included humans in
sporting events, human faces with changing expressions, gesturing human hands, pedes-
trians, and wild animals in Kruger National Park. Backgrounds were in some cases highly
variable and cluttered, including ripples in a swimming pool and moving bushes. Like-
wise some sequences had lighting conditions that varied drastically. The first frame of
each test sequence is shown in Fig. 4.
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Figure 4: Test sequences used. Set 1 was used to test single feature tracks. Set 2 was used
to track 3-tiers of object.
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Figure 5: Comparison of SSD and MI metrics for the three one/two template models:
No update, Naive update and Strategic update. Warp used: translation. Bar groups show
increasing sequence length.

5 Results
The test framework of §4 was used to compare the methods in this paper to existing
approaches. In particular the tests made specific comparisons between: MI and SSD,
appearance models of different complexities, warps with various Degrees of Freedom
(DoF) and structure models of various kinds. Ten zig tests were performed for each test
sequence, ranging in length from 10% to 100% of the sequence length. The mean per-
centage overlap between the rectangles at the beginning and end the sequences is shown
in Fig. 5 to 7 (green/light bars). The standard deviation is also shown (blue/dark bars) to
express variability of the results, because the mean was taken across the test sequences.
Bar groups show performance as sequence length is increased in 10% intervals from 10%
to 100%.

Test-set 1 was used to compare SSD & MI, using the three “simple” template mod-
els, namely: no update, naive update and strategic update. The 2 DoF translation warp
was used for these tests. Fig. 5 unsurprisingly shows that the strategic update model
outperforms naive update which outperforms no update. The strategic update represents
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Figure 7: Comparison of performance for four structure models: none (i.e. independent
features), thin, thick (SMAT). Bar groups are for increasing sequence length. Appearance
Model: SMAT. Metric: MI. Warp: Similarity + Translation + Translation

the variability of the data better and hence performance degrades more gracefully as well.
MI outperforms SSD in most cases, but appears to be more prone to mis-match when the
appearance model is not updated.

Test-set 1 was used to examine whether the use of higher order warps improves per-
formance. The results are shown in Fig. 6. In most cases SMAT outperforms the strategic
update model by some margin, particularly for higher order warps and towards the end of
sequences. Surprisingly, performance degrades as the DoF increase, however this could
be for a number of reasons: the method of parameterisation is fairly sensitive, since (re-
spectively) for the affine parameters, similarity, and Euclidean warps, the rotation matrix,
scale and angle are explicitly encoded. The greater number of DoF allows more oppor-
tunities for drift and local minima. Drift probably accounts for the increasingly graceful
degradation as DoF increases.

Test-set 2 was used to examine the effects of modelling structure models in multiple
tiers. In each test three tiers with one feature per tier were used. The similarity transform
was used for the top tier, and translation for the second and third tiers to avoid over
parameterisation. The results in Fig. 7 show the performance for the lowest tier i.e. the
feature most likely to fail. As shown, even using a thin structure (i.e. treating the problem
as a multi-scale registration) improves performance significantly and explicitly modelling
the structure improves performance further. In our experience thick model structures
should be used with care, since they can also drag features off their correct position as
well. This appears to occur in Group 3 of Fig. 7, but re-acquisition occurs later. The
re-acquisition is probably due to the structure model as well.
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6 Conclusion
An N-tier Simultaneous Modelling and Tracking algorithm has been presented, which
learns a hierarchical model of appearance and structure on the fly. Image alignment over
multiple warps was performed by minimising (negative) Mutual Information using the
Levenberg-Marquardt algorithm. Multiple layers of appearance models were sandwiched
together using structure models. Two types of structure model were proposed: the thin
(implicit shape) model and the thick (explicit shape) model. Testing was performed us-
ing the semi-automated zig-zag test. This allowed exhaustive testing on 11 challenging
sequences with a mean length of 568 frames. The use of structure models gave superior
results to independent tracking, however explicitly modelled structure did not always im-
prove upon implicitly modelled structure. Comparisons between SSD and MI similarity
metrics were made and MI generally slightly outperformed SSD. Of the different appear-
ance models, SMAT performed the best due to its use of multiple clusters. Translation,
Euclidean, Similarity and Affine warps were also compared, and in general higher order
warps failed sooner due to over-parameterisation. The matlab code and test harness is
publicly available on the Internet at: www.ee.surrey.ac.uk/personal/n.dowson. In
future features and articulated model structures will automatically be detected.
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