
Generalised Pose Estimation Using Depth

Simon Hadfield and Richard Bowden

Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford,
England, GU2 7XH

{S.Hadfield,R.Bowden}@surrey.ac.uk

Abstract. Estimating the pose of an object, be it articulated,
deformable or rigid, is an important task, with applications ranging from
Human-Computer Interaction to environmental understanding. The idea
of a general pose estimation framework, capable of being rapidly re-
trained to suit a variety of tasks, is appealing. In this paper a solution
is proposed requiring only a set of labelled training images in order to
be applied to many pose estimation tasks. This is achieved by treating
pose estimation as a classification problem, with particle filtering used
to provide non-discretised estimates. Depth information extracted from
a calibrated stereo sequence, is used for background suppression and
object scale estimation. The appearance and shape channels are then
transformed to Local Binary Pattern histograms, and pose classification
is performed via a randomised decision forest. To demonstrate flexibility,
the approach is applied to two different situations, articulated hand pose
and rigid head orientation, achieving 97% and 84% accurate estimation
rates, respectively.

Keywords: pose, depth, stereo, head, hand, classification, particle filter,
gesture, lbp, rdf, background suppression, object extraction, segmenta-
tion.

1 Introduction

In this paper, the problem of performing pose estimation on complex objects
using classification is addressed. This is a difficult problem due to the variability
of objects, which may be rigid, deformable or articulated. To solve this problem,
the pose space is segmented into regions, and the problem is treated as one of
classification.

The proposed framework generates depth via dense stereo point correspon-
dence. These depth maps are used in several ways, to suppress image clutter by
removing pixels at depths above or below the detected objects depth, to estimate
the expected scale of objects, and to provide an additional channel of features
during pose classification.

In [13] and [7] pose estimation is performed in a model based framework.When
applied to articulated objects such as the human hand, this allows estimation of
each joint angle individually. However, a model based framework is unsuitable
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for generalised pose estimation, because of the need to build and integrate a
specific object model.

In [3] pose estimation is treated as a regression problem, where the output
of the regressor corresponds to the pose parameters. This requires only labelled
training data in order to be applied to a new problem, making it a more suitable
approach for generally applicable pose estimation. Unfortunately if the pose to
be estimated has multiple parameters, regression is not simply applied. Few
regressors are able to output multiple parameters, meaning a regressor must be
used for each output. Again this limits generalisation, if the tasks are sufficiently
different.

In this paper a classification methodology is used. As with regression, this
means a system may be retrained to a new problem simply by providing labelled
examples. However unlike regression the output values need not be continuous,
allowing multi-dimensional poses with a single classifier. A pose space of any di-
mensionality may be segmented into regions, each assigned a label. The resulting
tensor can then be flattened into a list of class labels. This way the output class
of the classifier simultaneously encodes all pose parameters. The drawback of
this, is the discretisation of the pose parameter outputs, this is countered using
tracking techniques as discussed in section 2.5.

Two different, widely encountered, pose estimation tasks, are used to test the
proposed framework. Head orientation estimation involves a rigid object, and can
be used in gaze estimation, useful in studying consumers response to billboards
[5], and employees behaviour during meetings [1]. Hand pose estimation, pro-
vides a problem with an articulated object, and is useful in Human-Computer
Interaction and Sign Language Recognition. Although the head has fewer de-
grees of freedom (especially considering that roll does not affect gaze direction),
a useful framework must be able to distinguish small movements of the head.
This leads to a large number of classes with high inter-class similarities. On the
other hand, the hand shape problem has a small number of classes each with
very wide intra-class variations due to the objects articulation.

The remainder of this paper is structured as follows. Initially, the overview
of the general pose estimation framework is explained in section 2, then each
element is discussed in turn (2.1 to 2.5). The results, section 3, examines the
performance of different feature variants, and the value of depth information in
each of the two tasks. Then the application of particle filtering techniques 3.2
is discussed. Section 4 provides information on the interactive demonstration
system. Finally conclusions are drawn on the general applicability of a pose
estimation framework based on classification, and the use of depth.

2 Framework Overview

The proposed pose estimation framework, makes extensive use of depth data,
which provides fast and simple background suppression [6] and a useful prior on
object scale. During testing, the usefulness of depth as an additional channel for
generating object features is also demonstrated. As in figure 1, a pair of cam-
eras capture a left and right image of the scene. Stereo point correspondence is
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Fig. 1. Proposed framework, for real time, generalised pose estimation. Example ap-
pearance and depth images are included at each stage.

then performed to generate the depth image. Object detection extracts object
candidates, and background suppression is performed using the depth map. The
appearance and depth images for the extracted object are then converted to a
Local Binary Patterns (LBP) [9] texture representation. This texture represen-
tation is input to a previously trained randomised decision forest classifier [2].

Due to the ambiguity of adjacent poses, the discretised pose classification
can then be integrated into a particle filter framework [4], to apply temporal
constraints and provide a continuous output estimate.

2.1 Stereo Correspondence and Depth Estimation

The depth information is extracted via stereo point correspondence, from a
PointGrey Bumblebee2 stereo camera system. The mask size used causes an
unfortunate trade-off between sparsity and accuracy. Smaller masks are harder
to match, but provide finer details. In order to provide a more dense depth im-
age, stereo reconstruction is performed with various mask sizes. The images are
then combined, using the smallest mask size wherever possible. Figure 2 demon-
strates this idea, showing a sequence of images each of which has had unmatched
pixels from the previous image, filled in by a depth map captured at larger mask
size.

A set of depth maps D was generated from the set of stereo masks S by
performing stereo point matching on the left and right images (L and R respec-
tively). Where S = {15× 15, 7× 7, 5× 5, 3× 3} and stereoSi represents stereo
matching with the ith mask.

Di = stereoSi (L,R) (1)

The output depth map O is then created by selecting each pixel value Op from
the corresponding pixel valuesDp

i , whereDi is the depth map from the ith stereo
mask.

Op =

{
Dp

i Dp
i �= NULL

Dp
i+1 otherwise

(2)
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Fig. 2. Combining multiple depth maps. Each successive image is the previous image,
combined with an of higher mask size.

2.2 Object Detection and Extraction

If the object whose pose is to be estimated, is a subregion of a larger image, then
initially the object must be detected. This step is task specific. In the example
experiments, head location is extracted using the well known, cascade of boosted
haar-feature classifiers technique [12].

For hand detection a similar detector could be used, however due to the vari-
ability possible in human hands it requires large amounts of data to train, and
performs significantly worse than with faces [11]. Many other hand detectors
simplify the problem, by using segmentation techniques. Segmentation can be
performed using background suppression, coloured gloves, motion detection, or
skin segmentation [8]. In every case this imposes a restriction on general ap-
plicability. Instead, in this paper depth images are used to segment the hand,
utilising the fact that when gesturing at the system, the hand is extended in
front of the body.

Using the weak perspective camera model the scale (S) of the object in the
image plane stretches between two depths (z2 and z1). Thus the resultant scale
of an object in the image plane, can be determined by the distance in depth,
from an object of known image scale, if their base scale ratio (B) is known, as
in equation 3, where f is the focal length of the camera. In this case the base
scale ratio from the face to the hand is taken as 1.2, based on the measurements
of the ”Vitruvian Man”.

S = B

(
1 + f

(
1

z2
− 1

z1

))
(3)

In both tasks, the depth is then used for background suppression. After an
object is detected, the median depth of that object is taken. Every image point,
with a depth distance further from the median than the expected object size, is
suppressed in both the intensity and depth images. This simple heuristic allows
operation in noisy and cluttered scenes, without the need for more complicated
detection strategies. Background clutter of similar depth to the object is not
suppressed by this method, however the objects location and scale have already
been estimated, so there is generally little clutter within the small region of
interest. See section 3.2 for the specific performance increase using background
suppression.
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Figure 3 illustrates the hand detection and segmentation. In the first image,
the face and closest region of depth are detected, represented by the red cir-
cle and yellow dot respectively. The scale of the hand is estimated from the
depth difference, and represented by the green box. The second image shows the
intensity after background suppression is performed on the 2 objects.

(a) (b)

Fig. 3. Hand detection and segmentation: (a) Unsegmented depth image showing face
detection (red circle) and nearest point detection (yellow dot), with estimated hand
scale (green box). (b) Hand and face appearance after background suppression via
depth.

2.3 Feature Extraction

For feature extraction, Local Binary Pattern (LBP) texture features were se-
lected, providing invariance to monotonic value changes, translating to resistance
to illumination changes in appearance and object distance in depth. These fea-
tures are highly customisable, with the possibility for rotational invariance[10],
tunable accuracy and multiple scales. Feature extraction is performed in both
the appearance and depth channel.

LBPs describe an image in terms of a histogram of micro-texture components
(edges, corners, dark points and light points in the intensity channel, ridges,
contours, peaks and depressions in the depth channel). For basic LBP features,
every pixel in the image is labelled by taking a 3× 3 neighbourhood and thresh-
olding each point by the value of the centre pixel. The result is an 8 bit long
binary number labelling the pixel.

LBP =
7∑

i=0

{
2i fi ≥ fc
0 otherwise

(4)

LBP features were extended to capture texture components at different scales,
and also to allow for variable accuracy. The operator LBP(P,R) indicates that,
rather than a 3× 3 neighbourhood, P points are sampled uniformly around the
centre, at a radius R. So R controls feature scale detected, and P controls the
length of the output label (and so the size of the feature vector). However there
is a limit on the detail possible in the features, dependant on the scale. If P is
greater than the number of distinct pixels falling along a circle of radius R, then
the new bins being added to the feature histogram are redundant
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It was also shown that for most images, 90% of the LBP labels tend to belong
to a small subset of the 2P possible patterns. These patterns were termed “uni-
form” LBPs and are characterised by having at most two transitions between 0
and 1 in their binary representation. Ojala et al. claim that the removal of these
unstable histogram bins also improves classification performance, however our
experiments show that if the dataset is large enough, their removal decreases
performance.

Another variant of the LBP operator is to add rotational invariance. In order
to achieve this, the LBP for every pixel is bit-shifted until the minimum value
is found, and this minimum value is used as a label. Equation 5 defines this
conversion, where shifti represents a binary shift of i bits.

LBP ri = minP
i=0

(
shifti

(
LBP (P,R)

))
(5)

This gives an even greater reduction in feature vector size than uniform LBPs.
It is also possible to apply both variants, and use rotationally invariant, uniform
LBPs. Histograms of LBP features, for a single LBP variant v, are labelled LBPv.
Several different variant histograms may be concatenated, to provide additional
features. These multi-variant histograms may be computed across a subregion r
of the object, providing a description of the local texture in that region labelled
HRr. Concatenating these region histograms together forms the feature vector
HIi for the image i. Finally concatenating image histograms for both the depth
and appearance images gives the objects feature representation H .

HRir = {LBP0, . . . , LBPv}
HIi = {HR0, . . . , HRr}
H = {HI0, HI1}

(6)

In section 3, the exact effects of the specific feature variants on performance in
different tasks is demonstrated. Additionally, by normalising the histogram of
textures, the features become invariant to the scale of the detected object.

2.4 Pose Classification

A random forest is an ensemble classifier where a large number of decision trees
are grown based on random subsets of the data. This allows each of the trees to
capture different aspects of class separability. The outputs of these weak classi-
fiers are then combined to act as a strong classifier. In this paper the randomised
forest toolkit from alglib.net was used, with a forest of 100 trees, grown at a ratio
of 0.6.

The advantage of a random forest, is that it provides a likelihood distribution
L over all classes c, given the input observations H . This allows likelihoods to be
estimated between classes, somewhat mitigating the drawback of a classification
based approach. This likelihood distribution also proves to be an advantage in
section 2.5 where it is used in a particle filtering framework.

L(c) = P (H |c) (7)
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2.5 Particle Filtering

The particle filter takes the output of the classification stage as an observation
likelihood, and combines it with the prior probability of the class P (c), based
on the previous system state and system dynamics. From Bayes theorem, the
probability of each class given the new observation, is given by:

P (c|H) ∝ L (c)P (c) (8)

The particle filter approximates P (c) with a number of weighted hypotheses,
which are modified from the previous state based on the dynamics of the sys-
tem with some stochastic diffusion. A resampling step is used to ensure that the
higher probability portions of the distribution are more accurately estimated
at the next iteration, using a larger number of hypotheses. Each hypothesis in
the previous iteration generates a number of new hypotheses, based on it’s nor-
malised weight. Equation 9 illustrates the resampling technique, where Quanti
represents the ith quantile of a distribution. W is the function of normalised
hypothesis weights, n is the total number of hypotheses, and St is the set of
hypotheses at time t.

St+1(i) = St

(
Quanti/n

(∫
W

))
(9)

Figure 4 shows an example output from the pose classification system (a), being
applied to the particle filter. Initially the particles are uniformly distributed.
After the classification output is applied, the particles converge towards the
peaks of the distribution (b), with more particles centred around higher peaks.
This pose tracking allows the pose estimate to be continuously valued, despite
initially using a discrete classification methodology.

(a) (b)

Fig. 4. The likelihood distribution (a) across the pose classes, is applied to the pose
tracker. The positions of the hypotheses after application of the new likelihoods is
shown in (b).

3 Results

Datasets were captured for each task, as there are few pre-existing pose datasets
containing appearance and depth information. Both datasets are comprised of
subjects from various ethnicities and genders. Performance was measured using
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5 fold cross validation, with a random split of 70% training, 30% test images.
The training set in each case was enriched by adding small amounts of scale and
translation variation to each image. Specifically, each image was translated in all
4 directions by 5% and 10% of it’s size, creating 8 additional images, and then
the image was enlarged and shrunk by 5% and 10% producing an additional 4
images. Specific details about the individual datasets are provided at the start
of the following two sections.

3.1 Hand Pose Classification Results

A test situation for hand pose was required, where the lexicon consisted of a
small number of static gestures. A Rock, Paper, Scissors game was determined
as a suitable candidate for the trial (see section 4). A dataset of depth and
appearance images was created for each of the 3 poses. Seven subjects, includ-
ing male and female Caucasians, one Indian, one Nigerian and one Asian were
asked to create the specific gesture at different orientations and positions. In
total 2100 appearance and depth image pairs were captured per symbol (before
enrichment). A random selection of image pairs from this dataset is shown in
figure 5. Performance was measured with a number of different feature variants,
as shown in table 1.

The first 3 rows of the table illustrate the value of depth. Testing entirely
without the influence of depth is impossible in this task, as it is required for
object detection, however shape features may be removed from the classifica-
tion stage. Classification based on depth and appearance features both achieve
respectable performance levels, while the combination of the two improves over
either alone.

Standard LBP features provide excellent performance. Utilising features across
scale does provide slightly improved performance. In this task, class discrimina-
tion is based upon finger location, which may be poorly represented at higher
scales. Using Uniform LBPs caused little change, implying that micro-texture
components useful for determining finger positions are mostly uniform patterns.
This is useful, as removing these patterns means a smaller feature vector, im-
proving both training and running times for the classifier.

Rotationally invariant LBPs perform significantly worse in all cases, compared
to their rotationally variant counterparts. This is likely because rotational vari-
ations are so well represented in the dataset, that implementing the invariance
within the features is unnecessary.

The confusion matrix is shown in table 2. The performance on the rock and
paper class is significantly higher than on the scissors class. Although scissors
examples suffer from higher class confusion, few rock or paper images are clas-
sified as scissors. The most prominent features of the scissors class are the two
extended fingers. Due to pose, often only the tips of these fingers are visible. So
the number of image points useful for identifying a scissors shape may be low.
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(a) (b) (c)

Fig. 5. Two randomly selected appearance and depth image pairs from the dataset
for (a) Paper, (b) Scissors and (c) Stone. The scale variation between images of the
dataset is apparent here.

Table 1. Hand pose classification, operating with different variants of LBP features.
LBPU are uniform, and LBPR are rotationally invariant LBPs.

Feature type Average correct classification Standard deviation

Un-enriched, Greyscale channel 0.8929 0.0079

Un-enriched, Depth channel 0.8623 0.0054

Un-enriched, Both channels 0.9083 0.0040

LBP(8,1) 0.9689 0.0006

LBPU (8,1) 0.9656 0.0013

LBPR(8,1) 0.8865 0.0018

LBPUR(8,1) 0.8593 0.0014

LBPU (8,1) and LBPU (8,2) 0.9693 0.0043

LBPR(8,1) and LBPR(8,2) 0.8932 0.0022

Table 2. Confusion matrix of hand classification, using uniform, multi-scale (8,1) (8,2)
LBPs. Rows are predicted classes and columns are true classes.

Rock Paper Scissors

Rock 0.9740 0.0102 0.0188
Paper 0.0200 0.9822 0.0315
Scissors 0.0060 0.0076 0.9497

3.2 Head Orientation Results

The head pose parameters affecting pose direction are pan angle and tilt angle,
these 2 dimensions were segmented into a series of classes at 10 degree intervals.
Five subjects, including male and female Caucasians, A Nigerian, and a Middle-
eastern subject, were required to sit in a fixed position and look at markers
placed at each class angle. Haar feature cascades picked out the faces and the
background was suppressed using depth. This dataset was far sparser than the
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Table 3. Head pose estimation on isolated images, using different types of LBP features
and with different usage of depth. LBPU are uniform, and LBPR are rotationally
invariant LBPs.

Test mode Average exact
classification

Classification
within 10 degrees

Standard
deviation

No seg. colour features 0.1464 0.6584 0.0202

No seg. depth and colour features 0.1911 0.7225 0.0069

Seg. colour features 0.1691 0.6801 0.0145

Seg. depth features 0.2052 0.7064 0.0114

Seg. depth and colour features 0.2010 0.7398 0.0113

LBP(8,1) 0.2010 0.7398 0.0113

LBPU (8,1) 0.2845 0.8364 0.0052

LBPR(8,1) 0.1981 0.6957 0.0103

LBPUR(8,1) 0.2817 0.8107 0.0062

LBPU (8,1) and LBPU (8,2) 0.2870 0.8362 0.0094

LBPR(8,1) and LBPR(8,2) 0.2043 0.7017 0.0156

hand data, with 153 different classes, and 1-3 images per subject, per class (2200
pairs of appearance and depth images in total). This sparse dataset makes the
task far more difficult, and reinforces the need for a classification based method,
capable of operating with little training. As discussed above, situations with
sparse datasets such as this, may use feature customisation to incorporate some
invariances which are not in the dataset, directly into the feature representation.

The other difficulty with this dataset is the inconsistency of the data. Ten
degrees rotation is difficult to capture accurately for the human head, as subjects
naturally tend to move their eyes, rather than their heads when looking at close,
new objects. This means the dataset tends to have movement between classes
of anywhere from 0 to 10 degrees, with the remainder made up by eye motion.
Randomly selected example images from the dataset are shown in figure 6.

(a) (b) (c)

Fig. 6. Three randomly selected appearance and depth image pairs from the head
orientation dataset. (a) -90 degrees pan, -10 degrees tilt. (b) +20 degrees pan, +30
degrees tilt. (c) +10 degrees pan, -20 degrees tilt. Note that scale variations are included
in the dataset.
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Head Pose Classification. Tests were initially performed on isolated images,
using a range of feature variants (Table 3). Classification performance is listed
for classifying within 10 degrees of the listed value, reflecting the probable range
within the data, as mentioned previously. Using depth to suppress the back-
ground from detected objects improves performance by 1%-2% by removing
clutter from the images. Using depth as the only feature channel, is more accu-
rate than the standard appearance channel features. However the most effective
system utilizes the combination of both feature channels to provide 4% improved
performance.

Standard LBP features achieve a respectable 74% classification rate. As ex-
pected, the sparse dataset is unable to cover the variations in the classes. Cus-
tomising the features to suit the task, yields improved results, with uniform
LBPs providing the best performance. Due to the sparseness of the dataset,
non-uniform feature bins are unstable, and when present, are mistakenly chosen
as discriminatory.

As in the hand pose tests, the results show only a marginal improvement when
using features from multiple scale, while using rotationally invariant LBPs causes
a considerable drop in performance. This is to be expected as the test dataset
does not contain roll variation, and so the rotational invariance is unnecessary.

Pose Tracking Framework. Head pose estimation was also performed on a
continuous sequence, rather than a set of isolated images. For this test the parti-
cle filtering framework was enabled. The sequence contains partial and complete
occlusions of the subjects face, and also frequent, sudden, changes in direction.
The results are shown in table 4.

Table 4. Head pose estimation on a continuous sequence with andwithout pose tracking

Mode Exact
classification

Classification
within 10 degrees

Average
pan error

Average
tilt error

Per frame classification 0.0885 0.4712 N/A N/A

Pose tracking 0.1081 0.6414 10.0 10.6

As expected, applying temporal constraints is useful when determining the
current pose. As a result, 15% more examples were classified correctly over iso-
lated classification. In both dimensions the average error angle is roughly one
class. Coupled with the fact that 64% of frames are classified within 10 degrees,
it can be inferred that most miss-classified examples lie within two classes.

Figure 7 shows the confusion matrices before (a) and after (b) the pose track-
ing framework was used. The two dimensional arrangement of pan and tilt classes
has been flattened into a vector. The tilt angle changes most rapidly, with the
pan angle changing every 9 classes. This means that points which are 9 classes
apart in the confusion matrix, are in reality only 10 degrees apart. This can
be observed in the confusion matrix by the multiple diagonal lines, at 9 class
intervals.
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Fig. 7. Confusion matrices, (a) without and (b) with pose tracking, for the 153 class
head pose task. Darker pixels indicate greater classification rates. The average correct
classification rates (within 10 degrees) are 47%, and 64% respectively.

In the first image (without tracking) there are fewer diagonals visible, and
each diagonal is more sharply defined. These two features relate to lower av-
erage confusion in tilt and pan respectively. In both cases there are very few
extreme outliers, meaning the classification system is able to accurately find the
correct region of pose space. A prominent feature of the confusion matrices is
the increased number of diagonals present at extreme classes, compared to the
central classes. From this it can be deduced that tilt angle is easily determined
for a frontal face, but for profile faces (high pan angles) there is greater confusion
in the tilt dimension.

4 Demonstration

In order to demonstrate the systems real-time performance, an interactive demon-
stration system was built around the hand pose task. This demonstration uses an
animated avatar as an opponent for a user to play Paper, Scissors, Stone against.
Figure 8 shows an image of the demonstration system in use. A video of the sys-
tem is also available at http://www.youtube.com/watch?v=SRfQFOMSH3A.

Fig. 8. Interactive demonstration of hand pose estimation in a Paper, Scissors, Stone
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5 Conclusions

In this paper, a method was demonstrated, for estimating continuous pose, by
segmenting the pose space into classes and treating it as a classification problem.
The applicability of such a framework to varied pose estimation tasks, and the
rapid retraining time has also proved it a viable method for generalised pose
detection. Such a framework has proven capable of real time performance, with
this implementation, image capture and stereo reconstruction required roughly
200ms, while estimating the pose took on average 5ms.

The usefulness of depth data during pose estimation has been demonstrated,
both as a tool for object extraction, and an additional channel for feature ex-
traction, granting considerable improvements in both tasks. The possibility for
systems built on this framework to be customised to handle inadequate training
data is also apparent, by modifying the features to incorporate extra invariances,
or remove noisy features. Finally, a method for using particle filtering to over-
come the limitations of a classification based approach was proven to increase
performance by incorporating temporal information into the pose estimate.
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