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Abstract

This paper tackles the problem of spotting a set of signs
occuring in videos with sequences of signs. To achieve this,
we propose to model the spatio-temporal signatures of a
sign using an extension of sequential patterns that contain
temporal intervals called Sequential Interval Patterns (SIP).
We then propose a novel multi-class classifier that organises
different sequential interval patterns in a hierarchical tree
structure called a Hierarchical SIP Tree (HSP-Tree). This
allows one to exploit any subsequence sharing that exists
between different SIPs of different classes. Multiple trees
are then combined together into a forest of HSP-Trees re-
sulting in a strong classifier that can be used to spot signs.
We then show how the HSP-Forest can be used to spot se-
quences of signs that occur in an input video. We have eval-
uated the method on both concatenated sequences of iso-
lated signs and continuous sign sequences. We also show
that the proposed method is superior in robustness and ac-
curacy to a state of the art sign recogniser when applied to
spotting a sequence of signs.

1. Introduction
Automated Sign Language Recognition (SLR) remains

a challenging problem to this day. Like spoken languages,

sign language feature thousands of signs, sometimes only

differing by subtle changes in hand motion, shape or posi-

tion. This, compounded with differences in signing style

and physiology between individuals, makes SLR an intri-

cate challenge.

A large body of work on automated SLR has focused

on isolated signs, where a sequence contains only a single

sign. Approaches can be divided between tracking-based,

sub-unit classifiers [5], and more data driven approaches.

As examples of the latter, Wang et al. [11], created an

American Sign Language (ASL) dictionary based on simi-

larity between signs using a Dynamic Space-Time Warping

(DSTW) approach and Gavrilov et al. [4] proposed a data

mining approach for detecting reduplications in signs. One

prevalent family of methods for SLR are Hidden Markov

Models (HMMs). Pitsikalis et al. [9] proposed a method

which uses linguistic labelling to split signs into sub-units.

From this they learn signer specific models, which are then

combined via HMMs to create a classifier. Two drawbacks

of HMMs for sign recognition are that they are learnt in a

non-discriminative manner and do not perform feature se-

lection, resulting in sub-optimal classifiers for datasets with

ambiguous classes (as is typical in SLR).

To overcome this, an alternative approach using dis-

criminative spatio-temporal patterns, called Sequential Pat-

terns (SPs) was proposed by Elliott et al. [2]. SPs are or-

dered sequences of feature subsets that allow for explicit

spatio-temporal feature selection and do not require DTW

for temporal alignment. Here SPs were learnt in a discrim-

inatory fashion as 1vs1 classifiers before being combined

into strong classifiers for recognising signs—hence the ap-

proach scaled poorly to large numbers of signs. To ad-

dress this, Ong et al [8], proposed a method for building SP

forests where multiple SPs that share initial subsequences

are combined into a tree structure, producing an inherently

multi-class classifier. This was then applied to isolated sign

recognition and shown to outperform HMMs based tech-

niques, yielding state-of-the-art recognition performance on

a database with a large number of signs.

These articles addressed the recognition of isolated
signs; in contrast, we focus on the more difficult problem

of spotting and recognising a sequence of known signs in a

video, without indications of start and end points. A num-

ber of previous studies approached similar problems using

variants of HMMs. For example, Liang & Ouhyoung [6]

presented a recognition system for Taiwanese sign language

based on HMMs. Using data-gloves for extracting the fea-

tures used for recognition, their system could classify 250

signs with 80% performance in a signer dependent experi-

ment. Also, Elmezain [3] used HMMs for recognising 10

signs in unsegmented sequences, and Morency et al. [7]

proposed a discriminative approach for unsegmented ges-

ture detection based on Latent Dynamic CRF. However, the

above gesture recognition work used only a limited set of
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Figure 1: Illustration of SP and SIP encoding of a toy sign: (a) Toy binary feature vector encoding 4 movements of one

hand; (b) Example trajectory for a toy sign; (c) Example of a SP describing (b): S = 〈S1, S2, S3〉; (d) Example sequence

containing the sign in (b); (e) Example of a SIP describing (b): S∗ = 〈〈S1, S2, S3〉 , ((α1, β1), (α2, β2))〉.

simple, distinctive gestures, whereas sign language recog-

nition involves a large vocabulary of complex, and often

ambiguous, signs. The work of Yang et al. [12] proposed a

CRF-based approach for sign spotting with a lexicon of 48

signs but for a single signer.

This article presents an extension of the SP-Trees ap-

proach [8] that allow for efficent spotting of unsegmented

signs in videos. To this end, we evaluate the spotting per-

formance of the proposed method on concatenated isolated

signs, as well as continuous sign sentences.The main con-

tributions of this paper are: 1) a new extension to SPs

incorporating temporal intervals (sec. 2); 2) a novel hier-

archical tree structure called Hierarchical Sequential Pat-
tern Trees (HSP-Trees) (sec. 3), that can exploit any sub-

sequence shared between different signs for classification

(sec. 4);. and 3) an efficient algorithm for learning HSP-

Trees (sec. 5). We show experimentally that the proposed

method results in significant improvements in accuracy over

the state-of-the-art SP-Trees and HMMs for sign spotting

(sec. 6). Finally, we conclude with future work in sec. 7.

2. Representing Signs using Sequential Pat-
terns with Temporal Intervals

The aim of this article is to spot occurences of a lexi-

con of C signs in an N -frames video. All frames in the

video are assigned a label L = {λ0, λ1, . . . , λC}, where

λ0 denotes the absence of any known sign (as per the lex-

icon). In order to describe signs, we extract a vocabu-

lary of D static and dynamic features at every frame in

the video (Fig. 1a) to form a vocabulary of features E =
{e1, . . . , eD, ē1, . . . , ēD}, where ei and ēi represent the

presence and absence of feature i, respectively. Therefore, a

frame i ∈ [1, N ] in the video is coded by the itemset Si ⊂ E
and an N -frames video sequence by S = 〈S1, . . . , SN 〉. We

first introduce a formalism to represent the dynamic signa-

ture characterising signs as Sequential Patterns.

2.1. Sequential Patterns S

We call any sequence of itemsets a Sequential Pattern

(SP). SPs can serve to encode either: 1) the sequence of

features extracted from a video from the corpus; 2) a spatio-

temporal signature unique to a particular sign label. Intu-

itively, a sequential pattern encodes the occurence of var-

ious feature sets in a specific order—see Fig. 1c. Impor-

tantly, SPs do not constrain what happens between two fol-

lowing feature sets, just that they need to occur in the spec-

ified order. Formally, we have:

Definition 1. Let E = {e1, . . . , e|E|} be a set of binary

features, and S ⊂ E an itemset, then a Sequential Pattern
S ∈ SE of length L is defined as a sequence of itemsets

S = 〈S1, . . . , SL〉.
In order for SPs to be used for recognition, we need to

define a relation assessing whether a SP is a subsequence of

another. For example, in Fig. 1, all itemsets in the left-hand

SP (Fig. 1c) occur in the central sequence, and in the same

order, hence we say that the left SP is a subsequence of the

central one (Fig. 1d). More formally:

Definition 2. Let A = 〈Ai〉|A|i=1 and B = 〈Bi〉|B|i=1 be two

SPs, we define that A � B iff. there exists a sequence

K = (k1, . . . , k|A|) such that ki < kj , ∀i < j for which

∀i ∈ {1, . . . , |A|} we have Ai ⊆ Bki
. We shall denote K

as a detection index set.

Assuming we have two SPs such that A � B, it will

be common that A occurs in several different configura-

tions in B (ie, the previous definition holds true for mul-

tiple index sets K). For this reason, we identify the ear-
liest and latest occurences of A in B. Formally, the de-

tection index set K = (ki)
|A|
i=1 is called the earliest de-

tection index set if k1 = argmini∈[1,|B|] A1 ⊂ Bi and

ki = argminj∈[ki−1,|B|Ai ⊂ Bj , ∀i ∈ [2, |A|]. Simi-

larly, the index set K = (ki)
|A|
i=1 is called the latest detec-
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tion index set if k|A| = argmaxi∈[1,|B|] A|A| ⊂ Bi and

ki = argmaxj∈[1,ki+1] Ai ⊂ Bj .

Note that SPs do not encode the time (or number of

frames) elapsed between itemsets. This means that the like-

lihood for an SP S to be included by chance in a sequence

D increases with the sequence’s length. This makes SPs

adequate for the recognition of temporally segmented and

isolated signs, but weak for spotting signs in long video

streams.

2.2. Sequential Interval Patterns S∗

In order to overcome the weakness noted above, we pro-

pose an extension of the SP called Sequential Interval Pat-

tern (SIP), which restricts the permitted temporal intervals

between consecutive itemsets (see Fig. 1e).

Definition 3. A Sequential Interval Pattern S∗ ∈
S∗E of length L is defined as the tuple: S∗ =〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
, where Si ⊂ E is an itemset, and

αi, βi ∈ R, αi ≥ βi, ∀i ∈ {1, . . . , |S∗|}, denotes the min-

imum and maximum duration allowed between itemsets Si

and Si+1, respectively.

In this definition, each itemset Si is assigned a tuple

(αi, βi) that constrain the minimum and maximum inter-

val (ie, number of frames) allowed between this itemset and

the next. This is illustrated in Fig. 1, where the right SIP

(Fig. 1e) is a subsequence of the central sequence (Fig. 1d).

Although the itemsets in the right SIP are the identical to the

left SP, fewer occurences in the central sequence are valid

due to the restrictions provided by the (αi, βi) on the inter-

val between itemsets. Formally, the subsequence relation in

Def. 2 is rewritten:

Definition 4. We say that a SIP A =〈〈
IAi

〉LA

i=1
, (αA

i , β
A
i )

LA−1
i=1

〉
of length LA is included

in another SIP B =
〈〈

IBi
〉LB

i=1
, (αB

i , β
B
i )LB−1

i=1

〉
of length

LB , denoted by A � B, iff. ∃{k1, . . . , k|A|}, such that⎧⎪⎨
⎪⎩

Iai ⊆ IBki

αA
i ≤

∑ki+1−1
j=ki

αB
j

βA
i ≥

∑ki+1−1
j=ki

βB
j

Note that SPs are a specific version of SPs, with the min-

imum interval set to 0 and maximum to infinity.

3. Hierarchical Sequential interval Pattern
Trees (HSP-Trees)

This section presents an efficient tree structure for en-

coding, detecting and learning SIPs, called a Hierarchical

Sequential Pattern Tree (HSP-Tree), which allow sharing of

sub-patterns between multiple SIPs (see Fig. 2).

3.1. Definition of HSP-Trees

Formally, an HSP-Tree is a tuple T = (N,L), where

N = {n1, . . . , n|N |} is the set of nodes and L =
{l1, . . . , l|L|} the set of links.

In an HSP-Tree, nodes n ∈ N encode an SIP S∗, and

are assigned a label λ ∈ L corresponding to a sign in the

lexicon (or the ’reject’ label). Formally, a HSP-Tree node

is defined as the tuple n = (S∗n, λn, ᾱn, β̄n). There, ᾱ, β̄
determine the maximal and minimal possible durations of

the SIP S∗ coded by the node. They are aggregated from

the maximal and minimal intervals between all itemsets in

S∗, such that ᾱn :=
∑|S∗n|

i=1 αi , and β̄n :=
∑|S∗n|

i=1 βi. For

convenience, we use a functional notation to denote nodes’

properties: Ŝ∗ [n] := S∗n, λ̂ [n] := λn, α̂ [n] := ᾱn and

β̂ [n] := β̄n.

The links are oriented, and ensure that the nodes are con-

nected in a tree structure as well as providing information

on how to traverse the tree. Formally, a link l ∈ L is the

tuple l = (n, n′, t), such that t ∈ {+,−} is the link type

and n, n′ ∈ N are two nodes, called the parent and child
node, respectively, such that n �= n′. The link type t is used

to define how the tree is traversed at learning and detection

time—see sections 4 and 5.

For convenience we define the descendance d(n) ⊂ N
of a node n ∈ N as the subtree starting from this node:

Definition 5. We say that n′ ∈ N is a descendant of n ∈ N
iff. ∃{k1, . . . , ki} and {s1, . . . , si−1}, such that nk1

= n,

nki
= n′, (nkj

, nkj+1
, sj) ∈ L, ∀j ∈ [1, i − 1]. We denote

the set of all descendants of n as d(n).

Additionally, a tree T = (N,L) has a unique root node
r(T ) ∈ N that is the descendant of none, and a set of nodes

called leaf nodes L(T ) ⊆ N that have no descendant.

For a tree to be an HSP-Tree, two constraints need to

be satisfied: First, HSP-Trees are binary, meaning that all

non-leaf nodes have exactly one positive and one negative

descendants:

Property 1. Let T = (N,L) be a HSP-Tree. Then for each
non-leaf node n ∈ N , it will only have two child nodes:
n+ and n−, n+ �= n− �= n, where (n, n+,+) ∈ L and
(n, n−,−) ∈ L, called the positive and negative child of
n respectively. For convenience, we define the following
accessor functions: + [n] = n+ and − [n] = n−.

Second, the SIP encoded in a non-leaf node is a subse-

quence of the SIP encoded by its positive child, and all the

descendants thereof (Fig. 2b). This property provides the

crucial mechanism that allows us to merge different SIPs

with shared subsequences:

Property 2. Let T = (N,L) be a HSP-Tree, and n ∈ N a
node, then if (n, n′,+) ∈ L, then we have Ŝ∗ [n] � Ŝ∗ [n′′],
∀n′′ ∈ d(n′) ∪ {n′}.

191919251933



λ� λ2 λ3
(a) Example of 3 toy signs, starting at the white

circle and ending at the black circle.
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(b) Correponding HSP-Tree for classifying the toy signs.

Figure 2: Illustration of how the HSP-Tree combines sequential patterns of three toy signs (a) to form a multi-class classifier

(b). Non-leaf nodes are shown in blue with its associated SIP. For clarity, the SIP temporal intervals are not shown. Leaf

nodes are shown in green. The link types are denoted by the +,- signs. Importantly, the HSP-Tree allows two SPs with any

common subsequences (which may be in the middle of both SPs) to be merged. This type of sharing would not be possible

with the SP-Tree method.

Hence, we can say that the positive descendence of a

node n specializes the SIP Ŝ∗ [n]—this is exemplified in

Fig. 2b.

4. Classification using HSP-Forests

In this section we describe how an HSP-Tree can be used

to assign labels to frames in a video for sign spotting. First,

sec. 4.1 describes the classification of segmented videos

containing a single sign; then sec. 4.2 provides an extension

to label an unsegmented video sequence containing multi-

ple signs.

4.1. Individual Sign Classification

The classification of a sequence containing only a single

sign is a function φ : TE × DE → L that takes in an in-

put sequence and an HSP-Tree (T = (N,L)) and outputs a

label.

In practice, the classification will be performed by start-

ing at the root node r(T ), and traversing the tree until a leaf

node n ∈ L(T ) is reached. The tree is traversed by follow-

ing the positive link out of a node if the SIP it encodes is

a subsequence of D, and following the negative link other-

wise. Formally, we define the function ζ : N × DE → N
that traverses the tree for an input sequence D ∈ DE , and

returns a leaf node:

ζ(n,D) =

⎧⎨
⎩

n if n ∈ L(T )
ζ(+ [n] ,D) if S∗ [n] �D
ζ(− [n] ,D) otherwise

(1)

When a leaf node is reached, the sequence is assigned

this node’s label. In sum, an input sequence D ∈ DE is

classified by an HSP-Tree T as:

φ(T,D) = λ̂ [ζ(r(T ),D)] (2)

Finally, if we have a population of K weighted HSP-

Trees F = {(T1, α1), . . . , (TK , αK)}, called in the fol-

lowing an HSP-Forest, the sequence D is classifed as the

weighted majority vote:

Φ(F,D) = argmax
λ∈L

∑
(Tj ,αj)∈F

αjI [φ(Tj ,D) = λ] (3)

where I [x] is an indicator function and the weights αj are

determined by the boosting framework—see sec. 5.2.

4.2. Sequence of Signs Classification

The previous approach is suitable for assigning a unique
label to a segmented sequence that contains a single sign.

For the more general problem of sign spotting, we have a

long video sequence containing multiple signs and no in-

formation about when each sign starts and finishes, and we

need to assign a label to each frame in the sequence.

We propose to extend the classification method in the

previous section with a temporal scanning window, starting

at the frame to be classified. Formally, let D ∈ DE be a

(long) data stream, we define a scanning window on D as a

function that generate a sub-stream W : DE × N → DE of

length Q, such that:

WQ(D, i) = 〈Dj〉i+Q
j=i (4)

where Dj ⊂ SE are itemsets on E . It follows from this defi-

nition of the scanning window that any frame i ∈ [1..|D| −
Q] in the sequence will be contained in exactly Q windows.

Each frame i in the sequence D is then assigned a label

λ ∈ L as the majority vote of the HSP-Forest over all Q-

windows that contain this frame:

ΦQ(F,D, i) = argmax
λ∈L

i∑
k=i−Q

I [Φ(F,WQ(D, k)) = λ] ,

(5)
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(b) Sequential extension of S.

Figure 3: Methods for extending a SP or SIP.

5. Learning the HSP Forest
In this section, we describe the method for learning a

set of HSP-Trees that will be linearly combined together

into a strong classifier within the Boosting framework. Let

us assume a training set X ⊂ DE , with N training ex-

amples: X = {Xi}Ni=1, where Xi ∈ DE is a sequence

of D-dimensional binary feature vectors (|E| = D), fea-

tures which will be detailed in sec. 6. The length of the se-

quence Xi is denoted as |Xi| and we define Xi = (xi)
|Xi|
i=1 ,

xi ∈ {0, 1}D. Associated with the sequences in X, we have

a set of labels Y = (yi)
N
i=1, yi ∈ L and a normalised set

of example weights W = (wi)
N
i=1, where

∑X
i=1 wi = 1.

For convenience, the weight of an example X is denoted as

w(X) and its label as y(X). We also define the function

λ : X → L, that gives the most frequent label in a set of

examples X:

λ(X) = argmax
c∈L

∑
X∈X

I [y(X) = c] (6)

5.1. Building the HSP-Tree

HSP-Trees are built in a manner similar to typical deci-

sion trees, where the input X is recursively split between se-

quences that contain a given SIP X+ = {X ∈ X|S � X},
according to Def.4, and the others X− = {X ∈ X|S ��
X}. The learning algorithm finds the SIP S that provides

the split of the training set with optimal Gini criteria.

For efficiency, the optimal SIP is learnt in two steps:

the first step finds the optimal SP irrespective of intervals

(sec. 5.1.1), the second optimises SIP intervals from the

training data (sec. 5.1.2).

5.1.1 Optimally Extending SIPs

This algorithm sequentially extends existing a (possibly

empty) SIP in order to maximise the Gini index. We define

two ways of extending a SIP: 1) adding new items to an

existing itemset (static extension); 2) adding a new itemset

before, between or after its itemsets (sequential extension).

Static extension: Let S =
〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
be an SIP of length L, t ∈ [1, L] be the itemset index

of S to extend with the new item d ∈ [1, D]. We can

produce a static extension of S at itemset t called S′ =〈
〈S′i〉

L
i=1 , (αi, βi)

L−1
i=1

〉
where:

S′i =
{

Si if i �= t
Si ∪ {d} otherwise

(7)

This is shown in Fig. 3a. This operation of a static extension

is denoted using the ∪st
t operator: S′ = S ∪st

t d.

Sequential extension: Let S =〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
be an SIP of length L, and

{d}, d ∈ [1, D] be a new itemset to insert in S at a location

t ∈ [0, L]. We can produce a sequential extension of S,

defined as S′ =
〈
〈S′i〉

L+1
i=1 , (α′i, β

′
i)

L
i=1

〉
such that:

〈S′i〉
L+1
i=1 =

⎧⎨
⎩

({d}, S1, ..., SL) if t = 0
(S1, ..., St, {d}, St+1, ..., SL) if 0 < t < L

(S1, ..., SL, {d}) otherwise
(8)

This is shown in Fig. 3b. This operation is denoted by

the ∪se
t operator, with S′ = S ∪se

t d.

The proposed learning algorithm makes use of these two

extension operators ∪st
t and ∪se

t to find the optimal exten-

sion S′ = S ∪s′
t′ d

′ of the existing SIP S, according to the

criterion γ, such that:

d′, t′, s′ = argmin
d∈[1,D],t∈[0,L],s∈{st,se}

γ(S ∪s
t d,X) (9)

Note that temporal interval values are ignored at this stage,

and will be optimised in the next step.

5.1.2 Configuring Interval Values

The next step requires an optimisation of the interval values

(αi, βi)
L−1
i=1 of the SIP S. First, we determine the minimum

and maximum intervals between an SIP’s itemsets for a sin-

gle sequence:

Theorem 1. Let X = (Xi)
N
i=1 be an example sequence of

length N and S =
〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
be a length L

SIP. Let K ′ = (k′i)
L
i=1 and K ′′ = (k′′i )

L
i=1 be the earliest

and latest detection index set of (Si)
L
i=1 respectively. Then,

the maximum possible interval value between itemsets Si

and Si+1 is Δi = k′′i+1 − k′i.

Given an SIP S =
〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
and a set of

training examples X = (Xi)
N
i=1, Theorem 1 provides the

maximum intervals for each pair of consecutive itemsets in

S for each training example Xj . If we denote the maximum

192119271935



interval value between Si and Si+1 in example Xj as Δj
i ,

then, our search range for the intervals (αi, βi) is given by:

σi = [0, max
j∈[1,N ]

(Δj
i )] (10)

The optimisation of the intervals (αi, βi)
L−1
i=1 of S is de-

scribed in Algo. 1: First, all intervals are initialised to

(1,∞) such that S is equivalent to an SP.Then, the optimal

values for each interval (αi, βi) are determined sequentially

whilst holding all other interval values constant.

Algorithm 1 Sequential Interval Optimisation Algorithm

Input: Training Examples X = (Xi)
N
i=1

Input: a SP: S = 〈Si〉Li=1

Output: a SIP: S∗ =
〈
S, (αi, βi)

L−1
i=1

〉
.

Initialise intervals of S∗: ∀i ∈ [1, L− 1], αi = 1, βi = ∞
for i ∈ [1, L− 1] do

Let γ′i be the Gini impurity with αi = α′ and βi = β′.
Let σi (Eq. 10) be the search range for the ith interval.

Set (αi, βi) ← argminα′∈σi,β′∈σi
γ′i

end for
Return S∗

5.1.3 HSP-Tree Building Algorithm

Using the tools provided in sec. 5.1.1 and 5.1.2, we describe

the HSP-Tree learning algorithm in Algo. 2. At each non-

leaf node, the dataset is split according to the node’s SIP S′,
that is extended from its closest positive ancestor’s SIP S
(possibly being the empty SIP if the node is connected to

the root by negative links only), in such a way as to greed-

ily optimise the Gini criterion, as explained in sec. 5.1.1

and 5.1.2. Both subsets X+ and X− resulting from this

split are then sent to the positive and negative children of

the node (respectively). The positive child node will then

further extend S′ on the subset X+ and the negative child

extends S on the subset X−, splitting recursively the input

space with more specific SIPs.

This process continues until one of 3 termination criteria

is met: 1) maximum tree-depth Omax is reached; 2) training

subset is smaller than minimum size Nmin (set here as 1);

or 3) the training subset is “pure” (i.e., contains samples that

all belong to the same class).

5.2. Boosting HSP-Forests

In order to build the HSP-Forest, a modified version of

the multi-class AdaBoost method is used. Here, the weak

learner selection procedure is replaced by Algo. 2 for it-

eratively building appropriate HSP-Trees, given a set of

weighted and labelled examples.

Algorithm 2 HSP-Tree Learn Algorithm

Input: Training Set: (X, Y,W )
Output: HSP-Tree T
Queue element: (Node, Train Subset, Depth)

Initialise empty SIP for root node: SI = 〈〈〉 , ()〉.
Set root node R = (SI , λ(X))
Initial HSP-Tree Nodes: N = {R}
Initial HSP-Tree Edges: E = ∅
Initialise queue: Q = {(R,X, 1)}.

while Q 	= ∅ do
Remove last item of Q: (Ncur,Xcur, Ocur)

Let Scur = Ŝ∗ [Ncur]
if |Xcur| ≤ Nmin or Ocur ≥ Omax or γ(Scur,Xcur) = 0
then

Update node label: Ncur ← (Scur, λ(Xcur))
else

Update Ncur with optimal extension of its SIP:
Extend Scur using Eq. 9, giving new SIP: S′.
Configure the intervals of S′ using Algo. 1

Update node content: Ncur ← (S′, λ(Xcur))
Partitions of Ncur : X+

cur and X−cur .

Update the queue:
New nodes: L = (Scur,−1) and K = (S′,−1)
N = N ∪ {L,K}.

E = E ∪ {(Ncur, L,−), (Ncur,K,+)}.

Q = Q∪{(K,X+
cur, O

cur+1), (L,X−cur, O
cur+1)}.

end if
end while
Return HSP-Tree: T = (N,E)

6. Experiments

The experiments in this section aim to evaluate the per-

formance of the proposed method for spotting individual

signs in sequences. To this end, three publically available

databases are used: a 40-sign dataset with multiple sub-

jects [8], allowing us to evaluate accuracy in subject de-

pendent and independent settings; a large 981-sign dataset

evaluating the scalability of our approach [8] and finally

a database for spotting signs within continuous sign lan-

guage sentences [1], allowing us to evaluate how well co-

articulation effects are handled.

6.1. Databases and Features

The first dataset (Dataset I) is based on 40 German Sign

Language (DGS) signs; a mixture of both similar and dis-

similar signs. Data from 14 subjects were captured using

a Kinect camera, with 5 repetitions per sign. None of the

subjects were native signers, leading to large variations in

signing styles. The resulting dataset is challenging, featur-

ing both inter and intra signer differences. In this dataset,

the 24D binary feature vector in [8] was used (Fig. 4a),

which consists of: 1) 6 features encoding the relative 3D

movement of each hand; 2) Positional proximity to 9 joints;
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(a) Dataset I Features (b) Dataset II Features

Figure 4: Features used for both datasets

3) dual hand features of both hands comming together, mov-

ing apart and synchronised movements.

The second dataset (Dataset II) contains videos of a na-

tive signer performing 981 Greek Sign Language (GSL)

signs (a mixture of similar and dissimilar signs) with 5 rep-

etitions. The 65D binary feature vector (Fig. 4b) from [8]

was used in this dataset, which consists of: 1) 8 features

of 2D relative motion extracted from tracked hand trajec-

tories; 2) 4 dual handed bimanual features encoding both

hands moving together, apart and in synchrony; 3) 40 fea-

tures of the hand location on a grid placed relative to the

head; 4) 12 features for representing different hand-shapes

based on HOG features classified using decision forests.

The third dataset (Dataset III) contains 201 videos, each

containing a native signer performing a continuous sign lan-

guage sentence along with tracked hands and head posi-

tions. This dataset is challenging due to co-articulation that

is present across similar signs. Additionally, unlike HMMs,

we do not make use of any grammar model, as this work

is concerned with sign spotting solely. Although there is a

total of 104 signs, most occur only few times in the dataset,

making training and testing difficult. Thus, a subset of signs

with at least 3 training instances was chosen, resulting in a

total of 48 signs. The features used are similar to the relative

motion features and hand shape features used in Database

II.

6.2. Experimental Setup

For experiments on Dataset I and II, the original dataset

was split into two partitions: the training set and test set. A

multi-sign test sequence is produced by concatenating sin-

gle sign sequences ordered by a random permutation se-

quence of all the sign labels. The label permutation se-

quence will also act as the groundtruth sequence for this

multi-sign sequence.

For Dataset I, we partition the dataset in two ways: 1)

Leave-one-out signer dependent, where an example from

each sign and subject is removed and assigned to the test set;

2) Cross-validated signer independent, where all examples

from a subject are assigned to the test set. For Dataset II, we

partition in the same manner as the signer dependent set in

Dataset I, but evaluate the performance at different number

of signs ranging from 100 to 981. For both Dataset I and

II, the accuracy is evaluated similarly to word accuracy in

HMMs. In Dataset III, we evaluate the results based on the

percentage of true positives and number of false positives of

signs from the output sequence compared with the ground

truth labels. For all the experiments, 200-tree HSP-Forests

were trained with maximum depth of 20 and minimum ex-

amples of 2. For comparisons against state-of-the-art, SP-

Tree-based classifiers were also trained using the same set-

tings.

Additionally, we also compare against the performance

of HMMs, using the open-source speech recognition sys-

tem RASR [10]. The HMMs are trained using single Gaus-

sian densities in Bakis structure with two consecutive states

sharing the same distribution. The number of states reflects

the actual length of the training sequences. The binary fea-

tures are PCA reduced to maintain 99% of their original

variance and a 0-gram language model for equal likelihood

of all classes is used to simulate the lack of a language

model.

6.3. Experimental Results

The subject dependent results on Database I can be seen

in Fig. 5a. It can be seen that the SP-Tree method performs

poorly when the signs boundaries are not known, which

is the case for a sequence of signs. In contrast, the per-

formance of the proposed HSP-Trees are consistently bet-

ter, by a significant amount, giving an average accuracy

of 71.1% vs 26.9%. In comparison, the performance of

HMMs in this experiment was 63.0%. In the subject in-

dependent tests (Fig. 5b), we again see that the proposed

method is consistently better than the SP-Trees, with an ac-

curacy of 54.1% vs 39.9% (HMMs: 49.3%). For the ex-

periments on Dataset II, HSP-Trees again consistently out-

perform SP-Trees, with an average of 35% more accurate

than SP-Trees. This divergence in accuracy is present even

when the number of signs are large (981 signs), with HSP-

Trees having an accuracy of 72% against 23.56% for the

SP-Trees and 73.7% for HMMs. However, the computa-

tional simplicity of the HSP-Trees resulted in a sequence of

981 signs requiring only 2 minutes for processing against

20 minutes for HMMs. Analysis of the output results for

both Dataset I and II showed that the errors of HSP-Trees

occured at frames around the boundaries between two signs.

The results for Database III can be seen in Fig. 5c. Here,

we show results across different top-N signs (x-axis). As

can be seen, the proposed method obtains an average ac-

curacy of 71.4% with an average of 8 false positives when

a winner-takes-all approach is employed. The results were

obtained using only small numbers of training instances, co-

articulation factors and importantly without the use of any

language model.
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(a) Subject Dependent Accuracy Results
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(b) Subject Independent Accuracy Results
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Figure 5: Sign sequence accuracy for the Dataset I test sequences for both (a) subject dependent and (b) subject independent

results. The true positive and false detections for different top-N signs of Dataset III is shown in (c).

7. Conclusions and Future Work
This article presented a new framework for learning the

temporal signatures that characterise signs, applied to the

task of spotting signs from a defined lexicon in an unseg-

mented video. The proposed method is efficient, robust

to unseen users and allows for sharing discrimative sub-

patterns between learnt signs. This framework extends on

the state-of-the-art SP-Trees approach [8] as follows: 1) an

extension of SPs called SIPs, that includes interval infor-

mation, increasing the discriminative power of learnt pat-

terns. 2) a tree structure called HSP-Trees allowing generic

subsequence sharing between patterns (SP-Trees only allow

sharing between patterns with the same initial sequence).

3) an efficient algorithm for learning HSP-Trees using sub-

sequence sharing between classes for learning on large

numbers of examples and categories (981 classes). Eval-

uation of the method on continuous sign sentences, demon-

strates that it can cope with co-articulation. The proposed

approach was shown experimentally to yield significantly

higher performance than SP-Trees for unsegmented SLR,

in both signer dependent (49 % improvement) and indepen-

dent datasets (12% improvement). Additionally, compar-

isons with HMMs have shown that the proposed method

either equal or exceed the accuracy of HMMs, in signer de-

pendent (71% HSP vs 63% HMM) and signer independent

( 54%HSP vs 49%HMMs), with significantly reduced pro-

cessing time: (2minutes HSP vs 20 minutes HMMs for pro-

cessing 981 signs). Future work will concentrate on elimi-

nating the spurious labels at sign boundaries, integration of

language models into the HSP-Trees and extensive evalua-

tions on other continuous sign datasets.
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