
Problem Solving through Imitation

Eng-Jon Ong ∗ Liam Ellis Richard Bowden

Centre for Vision, Speech and Signal Processing,

School of Electronics & Physical Sciences,

University of Surrey, UK

Abstract

This paper presents an approach to problem solving through imitation. It introduces
the Statistical & Temporal Percept Action Coupling (ST-PAC) System which sta-
tistically models the dependency between the perceptual state of the world and the
resulting actions that this state should illicit. The ST-PAC system stores a sparse
set of experiences provided by a teacher. These memories are stored to allow ef-
ficient recall and generalisation over novel systems states. Random exploration is
also used as a fall-back “brute-force” mechanism should a recalled experience fail
to solve a scenario. Statistical models are used to couple groups of percepts with
similar actions and incremental learning used to incorporate new experiences into
the system. The system is demonstrated within the problem domain of a children’s
shape sorter puzzle. The ST-PAC system provides an emergent architecture where
competence is implicitly encoded within the system. In order to train and evaluate
such emergent architectures, the concept of the Complexity Chain is proposed. The
Complexity Chain allows efficient structured learning in a similar fashion to that
used in biological system and can also be used as a method for evaluating a cogni-
tive system’s performance. Tests demonstrating the Complexity Chain in learning
are shown in both simulated and live environments. Experimental results show that
the proposed methods allowed for good generalisation and concept refinement from
an initial set of sparse examples provided by a tutor.

Key words: Cognitive System, Complexity Chain, Learning from Imitation,
Problem Solving

⋆ This work has been supported by EC Grant IST-2003-004176 COSPAL. This
paper does not represent the opinion of the European Community, and the European
Community is not responsible for any use which may be made of its contents.
∗ Corresponding Author.Centre for Vision,Speech and Signal Processing, School of
Electronics & Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH,
UK

Email addresses: e.ong@surrey.ac.uk (Eng-Jon Ong),

Preprint submitted to Elsevier 23 November 2007

1 Introduction

This paper presents an approach to learning to solve problems through imita-
tion. It is demonstrated within the domain of a Children’s Shape Sorter Puzzle

(used as the primary demonstrator within the EU Project COSPAL[6]) but
many of the principles are applicable within a wider context. The basic prin-
ciple is to record an incomplete set of experiences gained through tuition, to
remember these experiences in a form that allows the experience to generalise,
to efficiently recall appropriate experiences given an unseen scenario and to
randomly explore possible solutions should a recalled experience fail to solve a
scenario. New experiences either leading to failure or success are then added
to memory, allowing the systems competence to grow.

To achieve this, the paper presents the ST-PAC system (Statistical & Tem-
poral Percept Action Coupling) which ties together the visual percepts (or
appropriate description of the world) with the actions that should be made
given that scenario. Percepts and actions are coupled within a statistical do-
main that allows incremental learning and good generalisation. To facilitate
efficient learning, the paper also presents the concept of the Complexity Chain,
which, is an approach to structured learning, allowing the tutor to bootstrap
the learning process through increasing levels of complexity in a similar way
to that which is employed with children. The complexity chain is used to
provide efficient learning as well as a method to evaluate cognitive systems
performance.

The task of developing cognitive architectures capable of associating noisy,
high dimensional input spaces to appropriate responses in the agents action
space across multiple problem domains is an important task for researches in
cognitive sciences, machine learning, AI and computer vision. Cognitivist ap-
proaches, that rely on hard-coded knowledge or engineered rule based systems
have shown limited success, especially when the systems are expected to per-
form in multiple domains or in domains that stray too far from the idealised
world envisaged by the engineer.

For this reason emergent architectures, that model the world through co-
determination with their environments, have become a popular paradigm [9]
[15]. Within the emergent paradigm, this process of co-determination, whereby
the system is defined by its environment, should result in the system identi-
fying what is important and meaningful to its task.

A potential downside to the emergent paradigm is the need for continuous
exploratory activity that can result in unpredictable or unwanted behaviour. It

l.ellis@surrey.ac.uk (Liam Ellis), r.bowden@surrey.ac.uk (Richard
Bowden).

2

should also be noted that in cognitivist approaches, the knowledge with which
the agent makes its decisions can be easily understood by the engineer whereas
in emergent systems it can be difficult to interpret the learnt knowledge and/or
mappings as they are grounded in the agents own experiences as opposed to
the experiences of the engineer [16].

The ST-PAC system encodes concepts implicitly rather than explicitly (as
more often found in traditional AI approaches), making it an emergent ar-
chitecture. This makes it more flexible to adaptation but, as indicated, this
implicit knowledge is difficult to interpret. The complexity chain goes some
way to solving this difficulty as each stage of learning can be assessed indepen-
dently, allowing a better understanding of the extent of knowledge encoded
implicitly.

This paper continues by discussing learning through imitation in general terms.
The concept of the Complexity Chain is then introduced in section 3 followed
by a specific instantiation of the Complexity Chain for the shape sorter puz-
zle. Section 5 introduces the ST-PAC architecture and experiments performed
on the complexity chain of Section 6 are presented. Finally, discussions are
provided in Section 7 before concluding in Section 8.

2 Learning by Imitation

Imitation plays a strong role in the development of cognitive systems. Re-
cent neurophysiological research has shown strong evidence supporting the
existence of a mechanism, in both primate and human brains, known in the
literature as the ”direct-matching hypothesis”. The mirror-neuron system es-
sentially provides the system (human/primate brain) with the capability ”to
recognise actions performed by others by mapping the observed action on
his/her own motor representation of the observed action” [1].

The work presented here utilises the idea that an agent is capable of mimicking
the actions performed by others and exploits this capability with the aim of
generalising simple mimicry to more complex imitation of behaviours and
hence towards the development of a computer architecture capable of acting
appropriately in a wide range of problem domains.

This work is not concerned with modelling the mirror-neuron system, instead
it is assumed that the actions of the ”teacher” can be directly recorded by the
agent. Alternatively, in the work of Siskind, an attempt is made to analyse
from visual data the force dynamics of a sequence and hence deduce the action
performed [14]. Furthermore, Fitzpatrick have shown that it is possible for an
agent to learn to mimic a human supervisor by first observing simple tasks and

3

then, through experimentation, learning to perform the actions that make up
the tasks [7]. Both these approaches deal only with exact mimicry, the work
presented here aims to extend these capabilities to more general imitation i.e.
incorporating representation of purpose to weight responses generated through
approximation to imitation.

The general principle behind coupling percepts to actions is that if an agent
is given every possible percept a priori along with the appropriate action
that should be performed when presented with that percept, then problem
solving becomes a simple case of recall. However, even in trivial domains this
approach is intractable. Given an agent has obtained, through whatever means
e.g. mirror-neuron system, a collection of examples of appropriate behaviour at
some task, the problem is how to generalise over these exemplars in order that
the system is able to solve the task regardless of small differences in the task
set-up. For example, given a number of examples of picking up a cup, how can
an agent become capable of picking up the cup regardless of the orientation or
location of the cup, i.e. how can the agent identify the important variances and
invariance’s in the perceptual domain and relate these to the action domain.
For this reason, much of the context must be stripped away from experiences
to allow then to generalise efficiently.

The exact representation of these exemplars of appropriate behaviour depends
to a great extent both the embodiment of the agent as well as the nature of
its perceptual system. However, in general an exemplar, E, is a coupled pair
of percepts, P, and actions, A, i.e. E={P,A}. The task is then to generalise
over a set of examples such that, given some new P, an appropriate response
A is ilicited. If P and A are vectors it can be reasonably argued that in
general the dimensionality of P will be higher than that of A. This provides a
motivation for a key mechanism exploited in this work that is the organisation
of experiences through the action domain.

Related points in the response domain exhibit a much larger continuity, sim-

plicity and closeness than related points in the input domain. For that rea-

son, the organisation process has to be driven by the response domain sig-

nals. [10]

In the visual domain, there has been limited work done in mapping percep-
tual spaces to action spaces. Notable examples of which are the work of Young
[17], where visual parameters extracted via optical flow are used to map to
an action space. In the work of Ellis and Bowden [2], percept-action exem-
plars are hierarchically clustered to in order to build a generalised mapping
from percepts to actions. By hierarchically clustering the exemplars in the ac-
tion parameter space, Ellis and Bowden show that a hierarchy of meaningful,
general-to-specific action models is obtained. Furthermore it is shown that by
modelling the variance of the groups of percepts formed through the action

4

clustering important variances and invariances in the perceptual domain are
identified. These invariance’s can be exploited to help match new situations
to known experiences. Although no hierarchical representation is present in
this work, the experiences of the system are similarly organised by similarity
in the action domain. Instead the proposed approach resembles a Finite State
Machine (FSM), where each state represents essentially represents a single ac-
tion. This allows the modelling of temporal ordering between different actions
that take place in a strategy. Relevant percepts are then grouped by each
“action-state” with statistical models learnt online by applying the system to
increasingly more complex problems.

3 Complexity Chain and Evaluation

When learning occurs in biological cognitive systems, many concepts are learnt
holistically through random exploration, however, teaching is not holistic. A
child is not given a copy of a dictionary and a thesaurus and expected to
master language. Instead learning is staged into layers of complexity where
simple nouns are learnt, followed by verbs, then adjectives, and eventually
more complex concepts such as simile and metaphor. While this is rather
an extreme example, the same is true in most tutored learning scenarios: in
mathematics multiplication follows subtraction, follows addition; in elemen-
tary art, basic primitives such as lines, triangles and circles are mastered before
compound shapes are constructed from the basic primitives; and in children’s
shape sorting puzzles, the child typically learns to place the circle first due
to the rotational invariance before they move to more complex shapes which
involve higher degrees of freedom. In all these learning scenarios, the child is
forming and evolving key concepts that will be used as the building blocks at
the next level of complexity. Therefore the role of the supervisor/teacher is to
structure learning to encourage the discovery/understanding of the relevant
concepts, as well as establishing the necessary relationships between them for
devising solutions. By gradually increasing the complexity and exposing new
concepts, the tutor is providing weak supervision to the learning process. In
many cases, this supervision may not be essential to learning (in terms of
success or failure) but in most cases speeds up the learning process.

Moving through a hierarchy of complexity may involve a smooth continuous
transition, but there exist key points where moving to a more complex level
requires the introduction of a new concept. We define the term Complexity

Chain as the discrete steps of such a learning process where each discrete level
is attached to the introduction of a new, key concept. For example, in the shape
sorter scenario, initially a fix board means that no concept of a hole is required.
The goal is to move shapes to predefined locations relative to the world co-
ordinate frame. However, once the board can be moved or reconfigured, there

5

is a clear requirement for the concept of a hole. This concept must emerge
before the system can refine its concept of the goal. Another example would
be to train a system with a puzzle sorter that consists of holes that are basic
shapes such as circles and squares. Having learnt the general rules of the
game of puzzle sorting, a new puzzle sorter with pieces and holes of different
shapes are presented to the system. The system must now adapt existing learnt
competence from the previous puzzle sorter for use in solving the new domain.

Evaluation of cognitive systems is also a difficult task. To our knowledge no
previous work has addressed this area. For a system with a known goal, per-
formance can be measured naively by either success or failure in reaching that
goal. However, this gives little indication as to the benefits or abilities of the
system, especially in an emergent architecture where concepts are implicitly
embedded within the system. We therefore also propose the complexity chain
as a method for evaluation. As each level of complexity is attributed to the
discovery of a concept, performance at varying levels within the chain can be
used to both assess the systems ability and efficiency at gaining competence.
Within the experiments presented here, we use the degree of random explo-
ration at each level of the complexity chain as an indicator of the systems
efficiency in concept refinement. We demonstrate how this can be used to
evaluate the system at all levels for different parameterisations. The following
section now provides an example complexity chain for the COSPAL Shape

Sorter Problem that will be used for experimentation in later chapters.

4 COSPAL Problem Domain: Shape Sorter Puzzle Complexity Hi-

erarchy

In this section, an example of a complexity hierarchy is presented. This hi-
erarchy will be used specifically for the application of a shape sorter puzzle.
Here, various puzzle scenarios with increasing complexity will be presented to
the system for training.

The hierarchy consists of 5 main levels (Figure 1), starting with the simplest
puzzle scenario at the top and increasing in difficulty as we progress down
the hierarchy. We will describe each level of complexity in terms of common
physical characteristics present in the puzzle game (e.g. puzzle board is fixed
on the floor):

• Level 1: Fixed holes, Subset of starting configurations

At the top level is the puzzle scenario where holes are located at fixed po-
sitions (e.g. the puzzle board is nailed to the ground). Additionally, the
system is only required to solve the system from a subset of starting con-
figurations for the puzzle pieces. This level of complexity essentially acts

6

Fig. 1. Complexity hierarchy of the shape sorter puzzle

7

as a “sanity check” determining if the system can perform pure imitation
using memorised knowledge for solving problems with very similar starting
configurations to the teacher examples. As such, there is no great need for
the system generalise from its initial state in order to solve the puzzles at
this level. All the system needs to do is to “copy” the actions of the teacher.

• Level 2: Fixed holes, All Starting Conditions. The next level introduces
an increased degree of variations present in the starting configurations of
the puzzle pieces. Here, any starting configuration is allowed, in particular
those that are very different from that presented by the teacher. This level
of complexity is used to test the system’s ability to generalise away from
the problem configurations that are present in examples provided by the
teacher.

• Level 3: Moveable Holes. At this level, the puzzle board holes are allowed
to move arbitrarily into any positions. As a consequence, each starting con-
figuration of the puzzle may have the holes at different positions and orien-
tations in addition to the puzzle pieces being placed at random locations.
An outcome of Level 2 of the chain is that a system may only end up mem-
orising the positions of holes. The system may then solve the shape sorter
puzzle by simply moving a particularly shaped piece into a fixed location.
In order to force a system away from such a strategy, moving the holes will
break this assumption. As a result, it is then necessary for the system to
utilise more relevant information to discover the concept of holes and the
features that identify them.

• Level 4: Different Puzzle Pieces, similar rules In this level, differently shaped
and unseen puzzle pieces are presented to the system. The goal is then to be
able to “recycle” available knowledge applied to known pieces to help solve
the shape sorter puzzle with the new piece. This level of the complexity
chain is here to test whether any system that does puzzle solving via learnt
imitation can generalise to other objects with different physical character-
istics. Here, the rules behind the solution remains the same (e.g. a shaped
object is required to be placed into a correctly shaped hole).

• Level 5: Simultaneous Multiple Puzzle Pieces In this level, once the system
has learnt the ability to solve the shape sorter puzzle for various pieces, a
combination of all of these pieces are presented to the system in various
randomised starting configurations. This allows one to test the ability of
the system to sequentially solve the entire puzzle by sequentially applying
the appropriate strategy instantiations that were learnt from the previous
four levels.

8

5 Modelling Imitation using Temporal Statistics of Perception Ac-

tion Coupling

In this section, a learning framework is proposed for computationally mod-
elling, learning and generating the above described strategies. This will in-
volve mechanisms for committing to memory strategies for solving problems,
along with the correct instantiation of using the appropriate strategy to solv-
ing a particular problem. The learning framework will consist of two major
components. The first is a computational model for problem solving strate-
gies (Section 5.2). Here, the model will take a form that resembles a Finite
State Machine (FSM). In this model “states” are represented by an action
within the action sequence for a strategy. This allows us to capture the or-
dered sequence of actions one needs to carry out when using a particular type
of problem solving strategy. However, it is not enough to only know which
actions need to be performed. It is equally important to carry out actions
with the right parameters. This is achieved, using statistical models that can
be then used for estimating the parameters for a particular action given some
input information.

The next part is an incremental learning method that gradually refines and
improves the model continuously through problem solving with the aid of
random exploration (Section 5.3). As such, both the learning and application
stage are tightly coupled together. A system adopting this framework will be
seen to gradually improve itself proportional to the number of times it is used.
One important aspect about the method proposed here, is that both positive
and negative examples obtained from using the model are equally crucial for
improvement in accuracy.

5.1 Definition of Strategies and Actions

Since the goal is problem solving via imitation, methods for modelling and
using different problem solving strategies are proposed. To start, we define
a “strategy” as an ordered sequence of actions to be carried out with some
particular parameter, for example an index to a list in an “input scene”. In
order to formally define the “input scene”, suppose that there are NO entities
of interest (e.g. objects in the world), we define the input data to be the set
X = {xi}NO

i=1, where xi is a D-dimensional feature vector for the ith entity (see
Figure 2).

Now, suppose we have a strategy (S(P)) that consists of a sequence of |S|
number of actions, and the corresponding parameters for the actions are given
in set P = {pt}|S|t=1. In this paper, all the parameters are positive integers:

9

Fig. 2. An illustration of an input scene with 5 objects of interest. Each object is
represented by a D-dimensional vector (here 5). The entire scene is then the list of
the 5 vectors. In this example, each object is reprsented by a 5 dimensional vector.
The first 2 dimensions are the position of the object, the third is the colour ID, and
the last is a unique shape ID.

pt ∈ {+Z}. It must be noted that there may exist some actions that require no
parameters, consequently, in these cases, the parameter value can be arbitrary
and ignored. An action in this sequence can be defined as: At(pt) ∈ {−1, +1}.
If an action was successfully carried out At would return the value of +1 and
−1 otherwise. An example of an action would be a move-to command, where
the parameter is the object to approach. An illustration of a action sequence
is given in Figure 3. The ordered action set, S(P), can then be defined as the
set:

S(P) = {At(pt)}|S|t=1 (1)

5.2 Modelling Problem-Solving Strategies

This section will provide the definition and description of the computational
model proposed for representing problem solving strategies. An applied exam-
ple of this model is given in Section 6.

In order to define the model for problem solving, we follow from the definition
of a strategy given in Eq. 1, where |S| denotes the number of actions within a
particular strategy. Our proposed model will be a set of different components.

The first set contains an ordered set of actions (A = {At(pt)}|S|t=1) as defined
in the previous section. The second set contains a set of binary elements to
allow us to model actions with (value of 1) and without (value of 0) param-

eters: Bt = {bt}|S|t=1, bt ∈ {0, 1}. The third is a set of feature vector weights

10

Fig. 3. An example illustrating a sequence of actions that make up the strategy of
filling a hole with an appropriately shaped object in the shape sorter puzzle game.
Here, the system has a “gripper” with three capabilities: MoveTo(objID), Grip(),
Insert(). A strategy to fill the hole can be defined as the sequence of four ac-
tions: S(P) = {MoveTo(objID1), Grip(),MoveTo(objID2), Insert()}. In relation
to Equation 1, we have A1 = MoveTo and so on. The grip and release commands
are illustrated as circles with broken and complete lines respectively. Lines are used
to show MoveTo commands.

(C = {cd}D
d=1), determining how important a particular feature is in help-

ing us find solutions to a particular class of problems. When the system is
initialised, all the feature weights ct are set to 1, giving the system equal ac-
cess to the information from each feature. Section 5.3.4 proposes a feature
weighting method for determining the values of ct based on the outcome of
the system in solving a problem.

An important component is the mechanism that will be used to retrieve the
correct parameters for each action in the strategy. This is achieved by mod-
elling the statistics of plausible sets of parameters for the actions (i.e. {pt}|S|t=1}).
However, it is first important to note that a given strategy can be often ap-
plied to a range of similar problems. For example, the strategy for filling a
hole in a shape sorter puzzle can be “recycled” for various different shapes. To
account for this, we define a set of action “parameter-set” statistical models
(R = {Ri}|R|

i=1) that capture correct instantiations of a strategy. The number
of correct instantiations is defined as |R|. More specifically, Ri is made up of
essentially a set of Parzen windowing models, one for each action parameter.

11

Fig. 4. An example of two Action Parameter Models (APM), each modelling the
instantiations for filling a circular hole and square hole with their respective objects.
Similar to Figure 3, the system has a gripper with 3 capabilities:moveTo(objectID),
gripObject() and insertObject(). The strategy used to solve the shape sorter puz-
zle is modelled as a sequence of four actions: moveTo(objectID), gripObject(),
moveTo(objectID) and insertObject(). Here, there are two possible correct instan-
tiations for this strategy, one for filling the square hole with a cube and another
for filling the round hole with the cylinder. This results in |R| being 2. Suppose
that R1 and R2 are the action parameter-set for filling the square and circular hole
respectively. r11 would then be the parameter action model with peak responses at
the feature subspace associated with cylindrical objects. Similarly, the responses of
r13 peaks at the feature subspace for circular holes.

Formally, we can define it as Ri = {rit}|S|t=1, where rit:

rit(x) = Bi

|rit|∑

k=1

K(x, µitk)uitk (2)

where rit(x) is 0 when no kernel centres are available (i.e. Bi = 0). This is
used when an action is associated with no parameters. When Bi is 1, the
above equation is essentially a modified Parzen window equation, where |rit|
is the number of kernels in rit, µitk are the kernel centres in the tth action
parameter model, uitk ∈ {−1, +1} is the sign of the respective kernel. Here,
a kernel sign u of +1 and −1 is used to record whether the respective kernel
represents a successful or failed example respectively. The sign parameter is
used to allow us to incorporate information arising from wrong usage of this

12

strategy (Section 5.3). K(x, µ) represents the kernel chosen. In this paper, a
weighted sum of Gaussians function is used:

K(x, µ) =
D∑

l=1

cl

σl

√
2π

e−(x−µl)
2/2σ2

l (3)

where x is the example feature vector, (µ = (µl)
D
l=1) is the kernel centre, cl

are the feature vector weights defined in Section 5.2, and the “bandwidth”
parameter, {σl}D

l=1, are the widths of the Gaussian functions. An analysis of
how different values of σl affects the system performance using the complexity
hierarchy will be given in Section 6. From here, we shall refer to Eq. 2 as an
Action Parameter Model (APM). An illustration of APMs is given in Figure
4.

5.3 Strategy Refinement: Incremental Learning from Failure and Success

Given the model defined in the previous section, we will now see how its
parameters are learnt and refined as the system is gradually exposed to various
problem solving configurations and is detailed in the following four subsections:

(1) Firstly, Section 5.3.1 describes how the strategy model can be initialised
when provided with an example from a “teacher” (i.e. memorising the
teacher’s example for imitation).

(2) Following this, Section 5.3.2 then describes how, when given input data,
the usage of a particular strategy can be through the estimation of action
parameters.

(3) We then see how incremental learning examples can be collected by exe-
cuting a chosen strategy with the aid of random exploration as a backup
strategy in Section 5.3.3.

(4) With the availability of learning examples, Section 5.3.4 describes how the
parameters’ statistical models can be updated to improve the accuracy
and efficiency of the ST-PAC model.

5.3.1 Memorising the Teacher Example

A teacher example represents a correctly executed strategy for solving one
instance of a particular problem. In order to provide a more formal definition,
we firstly note that the superscript T is used to denote variables associated
with teacher examples. A single teacher example is then defined as the tuple:
(AT , XT , P T). The sequence of |AT | number of actions that forms the strategy

to be memorised is defined as AT = {AT
t }|A

T |
t=1 . The set of parameters for the

actions are defined as P T = {pT
t }|A

T |
t=1 . Additionally, the input list observed

13

when each action in the sequence was executed is also provided, and defined

as XT = {XT
t }|A

T |
t=1 . From this, it is possible to build a set of underlying feature

vectors for the action parameters: F T = {ft}|A
T |

t=1 , where:

ft = XT
pT

t

(4)

With the above definition, the memorisation of the teacher example is straight-
forward. The action sequence of the model A is then AT . At present, there
is only a single correct instantiation of this strategy, namely that shown by
the teacher. When the underlying feature vectors in F T exists (i.e. ft 6= ∅),
they are used to initialise the action parameter models: their kernel centres
are set as the feature vectors themselves, µ1,t,1 = fT

t and since this is a correct
instantiation, we only have one kernel at present, so |r1t| = 1, and the respec-
tive kernel weights are all one (i.e. this is a successful example), u1,t,1 = 1. An
illustration of the memorisation process can be seen in Figure 5.

5.3.2 Planning the Strategy: Action Parameter Estimation

Given that the strategy model exists (e.g. initialised by memorising a teacher
example), it is now possible to plan the usage of a strategy given some input
list of entities in the world X = {xi}NO

i=1 (as defined in Section 5). This involves
estimating the parameter indices for each action in the strategy. To achieve
this, we firstly introduce the method for obtaining the best parameter for an
action (At) using the action parameter model (rit) of a particular strategy
instantiation (Ri):

P X
it = arg maxjrit(xj) (5)

where the superscript X is used to denote that the index of an action obtained
using the input list X. Now, the final set of parameters for the actions can be
obtained as follows:

P X = arg maxi

|A|∑

t=1

rit(XP X

it

) (6)

where P X = {pX
t }|A|

t=1 is defined as the obtained parameter set given the input
list X. An illustration of this process is shown in Figure 6.

5.3.3 Obtaining Learning Feedback

With the obtained parameter index set, it is now possible to execute the
strategy and obtain the relevant feedback as to whether this estimation was
correct or wrong. One straightforward method to achieve this goal is to simply
carry out the actions in the model using the estimated parameters above (P X),
and return a failed feedback if any of the actions failed to be executed (i.e.
At(p

X
t) = −1). To improve on this, random exploration will be used when

failure occurs in executing an action. More specifically, suppose that we have

14

Fig. 5. An illustration of how a teacher example is memorised. The teacher example
is given as a sequence of four actions (A1, ..., A4). Each action has a parameter.
Suppose the parameter for A1 is 1 (circle), and for A3 is 2 (circular hole). The
underlying feature vectors for these two actions can be directly obtained from the
input scene list as X1 = (x1, y1, c1, s1) and X2 = (x2, y2, c2, s2) respectively. A single
APM can the be constructed, where the kernel centres for its two kernel models with
non-zero Bi values, r11 and r13, is set to X1 and X2 respectively.

successfully executed t− 1 actions, and the current action to be carried out is
now At(p

X
t). Should At be unsuccessful, it is possible to then “randomly try”

all other possible parameters (i.e. indices of other entities in the input list X).

In order to incorporate random exploration into the strategy execution pro-
cess, the estimated action parameter values P X are combined with random
exploration parameters in the form of an action parameter list. Formally, the
action parameter list for At is defined as:

P̂t = {pX
t , Qt} (7)

where Qt is the random permutation of the set {1, ..., NO}. The algorithm
for executing a planned strategy with the aid of random exploration is as
follows:

15

Fig. 6. An illustration of using the APMs to estimate the parameters of actions for
a given strategy. Suppose we are given an input scene as show on the top left of
the figure. It is then possible to obtain the responses of each APM’s kernel models
for each input object. The magnitude of the kernel model’s response (rit(xj) from
Eq. 5) is shown in proportion to the thickness of the circle around each object. The
value of the largest response is also shown next to the corresponding object. The
total response for each APM on the input scene (Eq. 6) is then shown. In this case,
the APM for inserting a circular object has the largest total response and will be
the system’s next set of actions to be carried out, as shown on the upper right of
the figure.

t = 1 {Initialise to start at the first action}
successF = [] {Initialise list of feature vectors resulting in success}
successP = [] {Initialise the correct action parameter index set}
randomExF lag = 0
while t ≤ |A| do

Get new updated input list X

curPt = P̂t1

if curPt 6= −1 then

P̂t = {P̂t2, ..., P̂|A|} {Remove first element from set P̂t}
end if

16

if At(curPt) == 1 then

successF [t] = XcurPt

successP [t] = curPt

t = t + 1 {Go to the next action}
else

randomExFlag = 1 {Note that random exploration was used}
if |Pt| = 0 then

break from while loop
end if

end if

end while

if t > |A| then

return (1, randomExF lag, successF, succesP)
else

return (0, randomExF lag, P X, [])
end if

The algorithm above returns a triplet: (Sf , Re, FS, PS). The success flag (Sf ∈
{0, 1}) will indicate if the system was ultimately successful in solving the
problem using the strategy containing the sequence of actions A. When a
successful instantiation of the strategy used was made (Sf = 1), we can then
determine the exact method used with the random exploration flag (Re ∈
{0, 1}). Here, Re = 0 indicates the the initial parameters estimated using the
action parameter models (Section 5.3.2) were successfully used. If Re = 1,
this indicates that random exploration was used to find the correct action
parameters for solving the current problem configuration. In the framework
proposed here, should the system fail to solve the puzzle despite using random
exploration (Sf = 0), it will be reported to the user that A represents an
unsuitable strategy for solving the current problem.

5.3.4 Updating the Action Parameter Models

Using the algorithm described in the previous section, it is now possible to
obtain learning information for updating the action parameter models. We
note the update to the action parameter models will only take place if the
system was ultimately successful in solving the problem. However, there are
two different methods for updating the relevant APMs.

The first case is when random exploration was not used (Re = 0). This implies
that the initial estimated parameters in Section 5.3.2 were correct. Suppose
that the ith strategy instantiation (Ri) was used to obtain the correct initial
action parameters. The updating of its relevant APMs is simply an addition
of a new kernel centre to it. This kernel centre will be the feature vectors given
in FS.

17

The second case is when random exploration was used (Re = 1). In such cases,
there can be two possible causes: the first is due to the feature weights being
suboptimal, implying the system is not utilising available information as best
as it should; the second is that the existing strategy instantiations are simply
inadequate for dealing with the problem configuration presented.

In order to decide between these two, we start by updating the feature weights
(C = {cd}D

d=1) in such a way as to reduce the estimation of the wrong param-
eters given the previously presented problem configuration. To achieve this,
suppose that the original, incorrect, estimated action parameter set is P X ,
to be used with the input list X (see Section 5.3.2). We will denote the cor-

responding “wrong” feature vectors set as F̃ X = {f̃X
t = XpX

t
}|A|

t=1, and the

correct set, as given by random exploration, FS = {ft}|A|
t=1. The absolute dif-

ference between F̃ X and FS is: δF = {δft = |f̃X −ft|}|A|
t=1. An updated feature

vector weight can now be computed as follows:

cnew
d = max(δft)αd, ∀d ∈ {1, ..., D} (8)

where αd is the increment factor for updating the feature weights. How differ-
ent settings of αd affect the system performance with regards to the complexity
chain will be discussed and analysed in Section 6.

Having updated the feature vector weights, the original input list X can then
be presented to the system again, and obtain a new estimated action parameter
set (i.e. P X) using the updated feature vector weights. In this case, if P X is
correct, it will match the “correct” action parameter set originally obtained
by random exploration, PS, that is:

|A|∏

i=1

Bi(p
X
i − pS,i) = 0 (9)

When this happens, the strategy instantiation that was responsible for pro-
ducing this parameter set is updated with the correct feature vectors FS.

However, when the re-estimated P X does not completely match PS, this im-
plies that existing strategy instantiations were inadequate for solving the prob-
lem encountered. As a result, a new strategy instantiation is added to the
strategy model, where the parameters of the APM is that given by random
selection. The details of how this is done is exactly like those in initialising
the system with a single strategy instantiation at the start (Section 5.3.1).

18

Fig. 7. An example of the COSPAL shape sorter puzzle. There are 4 puzzle pieces
along with corresponding holes (shown with square borders).

6 Experiments

The main aims of the experiments performed in this section are to test whether
the proposed methods are capable of successfully learning a teacher example
and imitating it to solve similar examples. Additionally, we also wanted to de-
termine if the act of “imitation” can be further generalised to examples where
starting configurations are different to that given by the teacher example. Fi-
nally, it was also necessary to see if these learnt examples can be extended
to different unseen objects. Initial experiments are performed on a simulator
for the COSPAL environment. Two sets of experiments were performed. The
first set of experiments is carried out by progressively applying the system
through the different levels of the complexity chain described in Section 4.
This is repeated for various shape sorter pieces. All the pieces are presented
simultaneously to the system. Additionally, we also show example scenarios
of the system applied to the live COSPAL demonstrator system.

6.1 Experimental Setup

For evaluation, a simulated virtual shape sorter puzzle will be used. This
consists of a “board” with a number of different shaped holes in it. These
holes are different to those in more real-world shape sorter puzzles in that
they can be arbitrarily positioned and oriented. This flexibility is used for the
last level in the complexity chain. Similar corresponding shaped pieces are also

19

Fig. 8. The complexity chain performance graph for a single parameter setting of
the system.

available. The objective of the game, is to place the pieces into similarly shaped
holes. For the experiments, the puzzle will have 4 different holes and pieces
with the following shapes: circles, half circles, squares and triangles (Figure
7). The holes and pieces will be represented using fixed dimensional feature
vectors of the form: (x, y, shapeid, r, g, b), where (x, y) is the 2D position of the
piece, shapeid ∈ {1, 2, 3, 4, 5} is a unique identifier for each of the five different
shapes, and (r, g, b) are the mean red, green and blue colour intensities for the
object respectively.

In order to interact with the environment (e.g. shape pieces), a gripper object
is provided. The gripper has the following three different capabilities (with
the required arguments): moveto(listID), align(), gripping() and insertion().
Both the grip and insertion have no arguments and work on objects that are
directly below the system’s gripper.

Prior to carrying out the experiments, a teacher example demonstrating one
instance of a single shape placed into its respective hole is given. Specifi-
cally, a single example of a circle being placed into a circular hole is given:
moveto(circleobjlistID), align(), grip(), moveto(circleholelistID), align(),
insertion(). This example is then presented to the system to be memorised.
Following this, the next section will describe the set of experiments that use
the complexity chain to evaluate the performance of the system when pre-
sented with problems that are increasingly complex.

20

6.2 Experiments Structure

The aim of the experiments will be to use the complexity chain to evaluate
the performance of the system with different parameter settings. The results
will then allow us to analyse the importance of the different components of the
system with regard generalisation (i.e. to solve problems of increasing com-
plexity through imitation). Firstly, we define the performance of the system
at each level as the percentage of times random exploration was used to solve
the puzzle. In other words, it is a measure of how many times the proposed
strategy model within the system failed to provide a correct solution to some
test example.

The system is then presented with examples from the entire complexity chain.
We start with the first three complexity levels for the circular object, since
it was the teacher example presented. Upon completion, we move on to the
fourth complexity level. This involves presenting examples from the first three
complexity levels for the square object to the system. Following this, the trian-
gle and half circle object are also presented. For the fifth and final complexity
level, scenes with all objects present are presented. Again, these scenes are
of configurations with objects at positions increasingly distant to those in the
first levels of their respective complexity level. For a single complexity level, 12
example scenes are consecutively presented to the system. The performance
of the system in terms of the percentages out of these 12 examples where the
system required random exploration to complete the puzzle are then obtained.
These series of tests are repeated 10 times and the average performance of the
system at each complexity level is shown in a complexity level performance

graph (Figure 8).

This shows the system not generalising very well with the shown parameter
values (σ = 0.1 and α = 0.001). This can be seen from the increasing amounts
of random explorations as the system is presented examples that are increas-
ingly further away from the teacher example. The failure of generalisation is
finally confirmed at the final level where multiple objects are present. Here,
70-90% of the time, random exploration is required. The other examples are
solvable by the system simply because they are close to starting configurations
memorised by the system from previous test examples.

It is important to note that Figure 8 only shows the system for one particu-
lar parameter setting. To gain a deeper understanding and assess the overall
performance of the system, the above complexity chain experiment is run over
a range of parameter settings. In particular, we vary the feature weight ad-
justment value (α) from 0.001 to 1 at increments of 0.25. The parzen window
bandwidth (σ) is also varied from 0.1 to 2.1 at increments of 0.5. This results
in a grid of 25 different complexity chain performance graphs which will be

21

Fig. 9. The results of the system’s performance across the complexity hierarchy over
various settings for the parzen window size and the feature vector weight update
value.

discussed in the next section.

22

Fig. 10. This figure shows for each system parameter setting, how many strategy
instantiations (APMs) were created at the end of each complexity level (y-axis of
each graph). The ideal APM number should be 4, since there are only four puzzle
shapes available.

23

6.3 Experimental Results

The grid of complexity chain performance graphs for the experiments per-
formed are shown in Figure 9. Here, 25 different parameter configurations
were tested. The first thing one notices is that when the feature weight ad-
justment value is very small (0.001), regardless of the setting for the parzen
window size, the performance of the system is on the whole very bad. As
the complexity level goes up for each of the objects, the amount of random
exploration increases as well. This is apparent for all objects, as well as the
multiple object level. This is because important features are not emphasised
soon enough. This results in too many APMs being created, as can be seen
in Figure 10. Ideally, since there are only four different types of puzzle pieces,
there should only be four APMs. If too many are created, it stops any one
APM’s kernel model from being updated frequently enough to provide a good
generalisation capability.

However, when the feature adjustment level is appropriate, from 0.251 on-
wards, the performance of the system then becomes dependant on the size of
the parzen windows. The performance of the system deteriorates as the parzen
window size increases, as is reflected in the performance graphs with parzen
window values of 1.1 and above.

An increase in parzen window size effectively increases the radius of the Gaus-
sians in the kernel models. This will cause the feature subspaces modelled
by different APMs to overlap. As a consequence, there in an increase in the
ambiguity of responses for memories of different strategy instantiations (mod-
elled by APMs). This is not apparent in results where only one puzzle piece is
present. However, with multiple puzzle pieces, there is an increase in the use
of random exploration. This is because the system may, for example, apply
the strategy instantiation of filling square objects into square holes to a circle
objects, in effect putting circular objects into square holes.

6.4 Application to the Live COSPAL Demonstrator System

The proposed system was finally applied to the live COSPAL demonstrator
system aimed at solving the shape sorter puzzle [3]. Again, the system was
presented with various configurations of the shape sorter puzzle, as structured
by the complexity chain.

The live COSPAL system is configured very closely to the simulated envi-
ronment described in the previous subsections. There is a robot manipulator
that provides the four capabilities: moveto(listID), align(), gripping() and
insertion(). The mechanisms for learning and providing the motor controls

24

required for these four capabilities are described in [12,11,13]. Additionally,
numerous object detection and shape classification methods were used to pro-
vide the input list representation is described in [4,5,8].

The planned strategies provided by the system at the end of the complexity
chain can be seen in Figure 11 and 12. In these figures, a grip command is
visualised as a hashed-line circle, whilst a release command is shown as a full
line circle. The line between the two circles illustrates a move-to command.
The object is always gripped first, then moved to somewhere before released.
The thickness of the line shows the system’s confidence in the planned strategy,
which is proportional to the response of the memories that were used.

In Figure 11, we see the situation where all puzzle pieces and their respective
holes can be seen clearly. In (a) the detections of all objects (puzzle pieces
and holes) are highlighted by circles. The planned strategies for each puzzle
piece are separately shown for clarity in (b) - (e). Here, (b) shows the strategy
of inserting square objects into square holes. (c) shows bridge-shaped pieces
inserted into their respective holes. (d) shows for triangular objects, (e) for
half cylinders and finally (f) for cylinders.

In Figure 12, we see how the system reacts when a hole for a puzzle piece
is occluded. Additionally, the camera viewpoint has changed which has the
effect of “moving” the board. Despite these changes, it can be seen that the
system still manages to perform well in proposing possible strategies for solving
the puzzle. The puzzle pieces and board holes can be seen in (a), with their
detections shown in (b), highlighted by circles. The planned strategies for
solving the puzzle is visualised in (c) - (e). In (c), we see the strategy planned
by the system for square objects. Similarly, in (d) and (e), we see the strategy
of filling the holes of bridges and triangles respectively. It can be seen that
(c) - (e) all show correct moves. In (f), we see that the system has decided to
place half cylinder holes into a circular hole. This was because the half cylinder
hole itself was occluded by the triangular object. However, the confidence in
this strategy is very low, since filling circular holes require circular objects,
whereas in this case, half cylinders were used instead.

7 Discussions

In the previous section, various experiments were described on both the sim-
ulated and live shape sorter systems. In both cases, the complexity chain was
used to structure the scenarios presented to the system. However, there is one
fundamental difference between the simulated system and the live system,
that of speed of operation. The live COSPAL demonstrator system consists of
multiple sub-systems, some responsible for motor control, some responsible for

25

(a) (b)

(c) (d)

(e) (f)

Fig. 11. This figure shows the proposed system applied to the real COSPAL shape
sorter puzzle. Detailed explanations can be found in Section 6.4.

visual object detection. In the simulated environment, a virtual robot can be
made to move instantaneously, a real robotic manipulator will requires time,
with additional constraints for safety. Additionally, the visual subsystems will
have to deal with image noise. All these factors eventually result in the live
demonstrator system being significantly slower than that of a simulated sys-

26

(a) (b)

(c) (d)

(e) (f)

Fig. 12. This figure shows the proposed system applied to another configuration of
the real COSPAL shape sorter puzzle. Detailed explanations can be found in Section
6.4.

tem.

The requirement of accuracy in the live system is also of paramount impor-
tance. In the simulated system, a perfect grab or moveTo command can be

27

guaranteed by relaxing the tolerances between the alignment of objects, holes
and manipulator. This is far more difficult to achieve in a live system that
visually guides a robot manipulator in real time. In a live instantiation, slight
alignment issues can cause complete failure of the system. As a result, even if
the strategy is correct, if the robot releases a piece slightly offset (say 0.01 mm)
from the centre of its respective hole, the puzzle piece can catch the edge of
the hole does not pass through the hole successfully. This can result in failures,
not because of incorrect strategies from the proposed system, but because of
the small errors in the visual and motor capabilities of the system. However,
it is important to note that ultimately, this is not a problem. In such cases,
random exploration is used and the proposed strategy will eventually be exe-
cuted correctly. Once done, the outcome of the random exploration will match
that initially proposed by the system, and this will only serve to strengthen
and reinforce the correct memory models in the system as described in Section
5.3.4. However, this process of failures due to finite alignment issues, serves to
further slow down the operation of the live system.

Due to these factors, it is not practical with the current implementation to
carry exhaustive experimentation in the live system. The amount of time it
would have taken to complete a similar number of experiments to those per-
formed in simulation is simply not feasible. However, it is a benefit of the sys-
tem architecture that learning at this high symbolic level is consistent across
domains and lessons learnt in the simulation can be directly applied to the
live system.

8 Conclusions

To conclude, this paper proposed a system to solve problems through imita-
tion. This was then applied the domain of a shape sorter puzzle within the
COSPAL system. To this end, an incomplete set of experiences provided by a
teacher was memorised with the aim of being used to generalise and efficiently
recall appropriate experiences given novel scenarios of similar problems. Addi-
tionally, random exploration was also used as a fall-back “brute-force” mech-
anism should a recalled experience fail to solve a scenario.

To this end, the ST-PAC system was proposed which ties together the in-
put percepts (i.e. a description of the world) with the actions that should be
performed given that scenario. Statistical models were used to couple groups
of percepts with similar actions. An approach to incremental learning that
provided good generalisation was also proposed.

Furthermore the concept of the Complexity Chain was proposed as a way of
structuring learning and a method for evaluating a cognitive system’s per-

28

formance. The system was tested in two types of experiments, a simulated
environment and a live demonstrator system. For both environments, it was
found that the system provided a platform that allowed both generalisations
over experiences from a sparse set of memorised examples provided by a tutor
and the capability to refine learning in light of new experiences.

References

[1] G. Buccino, F. Binkofski, L. Riggio, The mirror neuron system and action
recognition., Brain Lang 89 (2) (2004) 370–376.

[2] L. Ellis, R. Bowden, Learning responses to visual stimuli: A generic approach,
in: Proc. of the 5th International Conference on Computer Vision Systems,
2007.

[3] M. Felsberg, P.-E. Forssén, A. Moe, G. Granlund, A cospal subsystem: Solving a
shape-sorter puzzle, in: AAAI Fall Symposium: From Reactive to Anticipatory
Cognitive Embedded Systems, 2005.

[4] M. Felsberg, P.-E. Forssén, H. Scharr, Channel smoothing: Efficient robust
smoothing of low-level signal features, IEEE Transactions of Pattern Analysis
and Machine Intelligence 28 (2) (2006) 209–222.

[5] M. Felsberg, J. Hedbord, Real-time visual recognition of objects and scenes
using p-chennel matching, in: Proc. of 15th Scandinavian Conference on Image
Analysis, 2007.

[6] M. Felsberg, J. Wiklund, E. Jonsson, A. Moe, G. Granlund, Exploratory
learning structure in artificial cognitive systems, in: International Cognitive
Vision Workshop, 2007.

[7] P. Fitzpatrick, From first contact to close encounters: A developmentally deep
perceptual system for a humanoid robot, PhD thesis, MIT.

[8] P.-E. Forssén, A. Moe, Autonomous learning of object appearances using colour
contour frames, in: 3rd Canadian Conference on Computer and Robot Vision,
2006.

[9] T. Gelder, R. Port, It’s about time: an overview of the dynamical approach to
cognition (1995) 1–43.

[10] G. H. Granlund, The complexity of vision, Signal Processing 74 (1) (1999) 101–
126.

[11] F. Hoppe, Local learning for visual robotic systems, Ph.D. thesis, Christian-
Albrechts-Universität zu Kiel, Institut für Informatik (2007).

[12] F. Hoppe, G. Sommer, Fusion algorithm for locally arranged linear models, in:
Proc. of 18th Int. Conf on Pattern Recognition (ICPR), 2006.

29

[13] F. Larsson, E. Jonsson, M. Felsberg, Visual servoing for floppy robots using
lwpr, in: RoboMat, 2007.

[14] J. Siskind, Reconstructing force-dynamic models from video sequences,
Artificial Intelligence 151 (1-2) (2003) 91–154.

[15] E. Thelen, L. Smith, A Dynamic Systems Approach to the Development of
Perception and Action, MIT Press, 1994.

[16] D. Vernon, G. Metta, G. Sandini, A survey of artificial cognitive systems:
Implications for the autonomous development of mental capabilities in
computational agents, IEEE Transactions on Evolutionary Computation,
Special Issue on Autonomous Mental Development.

[17] D. Young, First-order optic flow and the control of action, in: Proc. of European
Conference on Visual Perception, Groningen, 2000.

30

