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Abstract.  This work employs data mining algorithms to discover visual
entities that are strongly associated to autonomously discovered modes
of action, in an embodied agent. Mappings are learnt from these percep-
tual entities, onto the agents action space. In general, low dimensional
action spaces are better suited to unsupervised learning than high di-
mensional percept spaces, allowing for structure to be discovered in the
action space, and used to organise the perceptual space. Local feature
con gurations that are strongly associated to a particular “type' of ac-
tion (and not all other action types) are considered likely to be relevant
in eliciting that action type. By learning mappings from these relevant
features onto the action space, the system is able to respond in real
time to novel visual stimuli. The proposed approach is demonstrated on
an autonomous havigation task, and the system is shown to identify the
relevant visual entities to the task and to generate appropriate responses.

1 Introduction

This paper proposes a method for discovering the visual features that are important
to a vision system given a specic problem (e.g. a robotics tasks). This is achieved
by rst applying unsupervised learning in the problem output space (e.g. the agent's
actions). The structure discovered in the output space is then used to organise the input
space (e.g. the agent's perceptual representation), in order to form meaningful input
representations. This organisation process is achieved by nding strong associations
between modes of the output space and con gurations of the input space. Association
rule data mining algorithms are employed to e ciently nd these associations.

This work is motivated by a desire for adaptive cognitive vision systems, that build
their own visual representations based on experience and learn how to react to their
environment, without the need for explicit de nitions of representations or strategies
by an engineer. Such emergent systems should be less “brittle' than conventional hard-
coded systems, and demonstrate increased robustness when faced with changes in the
environment not envisaged by the engineer.

In natural cognitive systems, increased sensory complexity, along with the machin-
ery used to interpret such complexity, is generally associated with an increasing ability
to interact with and manipulate the environment, facilitated by increasing motor ca-
pabilities. It is straightforward to see that the complexity of interaction a system can
demonstrate - its motor capabilities - is to a certain extent determined by the com-
plexity of its perceptual system. It is, perhaps, less straightforward to see that the
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complexity of a systems perceptual system, is determined by the complexity of the sys-
tems motor capabilities. However, this apparent cyclical causality, linking perceptual
and motor capabilities is supported by a signi cant body of work in modern cognitive
sciences, and has rm philosophical [1] and neurophysiological [2] foundations. In par-
ticular the theory of embodiment, a term used within psychology, philosophy, robotics
and arti cial intelligence, is based on the premise that the nature of the mind is deter-
mined by the embodiment of the cognitive agent [1] [3]. Related to this is a ordance
theory, that states that the world is perceived not only in terms of object shapes and
spatial relationships but also in terms of object possibilities for action [4]. The work pre-
sented here demonstrates an embodied approach to constructing an a ordance based
representation of the world.

Data mining algorithms are useful for e ciently identifying correlations in large
symbolic datasets. These methods have begun to be applied to vision tasks such as:
identifying features which have high probability of lying on previously unseen instances
of an object class [5], mining dense spatio-temporal features for multi-action recogni-
tion [6], and nding near duplicate images within a database of photographs [7]. These
methods bene t from both the scalability and the e ciency of data mining methods.
This work employs data mining algorithms to the novel domain of percept-action associ-
ation mining. The mechanism of mining frequent and distinctive feature con gurations
employed here is most similar to that of Quack et al. [5], however, here the discov-
ered con gurations are used directly in an action generation process, rather than as
a pre-processing step for identifying useful features for other classi cation techniques.
Furthermore, whilst in [5] supervision is required to label the classes of objects that
are learnt, in this work, classes of actions are obtained by an unsupervised learning
approach.

The rest of this paper is organised as follows: In section 1.1 background to asso-
ciation rule mining is presented. In section 1.2 the robotic platform, training method
and intended task are brie y detailed. Section 2 describes the central mechanism of
action space clustering and how this identi es classes of actions and percept groupings.
Section 3 presents a complete overview of the proposed system, identifying the key
processing stages involved, which are presented in detail in sections 4 and 5. Section
4.1 details the approach used to encode visual information as feature con gurations
and section 4.2 presents the method for nding associations between classes of actions
and these feature con gurations. Section 5 details how mappings are learnt between
associated percept and action data and how these mappings are exploited to generate
responses to novel image data. Section 6 presents the experimental evaluation of the
system and section 7 contains a discussion and conclusions.

1.1 Association rule mining

Association rule mining is the process of nding association rules in a database D =
fti;t2; 0 tm g Of transactions, where each transaction is a set of items, and| is the set
of all items®. An association rule is an implication of the form X ) Y where X;Y |
and X \ 'Y = ;.

Association rules are selected from the set of all possible rules based on constraints
on measures of signi cance and interest. These constraints are thresholds on itemset
support and rule con dence. The support, supp(X ), of an itemset X is de ned as the

! The terminology transactions and items comes from the data mining literature,
re ecting the subjects origins in market basket analysis applications
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Fig. 1: Action clustering : Action clusters are formed along with sets of associated im-
ages.

proportion of transactions in the database which contain X . The con dence, conf(X )
Y) of a rule is de ned:

conf(X ) Y)= % @

The Apriori algorithm [8] employed in this work, exploits the anti-monotonicity of
the support threshold constraint - that a subset of a frequent itemset must also be
a frequent itemset - to e ciently mine association rules. This work uses an e cient
existing implementation of the Apriori algorithm [9].

1.2 Robotic platform and training data collection

The robotic platform developed is a relatively inexpensive platform for the investigation
of embodied arti cial cognitive agents. Based on a standard Remote Control (RC)
model car tted with a wireless camera, the system allows a teacher to demonstrate the
desired driving behaviour by viewing the images from the camera on a PC monitor and
using a standard computer game steering wheel and foot pedal controller to navigate
the car.?

The training process involves the teacher driving the agent in order to follow a
lead vehicle. This collects a sequence of pairs of images and control parameters that
implicitly capture the desired behaviour.

2 Action space clustering

Unsupervised learning techniques are often applied to percept spaces (e.g. image or
feature space), but are prone to yielding ambiguous or erroneous results. This is often

2 Details of robotic platform and collected data sets and code available here
www.cvl.isy.liu.se/research/embodied-vehicle-navigation
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Fig. 2: System overview. Coupled percept and action data are represented as Percept-
Action (P-A) transaction vectors by concatenating visual codeword con guration vec-
tors and action-type labels. Data mining is then used to discover P-A associations that
identify feature con gurations that are associated to a particular action-type. Matching
these association rules in training images then provides data for learning P-A mappings
for each association rule, that map from feature con gurations to actions. Matching
the association rules in novel images then activates the associated P-A mappings, thus
providing a mechanism for generating appropriate responses to novel image data.

due to assumptions about suitable distance metrics used to cluster the data. In general,
action data (e.g. control signals) are of lower dimensionality than percept data, and
related points in the action domain are generally more similar than related points in the
percept domain [10]. This implies that the action space is more suited to unsupervised
learning techniques. These observations lead to the proposition that the action space
should drive the organisation of the percept space. This idea is strongly related to
embodiment, and the Embodied Mind theory [1] [3].

For an embodied agent (e.g. all natural cognitive systems and the system proposed
in this work), percept data is never obtained in isolation - it is always coupled to action
data. This coupling is exploited in this work by clustering coupled percept-action exem-
plars, in the action space. This results in the formation of meaningful classes of action
or “action-types', as well as meaningful perceptual groups. The action data, fal::a" g,
with @” = [afm ;alpeed] 2 <2, is clustered - using k-means clustering - into Kaet = 6
clusters. Figure 1 illustrates the result of performing this action space clustering and
examples of the associated images are shown. In order to obtain invariance to displace-
ment, scale and rotation, the action data is whitened prior to clustering. The data is
translated (by the mean sample value), scaled (each dimension by the associated eigen
values of the sample covariance matrix) and rotated such that the features have zero
mean, unit variance and the data axis coincide with the eigenvectors of the sample
covariance matrix.

3 System Overview

An overview of the proposed approach is illustrated in gure 2. First an exemplar set,
E, of training data of the form E = f(p*;a');::; (p" ;aV)g, wherefpl::p" gis the set
of images, andfa®::a" g is the set of action vectors, is collected (details of this training
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process are given below). Symbolic representations of both the actions, and percepts,
are then formed. For the action data, k-means is applied directly to action vectors,
resulting in kact action-types, as detailed above. For image data, a visual codebook
of SIFT features is built using k-means clustering, where the cluster centers make up
the codewords. Spatial relationships between features are represented by encoding local
feature con gurations, as described in section 4.1. The visual information in each image
is thus represented as a set of codeword con gurations.

Links between the symbolic percept and action spaces are then obtained by per-
forming data mining on a combined Percept-Action (P-A) representation, named P-A
transactions. Each transaction represents an action-type coupled to a codeword con-
guration, where one item in each transaction represents the action-type, and the
remaining items represent a visual codeword feature con guration, as detailed in sec-
tion 4.2. The data mining algorithm then processes these transactions to produce P-A
association rules.

The training data, and the mined association rules are then used to learn action-
type speci ¢ P-A mappings, as in section 5.1. These mappings map from the contin-
uous (un-quantised) pose of the image features associated to an action-type, onto the
continuous action vectors belonging to that action-type. These mappings constitute
a ordances for the mined perceptual entities.

Still referring to gure 2, when presented with novel image data, the system con-
structs the visual codeword con gurations as before. These con gurations are matched
to the mined association rules and the P-A mappings associated to the rules are applied
to the features that form the matching con gurations, in order to generate a response.
This process of generating responses to novel image data is detailed in section 5.2.

4 Mining Percept-Action Associations

(a) Input image. (b) Sift descrip- (c) Sift Itering. (d) Feature con-(e) Mined con g-
tors. gurations. uration.

Fig. 3: P-A mining process: Five stages of the feature mining process are illustrated.
Sift descriptors are extracted from the input images. These are then Itered to remove

features near the top of the image or that have overly large scales. Feature con gu-
rations are then assembled and those con gurations that are associated to particular
action-type are then discovered through data mining.
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The proposed vision system is based on local feature descriptors. A Di erence of
Gaussian (DoG) detector is used to extract regions and the SIFT descriptor [11] is used
to describe the regions. A prior is placed on the scale and location of the SIFT features
used in the later stages of the process. This results in a ltering of the set of SIFT
descriptors extracted from each image. Figures 3b and 3c illustrate this Itering stage.
As the lead vehicle will always remain on the ground plain, and as features on the lead
vehicle will have a limited scale in the images, features are rejected that appear too
near the top of an image or have overly large scales.

The 128-dimensional SIFT feature descriptors are clustered to form a visual word
vocabulary, using k-means clustering. Additionally, the scale and orientation of the
features are clustered to form “scale words' and “orientation words'. Meaning that
each SIFT feature can be described using three discrete labels - descriptor, scale and
orientation words - and the continuous horizontal and vertical position. For clustering
the descriptor, Kgesc = 50, for scale and orientation, Kscale = 5;Korient = 5.

4.1 Feature con gurations

Figure 4 illustrates the method used to encode the spatial con guration of the extracted
SIFT features. A similar scheme was introduced in [5]. For every feature in an image
(after Itering) a 3-by-3 grid is placed on the image, centered on the feature, and scaled
proportionally to the feature scale. Any neighbouring features that fall into a tile of
the grid are encoded as part of that feature con guration, the encoding re ects which
tile the feature is in i.e. it's spatial relation, and the visual, scale and orientation words
representing the feature. A sparse vector representation is employed for which the non-
zero indices encode the con guration and the values store the feature index in the
image, so that the continuous feature pose may be recalled for the P-A mappings. The
feature con guration vector contains the indices of the non-zero elements of the sparse
vector, and is used to represent the visual information in the data mining process.

Examples of feature con gurations for two of the training images are shown in
gure 5. As can be seen, some of the feature con gurations lie on or partially on the
target vehicle, whilst many lie on the background. The full set of con gurations for
an image (as illustrated in gure 3d) will contain considerable redundancy, where each
local pairwise spacial relationship will be encoded a number of times within multiple
feature con gurations.

4.2 Percept-Action transaction database

A Percept-Action (P-A) transaction represents a feature con guration coupled to the
associated action-type. The action-type being the cluster label assigned to the action
parameters that are associated to the image from which the feature con guration is
extracted.

The set of items is | = f 1;:5; «;R1;::Rig, where f 1;::; «g are the kK = 6
action-type items and fRj;:::R/g are the | = 540 (9 tiles, 50 visual, 5 orientation and
5 scale words) unique spatial relationships that form the feature con gurations. Each
transaction vector is the concatenation of the action-type item with the items from
the feature con guration vector, as illustrated in gure 6. Therefore each transaction
contains a subset of | with one item always drawn from f 1;::; «g.

The transaction database D = ft1;t2;:::;tm g is assembled, as in gure 6, by collect-
ing together all P-A transactions drawn from all training data, E = f(p*;a);::; (p";aV)g.
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Fig. 4: Encoding con gurations : This gure illustrates how a con guration of features

is encoded in a sparse vector representation, and how this sparse vector representation
is used to build the feature con guration vectors used by the mining algorithm. The
top left of the gure shows a con guration of features found around the central (green)
feature. The top right of the gure illustrates how the feature con guration is repre-
sented as a con guration of visual codewords at quantised relative locations, scales and
orientations. The bottom left part of the gure details how a particular feature (marked

in red in the top left) is encoded in the sparse vector representation. The bottom right
of the gure shows the sparse vector representation of the con guration. Also shown is
the feature con guration vector that forms the percept part of the transaction vectors
used in the data mining. The values of the non-zero indices of the sparse vectors are
the feature indices that identify the feature in the image, these are used when mapping
from feature pose to action parameters. Note that the center feature (green) is not
represented.

In the experiments carried out in section 6, the total humber of transactions in the
database,m = 88810. This database is then processed using the Apriori [9] data mining
algorithm, in order to nd frequent and discriminative feature con gurations for each
action-type.

4.3 Mining P-A association rules

Association rule mining is employed to mine the P-A transaction database, in order
to discover feature con gurations that frequently co-occur with a particular action-
type, and not all other action-types. The algorithm nds subsets of items from the
transaction vectors that are frequent and discriminative to a given action-type. The
Apriori algorithm is run once for each action-type, where it searches for rules including
that action-type, and treats all other action-types as negative examples.

For the experiments carried out here, the support threshold Tsyp = 0:02 and
condence threshold Tcont = 99 are used for all action-types and are selected by
experimentation. These values are chosen as they provide an appropriate size set of
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Fig.5: Feature con gurations : Five examples of feature con gurations for two frames
are shown. Some of the con gurations contain features on the target, some contain
features only from the background.

rules to allow for real time rule matching in novel images (as detailed below in section
5.2). Between 400 and 500 rules are found for each action-type. The rules contain
between 3 and 10 items (including the action-type item). An example of such a rule
would be fslow-left! 114;188;, 2959, meaning that a particular con guration of three
features has been associated with actions of the type “slow-left'.

For the mining, the feature con gurations are represented using the indices of the
non-negative elements of the sparse vector representation, as illustrated in gures 4
and 6. However, when matching con gurations found in an image to association rules,
the sparse vector representation is used. The dot product is used to e ciently match
rules to con gurations found in an image. Examples of the mined association rules for
each action-type are illustrated in gure 7.

5 A ordance Based Representation

This section details how the proposed system builds an a ordance based representation
of the world, and how this representation is used to generate responses to novel percept
data. This is achieved by attaching learnt mappings to each mined association rule.
These map from the pose (horizontal and vertical position, scale and orientation) of
the features in rules onto actions. Linear regression is used to learn linear mappings
from pose space to action space.

5.1 Learning action-type speci ¢ P-A mappings

A linear percept-to-action (P-A) mapping, Hpe a, is learnt for each association rule
(mined con guration). Hp A maps from (C 4)-dimensional feature pose space, to
2-dimensional action space, <€ * 1< 2, where C is the number of features that make
up the rule. A bias term is included in the linear model. An action, a, is computed
from a (C 4)-dimensional pose vector, ), as in equation 2.

a=Hp Ap+b (2)

In order to learn each Hp A, N training examples of fa;i;p;g pairs, (i 2 [1;N])
are required. The training set for each Hp A is obtained by matching rules to con g-
urations found in the training images. Whenever a con guration found in a training
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Fig. 6: Transaction database: Each transaction is the concatenation of an action-type
label (obtained by k-means clustering the action parameters) with a feature con gu-
ration (the indices of the non-zero elements of the sparse vector representation). The
transaction database is the collection of all transactions from all training images.

image is matched to a rule, the pose parameters of the features that make up that
con guration form a new pose vector p. The value of the non-negative elements of the
sparse vector provide the index to the matched con gurations constituent features.

For each rule, all the matched con guration pose vectors, f, and the associated
action vectors, a, are stacked into the training matrices, P and A respectively. To
learn the bias for the linear model an additional column of 1s is added to the end of P,
giving: P°= (P, [1]), where [1] denotes a column vector ofN rows. Using least squares,
Hp A can now be obtained as follows:

Hp o= AP” = AP T(PPT) * 3)

Where P% s the pseudo inverse ofP°.

5.2 Responding to novel data

A new input image is processed to generate a set of visual codeword feature con gura-
tions as detailed above. Con gurations are then compared to all the mined action-type
speci ¢ con gurations (rules). Matching a con guration to a mined rule is achieved by
computing the dot product of the two sparse vector representations. If the number of
non-zero elements in the dot product is equal to the number of non-zero elements in
the sparse vector representation of the association rule, then the rule is matched. If a
match is found then an action prediction is made as in equation 2 using the Hp A
associated to the matched rule. Once all found con gurations have been compared to
all rules, the output action is computed as the median of all action predictions.

To speed up the generation of actions, only con gurations within a search range of
the previous target location are compared to the rules. The search range is proportional
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Fig. 7: Association rules: Training vectors for six action-types (from left to right on
top row: “slow-left', “fast-left', “slow-straight', “fast-straight', “fast-right', “slow-right')
are shown along with examples of associated con guration rules mined for each type.
In general, if the lead vehicle is to the left/center/right, then the associated action
is left/center/right. However sometimes the pose of the lead vehicle, rather than the
position is used to associate to the action-type (e.g. far right on middle row, and second
from right bottom row).

to median grid size of the con gurations matched in the previous frame, and is centered
at the median position of the previously matched con gurations.

6 Evaluation

The two objectives of this paper - to discover the visual entities important to the task
and to generate appropriate responses to novel data - are evaluated. This is achieved
by using ground truth data for the target vehicle position. This data is obtained by
learning (in a supervised manner) a detector for the lead vehicle. The detector is a
Waldboost detector [12] trained on hand labeled examples - su cient examples are
used in training to provide a detector that achieves very high accuracy on the test
dataset. The position of the lead vehicle is then used to evaluate how well the mined
con gurations relate to the lead vehicle. Additionally, the ground truth data is used
as input to a supervised method for action generation, to compare to the proposed
unsupervised approach.

Table 1: Hit/miss ratio for mined con gurations lying on the lead vehicle.

Action class slow-left | fast-left | slow-straight | fast-straight | fast-right | slow-right

f
Hit/Miss ratio || 0.95 | 078 | 0.83 | 0.74 | 0.92 | 0.87

Figure 7 shows examples of mined con gurations that lie on the object of interest,
the lead vehicle. Indeed the majority of mined con gurations do lie on the lead vehicle,
implying that the proposed method has discovered the important visual entities. To
quantitatively evaluate this, the hit/miss ratio is measured across a test set of unseen
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data. A hit is de ned as when at least 50% of the features that make up a con guration
lie within the bounding box obtained from the detector. Table 1 shows the hit/miss
ratio for each action-type.

The action generation mechanism is evaluated by comparing the actions generated
by the system on unseen test data with actions generated by a supervised approach. The
supervised approach maps from the ground truth target pose to the action parameters
using a single linear regression model, the same as in the proposed approach. In gure 8
it can be seen that the signals generated by both the approaches approximately follow
the expected signals.

(a) Supervised method (b) Proposed method

Fig. 8: Generated action signals: The generated “turn-control' action signals (red) are
shown for the proposed method and a supervised method, along with the expected
action signal (blue).

Comparing the action signals generated by the supervised and proposed (unsuper-
vised) approaches ( gure 8), it can be seen that both methods approximately reproduce
the control signal provided by the teacher. Note that the high accuracy of the super-
vised approach in parts of the signal, re ects the strongly linear relationship between
target pose and action signals.

The large peaks in the signal generated by the supervised approach correspond to
false detections. Although there are false detections (incorrect con guration matches)
in the proposed system, these generally have a minimal e ect on the output as the
output is the median of a number of predictions, therefore these irregularities in the
action signals are generally avoided.

Certain parts of the signal generated by the proposed approach do not exactly follow
the expected signal (for example from frame 100 to 150). This is in some cases be due
to the fact that the expected signal, provided by the teacher, includes instances of
oversteer and compensation, and is therefore not necessarily superior to the generated
signal.

Figures 9 and 10 demonstrate the approach at imitating the desired behaviour. In
gure 9 the target is placed at three stationary positions and the agent is shown to
generate actions that drive toward the target. In gure 10 the lead vehicle is driven
around and the agent is shown demonstrating the desired behaviour - following the
lead vehicle.
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Fig. 9: Action generation results : The agent is shown to demonstrate the appropriate
actions, by driving (to left - top, straight - middle, to right - bottom) toward the target
and then coming to stop.

Fig. 10: Behaviour imitation : The behaviour demonstrated by example is replicated by
the agent, as it follows the lead vehicle.

7 Discussion

This work presents a method for discovering the visual entities that are important to
a given autonomous navigation task and utilising these perceptual representations to
imitate the behaviour that is demonstrated by the teacher. The system requires no
explicit de nition of behaviour, uses no prior model of the objects of interest to the
task and no supervision, other than the provision of input-output exemplars in the form
of images and actions i.e. recorded experiences that exhibit the desired behaviour.

Partitioning the training exemplars using similarity of actions provides a means of
organising the perceptual space of the agent in a way that is relevant to the problem
domain. This allows for the discovery of perceptual representations that are specic
to a particular class of actions. These representations are discovered using e cient
association rule mining techniques. The representations are built on a spatially encoded
visual word representation. The results shown in gure 7 and table 1 con rm that the
visual entities discovered do in fact relate to the object in the scene that is important
to the task.

By attaching action generation models (linear percept-to-action mappings) to each
discovered visual entity, the system builds an a ordance based representation of the
world. This novel representation directly couples percepts to actions, resulting in a
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system that is able to respond to novel percepts in real time. The results presented
in gures 8, 9 and 10 demonstrate that this novel a ordance based representation
generates the type of actions expected and allows the system to imitate the behaviour
demonstrated by the teacher, when presented with new situations. This is achieved
with no explicit de nition of the behaviour.

Choosing kact = 6 ensures that there is su cient inter and intra class variance
of visual information whilst also ensuring su cient exemplars for learning the visual
representations and mappings for each action-type. Larger kac: reduces the number of
training examples for both the con guration mining and mapping learning. Smaller
kact increases within class variation and reduces the discriminative power of the mined
con gurations. Clearly the selection of kact Will impact on the quality of both the mined
con gurations and the generated actions. Future work will investigate the e ect of this
parameter on system performance, and investigate the use of mode seeking and other
clustering algorithms for action space clustering.
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