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ABSTRACT
This paper presents a novel adaptation of fuzzy clustering and

feature encoding for image classification. Visual word ambi-

guity has recently been successfully modeled by kernel code-

books to provide improvement in classification performance

over the standard ‘Bag-of-Features’(BoF) approach, which

uses hard partitioning and crisp logic for assignment of fea-

tures to visual words. Motivated by this progress we utilize

fuzzy logic to model the ambiguity and combine it with clus-

tering to discover fuzzy visual words. The feature descriptors

of an image are encoded using the learned fuzzy member-

ship function associated with each word. The codebook built

using this fuzzy encoding technique is demonstrated to pro-

vide superior performance over BoF. We use the Gustafson-

Kessel algorithm which is an improvement over Fuzzy C-

Means clustering and can adapt to local distributions. We

evaluate our approach on several popular datasets and demon-

strate that it consistently provides superior performance to the

BoF approach.

Index Terms— Fuzzy Clustering, Image Classification,

Gustafson-Kessel algorithm

1. INTRODUCTION

The traditional approach to image classification is, use of

‘Bag-of-Features’ (BoF) method to model occurrence statis-

tics of visual words amongst the feature descriptors in an

image. The visual words are representative feature descrip-

tors and commonly equal to the centroid of clusters acquired

by a vector quantization technique like k-means clustering.

Subsequent developments pursued a search for an optimal

set of visual words to model a visual category in images. At

present, better results are obtained by increasing the number

of visual words at the expense of high sparsity and com-

putational cost. An alternative approach to building huge

codebooks is the notion of ‘visual word ambiguity’ which has

been recently introduced by Gemert et al. in [1]. The authors

suggest that visual feature space is continuous and conse-

quently a continuum exists between visual words. Therefore,

Fig. 1. Fuzzy Encoding Schematic: feature vectors from

images are clustered to find cluster centroid and fuzzy mem-

bership function. An image is encoded based on the cumula-

tive membership score of its descriptors. The encoded feature

vector of the image with label is used to train a classifier.

a hard partitioning scheme utilized by BoF is not the best

method to model this data. In BoF the assignment of fea-

ture descriptors to visual words follows a ‘winner-takes-all’

scheme which can also be considered as crisp-logic. Gemert

et al. assign feature descriptors to visual words ‘smoothly’

to model the visual continuum using a kernel associated with

each visual word. This work motivates our research on uti-

lizing fuzzy logic based methods to model this proposed

‘ambiguity’ about visual words. In our approach, see figure

1, the feature descriptors are assigned to a visual word based

on a fuzzy membership function associated with each visual

word. We compute visual words using a fuzzy clustering al-

gorithm, which were developed as a synthesis of fuzzy logic

and clustering algorithms. The feature descriptors from an

image are encoded using the fuzzy membership of each fuzzy

visual word.

In this paper, we present a novel adaptation of the

Gustafson-Kessel (GK) algorithm [2] for building a fuzzy

visual codebook. GK algorithm belongs to the family of

fuzzy clustering algorithms and can be considered an exten-
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(a) Kmeans (b) Fuzzy C-Means (c) Gustafson-Kessel

Table 1. Fuzzy Encoding

sion of the Fuzzy C-Means (FCM) algorithm [3]. We analyze

the classification performance or our approach against the the

standard BoF model on several popular datasets. In addition,

we analyze the variation in performance for different sizes of

visual codebook.

Our principal contribution is adapting the nascent work on

visual word ambiguity, which used intuitively selected ker-

nels, to the well developed field of fuzzy logic. We show

that FCM based feature encoding provides improved perfor-

mance. We build upon this by using GK algorithm which can

adapt to local topology of the feature space.

2. SYSTEM

The typical dataset D utilized for image classification con-

sists of multiple visual categories C, each containing several

positive labeled (γ : I → 1) training images I
⊕

. The nega-

tive labeled (γ : I → −1) training images I� are culled from

remaining categories in the dataset. Local affine invariant fea-

ture descriptor vectors x (ignoring image label), collated from

a balanced sample of I
⊕

and I�, are clustered using each of

Kmeans, FCM, and GK clustering. For each image Ii ∈ D in

the dataset we encode the feature vectors of that image. The

encoded feature vector νi and associated label γi are utilized

to train a binary SVM classifier using an RBF kernel. The

difference amongst the methods lies in the computed cluster

centroids and the membership of a feature vector to each clus-

ter.

3. FUZZY ENCODING

The Kmeans algorithm computes cluster centroids V =
{v1, v2, . . . , vK} and assignment of feature vectors X =
{x1, x2, . . . , xN} to these clusters by minimizing an objec-

tive function:

J(X;V) =

K∑
i=1

N∑
k=1

1i
k ‖ xk−vi ‖2 , 1i

k =

{
1 if xk ∈ vi
0 otherwise

(1)

Each feature vector xk is assigned to exactly one cluster only,

see table 1(a). The encoded feature for an image ν is a dis-

crete valued histogram. In comparison, the FCM algorithm

attempts to minimize the objective function:

J(X;U,V) =

K∑
i=1

N∑
k=1

μm
ik ‖ xk − vi ‖2 , 1 ≤ m <∞ (2)

where U = [μik], and μik is degree of membership of

xk to cluster i. m is a measure of fuzzification, where for

m = 1, FCM is equivalent to kmeans. Using FCM, ν reflects

a degree of membership of feature vectors to various clusters

and consequently is able to model the ambiguity associated

with visual words, as compared to Kmeans. However, FCM

results in hyper-spherical clusters of equal volume, see table

1(b).

Algorithm 1 Gustafson-Kessel Fuzzy Encoding

τ ← 1
repeat

v
(τ)
i ←

∑N
k=1(μ

(τ−1)
ik )mxk

∑N
k=1(μ

(τ−1)
ik )m

Fi ←
∑N

k=1(μ
(τ−1)
ik )m(xk−v

(τ)
i )(xk−v

(τ)
i )T

∑N
k=1(μ

τ−1
ik )m

; 1 ≤ i ≤ K

D2
ikAi

= (xk − v
(τ)
i )T [ρidet(Fi)

1
nF−1

i ](xk − v
(τ)
i )

φk ← {i | Dik = 0}
for k ← 1, N do

if φk = ∅ then
μ
(τ)
ik ← (

∑K
j=1(

DikAi

DjkAj
)

2
m−1 )−1

else

μ
(τ)
ik ←

{
0 if DikAi

> 0
1

|φk| if DikAi = 0

end if
end for
τ ← τ + 1

until ‖ U (τ) − U (τ−1) ‖< ε
for j ← 1,M do

νj ←
∑

μ1jk

γj ←
{

1 if Ij ∈ C
−1 if Ij /∈ C

end for

This simplistic model is unable to represent the compli-

cated topology of visual data, where each cluster roughly cor-

responds to visually distinct object parts that have a unique
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distribution in feature space. Therefore, we employ the GK

algorithm with extends FCM, by replacing the Euclidean dis-

tance by another metric induced by a positive definite ma-

trix A so that hyper-ellipsoidal clusters can be built instead

of simple hyper-spherical clusters only, see table 1(c) [4].

The clusters have an associated norm inducing matrix A =
{A1, A2, . . . , AK}, which provides the inner product norm:

D2
ikAi

= (xk − vi)
TAi(xk − vi) , 1 ≤ i ≤ K , 1 ≤ k ≤ N

(3)

The objective function minimized in GK is:

J(X;U,V,A) =

K∑
i=1

N∑
k=1

μm
ikD

2
ikAi

(4)

Due to the linear dependency between J and A, we con-

strain A to obtain a feasible solution to J . The determinant

ρi = det(Ai) is kept constant, which corresponds to optimiz-

ing cluster shape whilst keeping its volume constant. Ai can

now be expressed as: Ai = [ρidet(Fi)]
1
nF−1

i , where Fi is

the fuzzy covariance matrix of the ith cluster.

Our approach to Gustafson-Kessel fuzzy encoding is pro-

vided in algorithm 1. The encoded features for each image

and associated label {ν, γ} is used to train a classifier.

4. EXPERIMENTS

To demonstrate the efficacy of GK encoding technique we

comparatively evaluate the classification performance of GK

encoding against FCM encoding and the BoF technique.

Since, the focus of the experiments is comparison of clus-

tering and encoding techniques, the choice of the feature

descriptor and the classifier utilized in the experiments was

based on popularity rather then performance. The classifier

utilized is SVM with an RBF kernel. We used the SIFT

descriptor, which is the most popular member of the family

of local affine invariant descriptors. While some other de-

scriptors like LBP, SURF might provide a marginally better

classification performance, the relative performance across

the techniques being evaluated will remain unchanged. We

utilize several popular datasets in the vision community for a

comprehensive evaluation of our approach and compare it to

the performance of the standard BoF technique. The datasets

utilized are Caltech-101 [5]; Caltech-256 [6]; Pascal VOC

2006; Pascal VOC 2010 [7]; and Scene-15. These datasets

vary in terms of number of categories; number of images

within each category; visual domain of categories; inherent

difficulty and together render a comprehensive evaluation of

the techniques.

4.1. Performance across datasets

We compare the BoF, FCM, and GK approaches in terms of

their classification performance across 5 datasets. The results

Fig. 2. Classification performance of GK,FCM-encoding

and BoF for datasets {Scene15, Caltech101, Caltech256,

VOC2006, VOC2010 }.

in figure 2 show the mean accuracy of a cross-validated ex-

periment averaged across all categories of the dataset. The

performance varies across datasets due to the inherent diffi-

culty of each dataset. The fuzzy encoding methods, FCM

and GK, consistently outperform BoF on all datasets. This is

sound empirical support for the efficacy of the fuzzy encod-

ing approach. Note that GK performs marginally better than

FCM on almost all the datasets. With optimization of the co-

variance matrix for each cluster in GK, we expect the margin

of improvement provided by GK to improve further.

4.2. Performance across categories

The graphs in table 2 show the comparative performance

of BoF and GK approaches for each visual category in the

datasets: VOC2006, VOC2010, and Scene15. The absolute

and relative performance of both BoF and GK varies across

the categories due to the variation in content and complexity

of each category. GK is observed to consistently out perform

BoF in almost all categories.

4.3. Visual dictionary size

In this experiment, we analyze the relation between the vi-

sual dictionary size or the number of fuzzy visual words and

classification performance of the encoding techniques consid-

ered. The set of codebook sizes considered is {16, 32, 64,

128, 256, 512 }, and the dataset utilized is Caltech101. The

graph present the average accuracy across all categories in

the dataset for each codebook size. GK performs better than

BoF for all dictionary sizes. In addition, there is a gradual

improvement in performance as dictionary size increases.
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Table 2. The classification performance of BoF, FCM, and GK approaches across the visual categories in a dataset for the

VOC2006, VOC2010, and Scene15 datasets. The graphs shows the mean accuracy using a cross validation scheme. The

categories are shown on the x-axis. The yellow bar corresponds to the BoF approach while the black bars correspond to the GK

approach.

Fig. 3. Analysis of variation in classification performance

with codebook size for GK,FCM-encoding and BoF tech-

niques. The dataset utilized is Caltech101. The codebook

sizes considered are {16, 32, 64, 128, 256, 512 }.

5. CONCLUSION

We have introduced fuzzy encoding technique for visual cate-
gorization using Fuzzy C-Means to compute a fuzzy member-
ship function. We extended this work to the Gustafson-Kessel
fuzzy clustering algorithm, which was shown to adapt to lo-
cal distributions. We demonstrated empirically that our fuzzy
encoding approach is consistently better than the BoF model,
using several popular datasets. GK algorithm was shown to
provide a marginal improvement over FCM, which we expect
to improve with optimization of covariance matrices in future.
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