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Abstract—Analysis and processing of time-series data has been
studied over the past decades and has resulted in several promis-
ing algorithms. Clustering continuous data is an interesting
subset of unsupervised learning models to process and categorise
the data. Over a long period and with a large number of
samples most conventional data streams will converge to Gaussian
distributions. The existing clustering methods for continuous
data are usually suitable for this type of data. However, with
growing volumes of real world observation and measurements,
(i.e. Internet of Things data), the data sets become more volatile
and have multi-variate distributions. In this paper we propose
a dynamic and adaptable clustering algorithm for multi-variate
time-series data clustering. We have evaluated our work against
some well-known time-series clustering methods and have shown
how the proposed method can reduce the complexity and perform
efficient in multi-variate data streams.

Index Terms—Internet of Things; Data Stream Clustering;
Concept Drift;

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), dealing
with multi-variate data streams has become a key issue as real-
world observations and measurements have to be processed
and analysed in real-time. Increasingly more physical devices
are connected to the Internet, gathering and communicating
continuous data, making unsupervised approaches that can
deal with the huge amount, velocity and heterogeneity of
the data more important than ever. Since the real-world data
streams are usually not producing stationary data, the methods
have to be able to adapt to changes in the data stream and
process the data accordingly.
However, most of the existing approaches are either not adap-
tive to changes in data streams, require domain-knowledge
about the data stream in advance or provide the results only
when a clustering request is sent (and not in real-time) [1],
[2], [3], [4], [5].
This paper proposes a dynamic approach to cluster evolving
multi-variate data streams based on the data distributions.
The proposed algorithm automatically determines the best
number of clusters based on the current distribution. It remains
adaptive to changes in the data stream and can identify the
emergence of new clusters. We describe how the marginal
distributions of multi-variate data streams are used to cluster
the data in a dynamic and adaptive algorithm. Our proposed
algorithm will require a memory buffer and will keep a set
of samples in a first-in-first-out buffer that is used to obtain

current statistics about the data stream such as the average
value and the variance to detect the changes in the data
distribution.

II. PROBLEM STATEMENT

Data stream processing requires real-time methods that are
adaptive to changes in the data stream without human super-
vision. Data stream clustering provides an unsupervised and
automated approach for grouping relevant data into clusters.
With the rise of the IoT, there are an increasing amount
of applications using real-time data streams from sensing
devices. However, accessing the data is not enough, there is
a need for approaches that can handle the speed, volume and
heterogeneity of the IoT data streams and extract information
abstractions from the data streams. Clustering methods allow
to organise the data into groups in which similar data items
are placed next to each other. These groups can then further
be processed to label and analyse the data [6].

III. RELATED WORK

Clustering of data streams is a well-explored research topic.
Initially the algorithms were motivated by the fact that the data
sets and data bases that had to be clustered were becoming
too large to be processed in memory. Therefore one-pass
approaches had to be developed such as STREAM [1] and
BIRCH [2]. However, these methods work best for data sets
with a stationary data distribution. Applying this method to an
evolving data stream will lead to sub-optimal clustering results
over time.
StreamKM++ [3] clusters the data stream by calculating a
representative set called the core-set by constructing a tree that
contains representative points. k-means++ is then applied on
the core-set points multiple times and the best clustering result
is chosen. This method needs to know the number of clusters
in advance, which can not always be provided in practice.
Since then several stream clustering approaches have been
introduced that can produce reliable and high-quality clus-
ters even when the data stream is evolving over time such
as CluStream [4] and DenStream [5]. Like StreamKM++,
CluStream is not able to identify the right number of clus-
ters from the data stream automatically and requires human
supervision. Both CluStream and DenStream split the stream
clustering task into two phases. An online phase, where micro-
clusters are created and maintained, which give a memory



efficient representation of the data stream and an offline phase
that is triggered whenever a clustering request is issued. The
offline step takes the micro-cluster representations as input
and applies commonly used clustering approaches such as
DBSCAN [7] or k-means++ [8] on top of them. The outcome
of this clustering phase are called macro-clusters.
For a more detailed and comprehensive discussion of stream
clustering approaches we refer to the survey by Silva et al..

IV. METHODOLOGY: THEORY

In this Section we describe the ideas behind our approach
based on exemplary data sets and provide further detail how
the cluster centroids can be estimated from the marginal
distributions. We call our approach MinDCluster, because
we are using the MargINal Distributions to cluster the data
streams. Section IV-C describes the mathematical models used
to design the proposed algorithms.

A. The Clustering Approach

In multi-variate data, analysing the different distributions
of the individual features can give good estimations to find
areas with a high concentrations of points in the data stream.
By looking at the Probability Density Function (PDF) of a
feature, the data is flattened to this dimension. The local
maxima in the PDF show accumulations of values within
this feature. We analyse each feature individually and then
combine the gained insights. We pick one local maxima
from the PDF for each feature at random, which gives us
a candidate for a cluster centre. All possible combinations
of local maxima form the space of all candidates for cluster
centroids. After the candidates have been determined, all the
cluster centroid candidates that do not have a minimum amount
of data samples in their vicinity are filtered and no longer
considered. The selected points using maxima in the PDF
provide approximations of the actual centres. Two additional
steps have to be carried out until we find the optimal cluster
centroids. The first step is to move each centroid candidate
closer in the middle of all surrounding data points. After this
adjustment step has been carried out, it can be the case that two
candidates are now very close to each other and they might
be part of the same cluster. We merge them by replacing them
with a new cluster candidate in the middle of them. These
steps are carried out until convergence. The adjustment and
merge process is further described in Section IV-C.
For easier understanding we demonstrate this concept on a
simple example with 2-dimensional data. It should be noted
that while easier to show and describe in two dimensions,
the concept and the resulting approach are still applicable
with higher dimensional data. Figure 1 shows the 1000 data
samples, the histograms of the data distributions of both fea-
tures, the estimated PDFs and their respective local maxima.
Furthermore, Figure 1 shows how the cross points of the local
maxima can be used to get candidates for the cluster centroids.
A more detailed description of the selection of the appropriate
cross-points is given in Section IV-B.
The red circles show the possible cluster centroids. As a

Fig. 1: Cluster centroid candidates are determined through
local maxima cross-points

Fig. 2: Filtered and adjusted cluster centroids

first step, all points within a predefined or from the data
stream calculated ε-radius are assigned to each candidate.
Only centroid candidates that have been assigned more than
a threshold of minimum points are considered as possible
cluster centroids. All the remaining candidates are adjusted
to the mean value point of their cluster. In the case that two
cluster centroids are close to each other after this step; the
cluster centroids are replaced by the mean value point between
them and their corresponding clusters are merged. The filter,
adjustment and merge step are repeated until convergence.
In our experiments convergence never took more than 10
iterations. To avoid non-convergence a maximum iteration step
of 20 is chosen. We discuss both the estimation/selection of ε
and the threshold of minimum points in Section V.
All points that are not within an ε-radius of one of the cluster



Fig. 3: Result of the clustering approach

Fig. 4: Problematic distributions: Feature 1 and Feature 3 have
only one local maximum.

centroids are assigned to the nearest cluster by minimising
the intra-cluster distances. This is the most computationally
complex step in the method. The performance of the method
can therefore be increased by minimising the points that are
left unassigned after the first step in the approach. In Section
V we discuss how we can achieve this improved performance.
The final result of running the clustering approach is shown
in Figure 3.

B. Local Maxima Cross-points

We estimate the PDF for each feature and calculate the local
maxima. The maxima give the information about the values
that have agglomerations of data in their respective dimension.
If we look at the cross-points of the local maxima (see Section
IV-A and Figure 1) we get strong candidates for cluster
centroids in the multi-dimensional data. In the case that we
have data distributions with multiple local maxima as shown in
the example given in Section IV-A, we have enough candidates
to find all cluster centroids.
However, there is a problematic case, which we encountered
during the evaluation of our method, if we have data distribu-
tions as shown in Figure 4. Here feature one and three have

just one local maximum at 0.78 and 0.77 respectively and
feature two has two maxima at 0.22 and 0.89. If we take
the cross-points of the distributions, we then end up with just
two candidates for the cluster centroids (0.78, 0.22, 0.77) and
(0.78, 0.89, 0.77). However, if we look closely at the distribu-
tions, we see that even though there is only one maximum, we
can take all the points away around this maximum and then
there are still areas with a high density of points.
We solved this issue by first taking the crosspoint with the
most data samples around itself. We assigned these points to
the cluster and then take away all points that were assigned
this way. By recomputing the PDFs of the remaining data,
we get new local maxima and therefore new local cross-
points. By taking the cross-point with the most data samples
around it, we can determine the next dense cluster of the given
points. This process should be repeated until there are no dense
agglomerations of points left.

C. Mathematical Background

In this Section we give a more detailed mathematical
description of the models and ideas used in the presented
approach.

1) Probability Density Function: In order to analyse the
data distributions of the features of the data stream, we need
an efficient method to estimate a function that can represent
the data distribution. Kernel Density Estimation (KDE) was
independently developed by Rosenblatt in 1956 [9] and Parzen
[10] in 1962. The kernel used to estimate the function has
very little impact on the resulting function compared to the
bandwidth parameter. For practical purpose the use of a
Gaussian kernel is preferable. There are effective and efficient
rules that can be used for automated bandwidth selection (such
as Scotts rule [11] and Silvermans rule [12]). Using one of
these solutions can effectively turn the approach into a non-
parametric method.
We apply the KDE on a window of time series data. Let
d(w) = [X1, X2, . . . , Xn] be the time series data of a given
window size w. As shown by Parzen [10] we can take the
sample distribution given in Equation 1. This allows us to
estimate the probability density function fn(x) based on the
data samples of size n with the formula given in Equation
2, where K(·) is called the weighting function satisfying
the kernel requirements given in Equation 3 and Equation 4,
therefore referred to as the kernel. The kernel is dependent on
the chosen bandwidth h. The bandwidth is chosen as h = h(n)
such that limn→∞ h(n) = 0. This leads to the expected value
of fn(x) approaching f(x) and fn(x) is a good estimation of
the PDF.

Fn(x) = (1/n){observations ≤ x amongX1, X2, . . . , Xn}
(1)

fn(x) =

∫ ∞
−∞
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h
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h
)
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K(y) dy = 1 (3)



K(−y) = K(y) (4)

2) Local Maxima: In order to identify the possible candi-
dates for cluster centroids we have to find the local maxima.
After we have computed the PDF, we can determine the
extrema. Let fi(x) be the PDF of feature i and f ′i(x) be the
derivative of this function. The necessary condition for a local
extrema is that f ′i(x) = 0. If this condition is fulfilled in
a point x then we have to examine f ′i(x ± ε) for ε << 1.
Only if f ′i(x− ε) > 0 and f ′i(x± ε) < 0 we have a sufficient
condition for a local maxima where x±ε defines the infinitely
small area around point x.

3) Adjusting Centroids: Although the cross-point candi-
dates give a strong estimation of where the actual cluster
centroids are, they are not necessarily ideally located in their
cluster. After we have assigned all points within the data
window to one of the centroid candidates, we adjust the
centroid candidate in the middle of their respective cluster.
Let ci = [xi1, xi2, . . . , xim] be the i-th cluster. We then set
the centroid candidate Ci to the point that minimises the sum
squared Euclidean distances for all cluster points as shown in
Equation 5

Ci =
xi1 + xi2 + . . .+ xim

m
(5)

4) Merging of Cluster Centroids: After adjusting the
cluster centroids, we need to identify if there are separate
clusters that should be considered as one cluster because of
the vicinity of their centroids. In this case the clusters must
be merged. For each cluster centroid, we store the minimum
distance of all distances to the other cluster centroids. Let
dmins = [d1, d2, . . . , dn] be the list of minimum distances
between the cluster centroids. We want to find small outlier
distances of dmins.
We use the definition of the outlier region introduced by
Davies and Gather in 1993 [13] to find outlier distances. The
outlier region measure is given by Equation 6, where σ is
the standard variance, µ the expected value, zq the q quintile
of the Normal distribution with standard deviation one and
mean zero.

out(α, µ, σ2) = {di : |di − µ| > z1−α/2 ∗ σ} (6)

We are only interested in outliers on the low end of the
distances, as large distances signify that the cluster centroids
are far apart. We use the criterion given in Equation 7 to
determine if a distance di is a small outlier distance.

di < −(z1−α/2 ∗ σ + µ) (7)

V. DESCRIPTION OF ALGORITHMS

The estimation of the centroid candidates is performed by
algorithm 1. It follows the concepts presented in Section
IV-B. The PDFs of each feature of the data sequence dw are
estimated using KDE (see Section IV-C1). Then the maxima
are calculated and fed into the function which determines the
cross-points. As the size of the data window is dw is w, the
running time of the PDF estimation lies in O(w); the same

Algorithm 1 DETERMINECENTROIDCANDIDATES(dw, ε, α)
Require: time series data sequence dw, radius used to find core

points of cluster ε, minimum percentage of the data a cluster
has to have core points α

Ensure: List of centroid candidates for further adjusting/merging
1: min num points = len(inp) ∗ α
2: finished = False
3: data = dw
4: while notfinished do
5: PDFs = pdfEstimation(data)
6: maxima = []
7: for pdf inPDFS do
8: maximum = getmaxima(pdf)
9: maxima.append(maxima)

10: end for
11: Ccandidates = getCrosspoints(maxima values)
12: lmax, count = mostDenseCluster(Ccandidates, data, ε)
13: {Assign label lmax to the points}
14: {in the most dense cluster}
15: if amount < min num points then
16: {No more dense clusters left}
17: finished = True
18: else
19: {Remove already assigned points}
20: data = removeAssigned(data)
21: end if
22: end while

holds true for the calculation of the maxima. The centroid
candidates are set to the cross-points of the maxima and are
examined. The candidate that has the most points around itself
is set as the cluster centroid and all surrounding points are not
considered. The process is repeated until no more dense cluster
can be found in the data. This results in k iterations, where k is
the number of centroid candidates that can be found. Therefore
the running time of Algorithm 1 will be O(kw) in total.
Algorithm 2 adjusts the centroids according to the formula

Algorithm 2 ADJUSTCENTROIDS(C, ld)
Require: List of centroid candidates C, Labelled time series data

sequence ld
Ensure: List of adjusted centroid candidates for further merging

1: for label, centroid in centroids do
2: Ci =

xi1+xi2+...+xim
m

3: end for

given in Section IV-C3 andruns in O(m). Because the dimen-
sionality of the multi-variate features that are considered in
clustering is usually low in practice, this equates to O(1).
The identification and merging of near cluster centroids is
shown in Algorithm 3. First the distance matrix between the
cluster centroids is computed. Because the distance matrix is a
square symmetric matrix, we can compute the lower triangular
and use this part of the matrix for the further computations.
That way we keep all the necessary information we need, while
improving the performance. The nested for-loop runs in O(k2)
where k = length(C) is the number of centroid candidates.
Algorithm 4 combines the algorithms 1, 2 and 3 to determine
the cluster centroids. Iteratively, the candidates are calculated
and adjusted and near cluster centroids are merged until con-



Algorithm 3 MERGECENTROIDS(C, zq)

Require: List of centroid candidates C, q quintile zq
Ensure: List of centroid candidates, where near centroids are merged

1: D = {Distance matrix between centroids}
2: dmins = {Minimum distances between centroids}
3: σ = std(dmins)
4: µ = mean(dmins

5: for i, distances in D do
6: for j, distance in distances do
7: if j > i and distance < −zq ∗ σ + µ then
8: merge(Ci, Cj)
9: end if

10: end for
11: end for

Algorithm 4 DETERMINECENTROIDS(dw, ε, α)
Require: time series data sequence dw, radius used to find core

points of cluster ε, minimum percentage of the data a cluster
has to have core points α

Ensure: List of centroids C
1: Ccandidates = determineCentroidCandidates(d, ε, α)
2: ld = mdCluster(Ccandidates, dw) {Labelled data}
3: centroids = []
4: while True do
5: C = adjustCentroids(Ccandidates, ld, epsilon)
6: C = mergeCentroids(C, ld, epsilon)
7: if Ccandidates == centroids then
8: break {We converged}
9: else

10: Ccandidates = C
11: ld = mdCluster(Ccandidates, dw)
12: end if
13: end while

vergence.We suggest to limit the iteration steps to a maximum
in order to avoid non-convergence in corner cases where the
centroids might be adjusted back and forth. In our practical
experiments, convergence happened after less than 10 iteration
steps and we limited the maximum iterations to 20.
The final clustering process, shown in Algorithm 5, is started
after the cluster centroids have been determined using Algo-
rithm 4. The first step of the algorithm assigns all the points
that are within the ε-radius of a centroid to the respective
cluster. After this step, there are still data samples that have
not yet been assigned to a cluster label. We calculate the best
fit for these points by calculating the average distance to the
points of each cluster and assign them the cluster label with
the smallest average distance.
Because the second step is computationally complex, we have
to estimate the parameter ε in such a way that only the
minority of the points are left unassigned after step one. To
do this we calculate ε based on the minimum and maximum
values in the data stream and the density of the data samples.
To further improve the running time of this algorithm without
losing cluster quality, in step two we can use a representative
sample of the already clustered points to calculate the average
distances. The run time can be further optimised by assigning
the unlabelled points to the cluster centroid with the lowest

Algorithm 5 MINDCLUSTER(dw, C, ε)
Require: time series data sequence d, List of centroids C, radius

used to find core points of cluster ε
Ensure: Labelled data ld

1: {Initially assign all points inside the ε-radius to the centroids}
2: for p in d do
3: for l, c in C do
4: if distance(p, c) < ε then
5: {Assign label l to point p }
6: break
7: end if
8: end for
9: end for

10: ud= {Data that has yet to be assigned to a cluster}
11: ld = {Data that has been assigned to a cluster, ldi is the data

assigned to cluster i}
12: for p in ud do
13: for ldi in ld do
14: avg disti = averageDistance(p, ldi)
15: end for
16: {Assign label i to p with minimum avg disti}
17: end for

Fig. 5: Comparison to CluStream and DenStream in 3 Dimen-
sions

Euclidean distance, however, doing so will decrease the cluster
quality.

VI. EVALUATION

The synthesised data sets used and the codes used to
produce the evolving data streams are available online on
our website1. The evaluation metric used is the silhouette
Coefficient introduced by Pravilovic et al. [14]. The silhouette
score is a value in the range [−1, 1], where values close to -1
signify misclustering and values close to 1 signify a perfect
clustering result. In the MOA framework [15], the value is
normalised to be in the range [0, 1], which is why we use
the normalised silhouette score in the evaluations shown in
Figures 5 and 6.

1http://iot.ee.surrey.ac.uk/#software



Fig. 6: Comparison to CluStream in 4 Dimensions

Figure 5 compares the cluster quality of this approach to
DenStream and CluStream on a 3-dimensional data set. It can
be seen that our approach consistently outperforms CluStream.
Even though DenStream shows a higher cluster quality at a
few points in time while processing the data stream, the overall
cluster quality of DenStream is unstable and produces very low
quality cluster at times. Our approach performs consistently
well. Compared to the average cluster quality found in the
CluStream approach, our approach has a 511.66% increase
in cluster quality. Compared to DenStreams average cluster
quality, our approach shows an 49.33% increase. Figure 6
shows the evaluation results on a 4-dimensional data sets.
The implementation of DenStream in MOA was not able to
produce a clustering result on this data set. Our approach
consistently outperforms CluStream, with an average increase
in cluster quality of 298.97%

VII. CONCLUSION

Clustering time-series data requires specific attention to the
characteristics of the data and the aim of the process and
its applications. Conventional data sets tend to lean toward
Gaussian distributions over long-term [16]. The distribution
of data over various features are also usually fixed or have
limited variations. However, time-series data from IoT streams
usually create dynamic and multi-variate data that require
special adaptive clustering mechanisms. In this paper, we have
presented a clustering algorithm designed for multi-variate
data. We have evaluated our solution using experimental data
sets and compared our results with some of the existing
stream clustering methods. The evaluation results shows that
our solution is capable of detecting the number of clusters
automatically by analysing the feature distributions of the
data stream. The clustering quality of the resulting clusters
of our approach shows improvements from 49% up to 500%
compared to competitor methods on the experimental data sets.
The algorithms designed in this work will have a significant

impact in dynamic and automated processing and clustering
real-world IoT data sets.
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