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Abstract—The gathering of real world data is facilitated by
many pervasive data sources such as sensor devices and smart
phones. The abundance of the sensory data raise the need
to make the data easily available and understandable for the
potential users and applications. Using semantic enhancements
is one approach to structure and organise the data and to
make it processable and interoperable by machines. In particular,
ontologies are used to represent information and their relations in
machine interpretable forms. In this context, a significant amount
of work has been done to create real world data description
ontologies and data description models, however little effort
has been done in creating and constructing meaningful topical
ontologies from vast amount of sensory data by automated
processes. Topical ontologies represent the knowledge from a
certain domain providing a basic understanding of the concepts
that serve as building blocks for further processing. There is a
lack of solutions that construct the structure and relations of
ontologies based on Real World Data. To address this challenge
we introduce a knowledge acquisition method that processes Real
World Data to automatically create and evolve topical ontologies
based on rules that are automatically extracted from external
sources. We use an extended k-means clustering method and
apply a statistic model to extract and link relevant concepts
from the raw sensor data and represent them in the form of a
topical ontology. We use a rule-based system to label the concepts
and make them understandable for the human user or semantic
analysis and reasoning tools and software. The evaluation of our
work shows that the construction of a topological ontology from
raw sensor data is achievable with only small construction errors.

I. INTRODUCTION

HERE is an emerging trend to use network-enabled

devices that observe and measure the physical world to
communicate the sensory data over the Internet. This growing
trend towards integrating the real world data into the Internet,
which is supported by Wireless Sensor Networks (WSN),
RFID, smart phones, GPS device and many other sensory
sources that capture and communicate the real world data is
refered as Internet of Things (IoT). IoT defines a framework
where billions of devices produce and exchange data related
to real world objects (i.e. Things).
In IoT and other research domains such as pervasive and
ubiquitous computing, sensor devices are often used to obtain
new insights about our surrounding world and to facilitate
the interaction with it. However, the increasing use of data-
producing devices leads to a deluge of sensory data that
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requires new methods to structure and represent the informa-
tion and to make the data accessible and processable for the
application and services that use these data.

The semantic technologies have been used in the recent years
as one of the key solutions to provide formalised representa-
tions of the real world data [1]. The advantage of applying
semantic technologies to sensor data is conceptualisation and
abstract representation of the raw data and making them
machine interpretable and interlinking the data with existing
resources on the Web.

For instance, instead of communicating and representing raw
numerical values of a measurement of a weather condition,
it is more desirable to use semantic concepts and properties
such as BlizzardCondition, isHighWindCondition or isFreez-
ingCondition measured and conceptualised by meteorological
Sensors.

Nevertheless, how the relationship between the raw data and
its intended concept and/or relationship is established, still
remains one of the biggest challenges in the IoT domain [2].
This issue is usually referred to as the symbol grounding
problem [3] which describes the fundamental challenge of
defining concepts from numerical sensor data that is not
grounded in meaningful real world information.

The real world data is commonly gathered as numerical values
that cannot easily be related to meaningful information without
knowing the context of the data such as observation time and
location. The data also underlies a natural volatility and the
meaning of it can change over time or it can be dependent on
other external factors. For instance, 30 Celsius in summer can
be a normal condition, however in winter it could be an error
or an outlier condition.

In order to overcome the grounding problem, we introduce
a rule-based system that designates the relationships between
discretised symbolised data and semantic concepts. We pro-
vide an automated approach for a real world data driven topical
ontology construction that represents the perceptual view of
the collected data and relationships between different concepts.
We have developed a k-means clustering algorithm to group
similar discretised patterns that later represent named concepts
in our ontology.

To discover relations between related concepts, we use a
Markov chain model approach to find the most frequent tem-
poral occurrences between patterns and name them after their
occurrence. To label unknown concepts and properties, we use
pre-defined rules. But in order to have a automated system
we need an independent rule system that mines rules and
applies them automatically to the concepts. To demonstrate
the feasibility of our model, we introduce an approach that
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Fig. 1: From Raw Data to Semantics

is able to automatically extract rules from existing resources
on the web for the construction of new semantic concepts by
using the raw sensory data.

We have implemented the above mentioned features and
applied our solution to a real world data set with more than
250000 samples gathered from different sensors over one
month period. We show that it is possible to create a topical
ontology that represents basic concepts that can be used as a
building block for further processing and enhancements. We
evaluate the approach in terms of reconstruction error rate and
show excerpts of the automatically constructed ontology.
The remainder of the paper is organised as follows: Section 2
describes the concepts of real world sensory data and semantic
representation of the data. The knowledge acquisition process
is presented in Section 3. We have shown the feasibility of
our solution by implementing a prototype and provide the
evaluation results in Section 4. Section 5 describes the related
work. Section 6 concludes the paper and describes the future
work.

II. REAL WORLD DATA PROCESSING FRAMEWORK

The main objective of this work is to represent meaningful

relations and extracted concepts from large amounts of sensory
data from the real world data in a human and or machine
interpretable format. As shown in Figure 1, real world phe-
nomena are observed by collecting measurements from sensors
and the raw data (mostly numerical) is sent to a user or a
gateway where the data is further processed and represented
in a meaningful semantic representation.
We provide a framework that infers knowledge from the data
and constructs a topical ontology representation from the
concepts that are extracted from the raw data. In this section
we introduce some background knowledge about sensor data
and discuss semantic representation frameworks.

A. Real World Data

Real World data is commonly reported through observation
and measurement data obtained from sensory devices. Sensor
data is often communicated as raw time-series data that can
consist of a time stamp stating the time of measurement, device
Id, and the values sensed by the sensor that is on board of the
sensor nodes i.e. temperature, light, sound, presence and other
relevant meta data.

The number of sensor nodes that are reporting data is con-
stantly increasing. On the one hand the price for hardware is

fallen and on the other hand day-to-day devices and appliances
are equipped with more capable hardware. Due to the large
number of sensor nodes and high sampling rates of sensor data,
the amount of data is not bearable for many data processing
algorithms. The deluge of data requires a variety of different
efforts such as real-time reporting, spatial distribution and the
variety of sensors and various qualities of the data for effec-
tive processing. Therefore dimension reduction techniques are
usually used to reduce the number of features from a high-
dimensional space to a low-dimensional representation [4].
Most common used techniques are: the discrete Fast Fourier
Transformation (FFT), transforming the time-based data into
the frequency domain to remove unwanted frequencies before
transforming it back to the time-domain. The Principal Com-
ponent Analysis (PCA), extracting a new orthogonal base to
represent the original data by calculating the covariance or the
Singular Value Decomposition (SVD), and the Piecewise Ag-
gregate Approximation (PAA) and its symbolic representation,
that uses averaged windows, utilised in this work. We evaluate
and discuss some of these techniques in the evaluation section.
To abstract from numerical values and to create higher-level
concepts from the large amount of data produced by sensor
devices, we use the symbolic aggregate approximation (SAX)
dimensionality reduction mechanism [5]. SAX discretises the
data and generates symbolic words representing patterns from
the sensor data.

Data discretisation serves as building block for many pattern
and event detection algorithms. It enables to map reoccurring
patterns to events even if there is variance, time shifting or
different means in the data [6], [7], [8], [9]. In the current
work, we use the symbolic approximate aggregation to trans-
form time-series data into symbolized words as shown and
explained in Figure 2.

Using SAX representations, we can detect similar patterns
from different sensor sources. SAX divides a window into
equal segments and then creates a string representation for
each segment. The SAX symbolic patterns are represented as
string words, the string size and letters are adjustable in SAX
(for more information refer to [8]).

For instance a time series sensor data, as shown in Figure 2,
is transformed into the SAX word “CDDCBAAAB”; similar
patterns will have resemblance to this symbolic representation.
The string similarity between patterns in SAX helps to index
and the compare different patterns by reducing the amount of
data that has to be processed and allows to associate rules to
compare and/or process the SAX words.

To illustrate the symbolic data aggregation, we use an example,
the word “CDDCBAAAB”, is a pattern constructed from
sensor data obtained from an accelerometer that has been
attached to a door and measured over 5 seconds. This could
lead to the semantic concept “doorClosed” or “doorOpened”
that can be stored and represented in an ontology. In this
work we use an extended version of the SAX algorithm, called
SensorSAX.

SensorSAX is optimised for sensor data and is described in
our earlier work presented in [10]. SensorSAX exploits a
variable encoding rate instead of a constant rate based on the
activity in the streaming data and allows higher compression
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Fig. 2: Dimensionality Reduction Process of SAX

(a) The blue line represents 100 data
points of a sine curve. The green
(dotted) line is the curve after normal-
isation

(b) The normalised curve is divided
into 9 windows. Each window rep-
resents the mean of 100/9 datapoints
from the original data. This leads to
a compression rate of n/N which is
9/100

(c) The output windows of the mean
windows from (b) are divided vertical
according to a Gaussian distribution.
Each segment is assigned to a letter.
The segment in which the curve is in
per window forms the SAX word; in
this case it is CDDCBAAAB

and fewer errors in reconstructing the original raw data by
only transmitting SAX words in case that there is activity
in the sensor data. In this work, we focus on creating a
topical ontology using the patterns that are extracted from the
SensorSAX patterns.

B. Semantic Representation of Real World Data

The key idea behind using semantic description for sensor
data is to enable representation, formalisation and enhanced
interoperability of sensor data. Ontologies can be used to store
semantic concepts that represent phenomena and attributes
from the real world that are understandable for the human user
and also interpretable for machines due to the standardised
data representation.

The concepts can be linked together through relationships that
express interactions and dependencies between the concepts.
The W3C Semantic Sensor Network Incubator Group has
introduced the Semantic Sensor Network Ontology (SSN) [11]
that provides a model to annotate sensors and their meta data,
and gathered data. The SSN Ontology uses semantic concepts
to model the physical attributes of sensor networks such
as ”Sensor Device”, “Temperature Sensor”’, “Radio Link”.
Properties in the SSN model the relationship between concepts
such as “occuredAt”, “observedBy” to relate sensor data
annotations to domain models.

Zhao and Meersmann [12] introduce the concept of topical
ontologies that represent a basic knowledge structure of a
certain domain that can be used as a building block for further
enhancement. Topical ontologies include the main concepts
(topics) that appear in a certain domain but unlike a taxonomy
also provide basic relations between the fundamental concepts.
We use the SSN Ontology as a starting point for our method
and extend the ontology by extracting new insights from the
raw sensor data to construct a topical ontology representing a
extract of the observed domain. The following describes our
approach to bridge the gap between raw data and the required
semantic concepts.

C. Overview of the framework

In Figure 3, an overview of the proposed framework to

process the raw sensory data and construct topical ontology
is shown. The framework consists of three main components:
Data Pre-Processing, Ontology Construction and Rule Based
Labelling. The raw sensor data serves as the input for the
framework. A k-means clustering mechanism is used to group
the data into clusters that form the unlabelled concepts. A
Markov model is used to create temporal relations between
the newly created concepts.
The unnamed concepts (i.e clustered SAX patterns) and tem-
poral relations are used to create the initial topical ontol-
ogy. After the initial ontology construction, the concepts are
labelled using a rule-based reasoning mechanism. The rule-
based engine processes the context of the data and tries to
name the unlabelled concepts and properties. The process is
shown inFigure 4 and the detailed description is found in
Section 3.3.

1) Data Pre-Processing: In a first step, the raw data is

standardised to a mean of O and a standard deviation
of 1 to ensure an even distribution of the data over
the whole processing period and allow comparison of
differently distributed signals. Afterwards the data is
transformed to the SAX patterns. This allows the map-
ping of symbolised descriptions to semantic concepts in
the ontology construction and also reduces the size of
data communication. The dimensionality of the data is
reduced by the aggregation algorithm in SAX.
This step can be performed on the sensing devices, in
the or case that the devices are not able to perform the
task due limited processing capabilities, the process can
be moved to a node with higher processing capabilities
(e.g a gateway).

2) Ontology Construction: The structure creation process
defines the outline of the ontology construction. A
preliminary ontology structure is created by extracting
concepts and properties using a clustering algorithm and
a statistical model. We follow a conceptual clustering
approach [13] to create semantic concepts without la-
belling them.
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Fig. 3: Framework Overview

The clusters are formed based on the similarity of the
attributes: symbolic representation and the meta-data
such as sensor type and time range of the measurement.
Each cluster is formalised as a unnamed concept in
the ontology structure. To model the properties in our
current implementation, we use a Markov model to find
the temporal relations such as “occursAfter” between
the concepts.

Rule-Based Labelling: In order to name the concepts
and the properties, we utilise a rule-based mechanism.
The rule system is based on the Semantic Web Rule
Language. It accepts symbolised SAX patterns and adds
a name tag to the unlabelled concepts.

We introduce a system that is able to extract rules based
on the meta information and external data sources to
automatically define the labels (this process is explained
in Section 3.3).

3)

III. REAL-WORLD DATA DRIVEN ONTOLOGY
CONSTRUCTION

The following three methods are introduced to develop a
solution that automatically constructs an ontology depicting
a perceptual view of the sensed environment: clustering the
symbolic patterns, creating properties via a Markov model and
naming the unlabelled concepts via a rule-based method.

A. Clustering for Concept Construction

In order to reduce the amount of data that has to be

processed, we use the SAX algorithm to create compressed
symbolic representations of the data. SAX introduces a dis-
tance function that allows comparing generated words such
as “ABBA” and “ABBC” and stating a similarity between 0
and 1. Common distance measurements and string similarity
functions such as Levenshtein- or Hamming-distance cannot
be used on the SAX words due to non-uniform distribution of
the letters in the main SAX algorithm.
The solely comparison of the words is not sufficient, as words
can be similar but measured by different type of sensors that
are not related to each other. The words are also dependent on
the observation time. We introduce a set of information that
is needed to cluster the data into different groups based on
their different attributes. We define a triple set A = [P, ¢, T,
where P is a SAX word, ¢ is the observation type and 7' the
observation time. In addition, we define a distance function
(shown as equation 2) to compare the similarity of two triple
sets;

(1

saxDist(P,Q) = \/Z Z(dist(pi,qi)Q
i=1

distance(Ay, Ay) = sazDist(Py, Py) » timeDif f(t1,t2) * typeDif f (T, T) (2)

In equation (1), sax Dist(P, Q) returns the distance between

two words P, and P; according to the distance function in
[8]. The original saxDist function is depicted in equation 1,
where n is the length of the SAX word, w the alphabet size
of letters used in the discretisation process and the function
dist(p;, q1) referring to a pre-calculated lookup table for the
particular alphabet size w. We extend the first equation by
adding a factor to compare the time difference and type
difference between to triples. timeDif f returning a value
between ]0,1] according to the temporal distance of two triples
and typeDif f returning either O or 1 matching the type of
the triples. Comparing functions values from Euclidian and
non-Euclidian space can lead to wrong results as the space
dimensions are not equal. The alternatives are the use of non-
linear dimensionality reduction techniques and the kernel trick
to map them into a common space, however the complexity
for sensor networks to perform this step is too high. In the
evaluation section we show the feasibility of this approach.
The extracted triples from the data are fed into a k-means
clustering method [14] that uses the previous defined distance
function. Each cluster is transferred to an unlabelled concept
that is later labelled through the rule-based mechanism. We ex-
tend the commonly used k-means algorithm for non-numerical
SAX based patterns. The extended k-means algorithm is
described in Algorithm 1 for two clusters.
In normal k-means, clusters are formed by calculating the
distance in an Euclidean space between different sample
sets. However, our sample sets consist of the non-Euclidean
members: pattern, type and time. Therefore we use the distance
function shown in equation 2 to measure the distances between
different triples.

We start with choosing two triples randomly from the data
which serve as the initial centroids for two different clusters.
The distances of the other triples from the centroids are cal-
culated according to the distance function shown in equation
2. The triples are then clustered respectively according to
their distance to the centroid. The average of each cluster
is then calculated with the help of the distance function and
the centroids are shifted according to the average distances
to the centroids. The process is repeated iteratively until both
centroids converge to a certain point.

The clustering process groups similar SAX words (i.e patterns)
in clusters. Each cluster is then represented as an unnamed
concept. We use the clusters instead of the patterns, because
small deviations in the raw data produce different patterns.
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Algorithm 1 Modified K-means clustering method
function CLUSTERING(c1, c2)
for p; € TriplesP do
dl = distance(cl, p;)
d2 = distance(c2,p;)
if d1 < d2 then
clusterl.add(p;)
else
cluster2.add(p;)
end if
end for
return clusterl, cluster?2
end function
¢l = random(P)
2 = random/(P)
clusterl, cluster2 = clustering(cl, ¢2)
while ¢ < 0.1 do
cl = average(clusterl);
c2 = average(cluster2);
clusterl, cluster2 = clustering(cl, ¢2)
newC1 = average(clusterl)
newC2 = average(clusterl)
€ = (cl — newC1) + (2 — newC?2)
end while
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Fig. 4: Clustering the Patterns into Concepts

Using large number of patterns with small deviations to create
our topical ontology will then produce a huge number of
concepts and relations which provide little information. Instead
we group the similar patterns and use representative concepts
(i.e clusters).

B. Statistics-based property extraction

We use the frequency of unnamed concepts and their tempo-
ral occurrence to construct a Markov chain that represents the
likelihood of temporal relations between unnamed concepts.
The model is able to detect and represent relations between
concepts through temporal properties such as occursAfter,
occursBefore and occursSame.

We provide two options to use the extracted likelihoods. In
case that the ontology supports fuzzy relations, or weighted
properties as provided for instance by fuzzy OWL 2 [15] the
likelihoods are noted in the semantic representation and can
be used by a fuzzy reasoner [16]. If the underlying ontology
or reasoner does not support fuzzy relations and only crisp
and well-defined properties can be accepted, we define a

0.1 0.8

Linknown
Concept 2

Unknown
Concept 1

Unknawn
Concept 3

0.3

Fig. 5: Temporal Relation based on pattern frequency

threshold that has to be met to transfer the observed temporal
dependency to a semantic representation. The threshold defines
the level that an uncertain relation should be accepted and
included in the ontology.

It is clear that by decreasing the threshold level, more relations
will be included in the ontology; however the lower threshold
level will also decrease the accuracy of the property definition
in the ontology. The threshold level definition is application
and domain dependent and the extent of relations versus
accuracy can be used to define this. The threshold can be
defined using heuristics or it can be defined manually.

In this work and in the evaluation section, we show how
different threshold levels affects the ontology construction. We
use a heuristic defined threshold of 0.8 to filter unwanted
relations. In the example shown in Figure 5, using 0.8 as
the threshold level leads to defining two properties namely:
( Concept 2, “occursAfter”, Concept 2 ), ( Concept 3,
“occursAfter”, Concept 1) (the direction of arrows in Figure
5 represents the temporal presents of the concepts).

C. Rule-based Concept and Property Naming

We use the Semantic Web Rule language (SWRL) [17] to
label the unnamed concepts and properties that have been
extracted through the clustering process. The rules defined in
SWRL follow the syntax form: antecedent = consequent
where the consequent is the anticipated name to be used to
label the concepts and properties and to fulfill the antecedent
rules. The following shows an example of a SWRL rule:

isTemperatureSensor(Ttmp)&lessThanOrEqual(?tval, 8) =

coldT emperature

The rules can be used to label a concept as “coldTempera-
ture” in case that the antecedent conditions, “originated from
a temperature sensor” and “the value of the measurement is
below 87, are satisfied. In our implementation, we initially
define the rules manually by considering available sensor types
and possible states that can result from these types or their
combination.

However, in large scale data processing scenarios manual
annotation is not a feasible approach and can hinder exten-
sibility and scalability of the solutions. There is a need to
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TABLE I: Automatically extracted properties for rule creation

Sensor type  ConceptNet Attributes  Attribute  location
Temperature
#cold <5 London
#warm > 10 London
#cool <10 London
#hot >25  London
PIR (presence)
#absent <200 Office
#present >200 Office
light
#light >100 Room
#dark <100 Room
microphone
#soft <20 Room
#loud >30 Room

define mechanisms that can automatically extract rules. We
define a minimum set of information needed to define the
rules by using sensor type, mathematical operator and location.
The target is to find the labels that can be used to describe
the unnamed semantic concepts. Sensor type and location
information can be obtained by the sensor description that is
usually available in a machine readable format.

Based on the sensor type we can infer possible attributes that
can be applied as label. For this purposes we use the common
sense semantic ontology “conceptNet” [18]. For instance we
can obtain the possible labels via the sensor type temperature.
Querying ConceptNet with temperature will lead to the result
set “warm”, “cold”, “hot” and “cool”. By knowing the
location of the sensor, we can query the ConceptNet entities
and extract related attributes and causal rules relevant to a
partiuclar type (e.g temperature, light). In Table I we show an
excerpt of extracted properties that serve as base for the rule
generation.

D. Discussion

The current work allows to create a topical ontology from

raw sensor data. The created ontology can be used as a
baseline for further improvements creating richer ontologies.
Our approach is divided into three steps: Data pre-processing,
Ontology Construction and Rule Based labelling.
We have attempted to propose an automated framework;
however, there are certain parameters during each step that
vary the outcome. In the following we describe the parameters
in each step and discuss their impact. The used SAX algorithm
to transform the raw numerical sensor data into string repre-
sentations to reduce the dimensionality and easy comparability
takes a window of samples with a specified window length
and turns it into a reduced vector with a smaller lengths. The
choice of the reduced vector length can have an impact on
the next processing steps. In the case that a very small vector
length has been chosen, important data such as outliers or
certain patterns can be lost. In the case that the reduced vector
length is chosen high, the effect of reducing the amount of
data is decreased and either too many noise is passed onto the
next algorithm or the amount of data is not suitable for the
processing intensive clustering process.

Besides the parameter n, to control the reduced vector output
length, a parameter a, has to be set, to control the size of
the dictionary that is used when transforming to a string
representation. The larger the dictionary, the more fine grain
will be the resolution of the discretised representation. We have
conducted some research that chooses the right parameters
based on the variance of the data [19].This is useful when
interesting events occur outside of the mean of a data window.
Other possible techniques for the dimensionality reduction
are Principal Component Analysis (PCA) and the Discrete
Fourier Transformation (DFT). The different techniques are
benchmarked in the evaluation section.

The Ontology Construction step uses a modified KMeans
clustering algorithm that groups similar samples based on their
distance. The algorithm requires two parameters, the predicted
number of clusters K and a distance function. Commonly the
euclidean distance is used to calculate similarity between data
points, however here we use a modified distance function. In
different application scenarios, variance changes in the sensor
data and different scales (time function) will affect the results.
To prove the feasibility a larger case-study with data-sets from
more domains have to be conducted; however, this would
exceed the scope of this prototypical work. There are methods
to estimate the amount of clusters. In the evaluation section
we introduce a method to determine the numbers of clusters
based on the group variance/expected variance. There are other
methods to group and classify samples that are more use-
case specific such as hierarchical clustering or Mean-shift. To
label the groups, we use a rule-based approach. The approach
is non-parametric, and mainly relies on the knowledge base.
Therefore the rule-base has to be chosen according to the
application scenario. Other approaches that leverage the crowd
sourced mechanisms to label the concepts are for example
described in [20]

In Table II, we show the applied algorithms and summarise the
used parameters that have an impact on the generated topical
ontology.

IV. IMPLEMENTATION AND EVALUATION

To evaluate the proposed framework, we use sensor data
obtained from the testbed in the Centre for Communication
Systems Research at the University of Surrey [21]. The data
is collected in one month period from sensor nodes deployed
in the offices collecting information about light level, power
consumption of the workstation, passive infra-red (PIR), tem-
perature and noise levels.

We collected 274960 samples with one sample every 10
seconds and also made the data available online'. We first
transform the data into a dimensionality reduced data set.

We have chosen to reduce the 274960 samples to a represen-
tation of 128 samples. To evaluate the reconstruction error of
the different approaches, we perform the transformation over
the dataset into different output vectors (with the length to
the power of 2). Afterwards we reconstruct the original data
from the reduced data by extrapolating? the data to the initial

Ihttp://kat.ee.surrey.ac.uk/data.csv
2extrapolating by copying the values
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TABLE II: Applied methods throughout the process and variable parameters

Pre Processing
Applied Method  Alternatives Parameter  Description Parameter Learning
SAX PCA, DFFT

n output length Entropy, Variance

a alphabet size
Ontology Construction
Applied Method  Alternatives Parameter  Description Parameter Learning
KMeans Hiearchical Clustering, MeanShift

K number of clusters  FTest, DIC

distance distance function
Markov Model Hidden Markov Model, Neuronal Network

t cutoff threshold Expectation Maximation
Labelling
Applied Method  Alternatives Parameter  Description Parameter Learning
Rule-Based Statistics, Crowdsourcing

Q Rule Base -

size to be comparable. We measure the reconstruction error
by taking the euclidean distance between the original data and
the reconstructed data. In our approach we choose the SAX
algorithm because of its simple implementation. ' It should be
noted that the execution time of FFT is constant independently
from the output size whereas SAX has a rise in execution time
growing with the increasing output vector length. However,
this_is only valid while executed on powerful workstations
where the complex computations of the FFT algorithm are
supported natively SAX consists of two loops, and addition
and multiplication operators in contrast to the PCA and FFT
algorithms that require complex matrix computations such
as eigenvalue/singular value decomposition. We argue that
the complexity of the algorithm should be considered to be
applicable for energy and computation constrained sensor
nodes and not only measured on the common used metrics
such as execution time. Especially, in heterogeneous sensor
networks, where there is a large variety of different hardware,
simpler algorithms ease the adaptation for different platforms.
In this work the dimensionality reduction is performed on a
powerful workstation, however, the dimensionality reduction
process can be out-sourced to the resource constrained sensor
nodes. The data is then normalised and transformed into the
SAX representation to reduce its dimensionality and to make it
suitable for our ontology construction algorithm. We transform
each observation day into one SAX word with the length of
24 representing one letter per hour ending up with 31 words
that each include 24 letters.

In a first step the data is grouped using our discrete k-means
clustering method with a group size of k=2 and k=3. The k
parameter is estimated by grouping the data over different k
and for each k calculate the variance of each cluster group.
The goal is to keep the overall variance per cluster as low
as possible. In Figure 6, we show the variance over different
values of k and eventually set the number of clusters to two
for the following steps. The variance is used as a rule of thumb
method. For future work we examine using probability density

functions and data distributions to determine the number of
clusters. The latter will eliminate the variance analysis and
cluster number selection by using a predictive mechanism;
however, the current experiment provides a better indication
of the behaviour of clusters by applying different values for
k but will come at a cost of accuracy. Each data point in
Figure 7 represents a triple (Sax Pattern, Time stamp, Sensor
type) that is grouped into one particular group. The clusters
are then represented as a concept. We know from the data that
two trends can be observed, the data from the power meter,
noise and PIR sensors have high activity during workdays and
remain steady over the weekend. The goal is to automatically
label the unnamed concepts as either workday or weekend and
represent this knowledge in the ontology.

We evaluate the results of the clustering method with real

calendar information shown in Figure 8. The best case is to
achieve an error rate of 0, thus all triples of the data set have
been correctly grouped into either the workday or weekend
group.
Due to the fact that we choose random triples as starting point
for our clustering method the results in each experiment could
be different. To show the performance of the algorithm in
different experiments, we run the evaluation 100 times to get
a comparable average, minimum and maximum of the error
rate. The results are shown in Table IIl. In most cases the
triples are categorised correctly, however, sometimes an odd
starting triples is selected and all triples including the ones
from the weekend are categorised as weekdays resulting in the
highest error rate of 8. The outcome of the clustering method
also highly depends on the underlying dataset. The Mic and
PIR data sets lead to the smallest error rate regardless of the
initial cluster set. However, the selection of the initial centroids
and the cluster size has still place space for improvements and
will be addressed in future work.

The groups are then included in a baseline ontology as
unnamed concepts. The temporal relation between the con-
cepts is extracted using the statistical model. In this scenario,
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Determining the numbers of cluster in the Watt dataset

Determining the numbers of cluster in the light dataset
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TABLE III: Error Rate in detecting the correct groups from
different sensor types

Error Rate  Watt Light PIR  Mic
Average  3.07 346 1.14 1.27
Minimum 0 0 0 0
Maximum 8 7 4 6

Relations

Fig. 9: Number of relations based on the factors: cut-off
threshold and cluster size

it is more likely that one concept follows the same concept
p(groupl | groupl) = 0.7 and group 2 following after group
1 p(group2 | groupl) = 0.2. This expresses that it is more
likely that a weekday follows another weekday. As stated
earlier the amount of (temporal) relationships is dependent on
cluster size and cut-off threshold.

In Figure 9, we show the dependency between cluster size,

threshold and resulting amount of relations that are eventually
represented in the ontology. Currently there is no automated
way to choose the right parameters and thus heuristics and
domain experience have to be considered while designing the
system.
Figure 10 shows an excerpt of the automatically constructed
ontology. Squares represent classes that can have individuals,
instances from a certain domain and represented as circles
in the figure. On the left of the figure is the information
that can be gathered from the sensor devices itself. Meta-
information such as observation period, deployed devices and
their capabilities are represented as SSN concepts. The SAX
words and the inferred information that is acquired through
the framework is shown on the right. The Grey highlighted
concepts show the novelty of the automated process. Figure 11
shows a screenshot of the ontology visualised by an ontology
visualisation tool®. The framework can conclude the meaning
of raw sensor data and represent it in an topological ontology.
The created ontology can be downloaded®.

Ohttp://semweb.salzburgresearch.at/apps/rdf-gravity/
Ohttp://http://personal.ee.surrey.ac.uk/Personal/F.Ganz/onto.owl
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Fig. 10: A schematic view of the constructed topological
ontology
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Fig. 11: An excerpt of the automatically created topological
ontology

V. RELATED WORK

In this section we provide an overview of related work on
knowledge representation and creating insights from unstruc-
tured data. We also describe the methods and techniques that
are used in this work.

A. Similar approaches

There are some notable work that learn and construct
ontologies and semantic representations of data from text
documents. Wei et al. [22] introduce an automatic learning
approach to construct terminological ontologies based on
different text documents. Common words that have a semantic
similarity are grouped together and represented as concepts in
an ontology. The authors use probabilistic models similar to
our work. However, Wang et al.’s work can be applied to only
text-based data.

Lin et al. [23] introduce a learning approach that constructs
an ontology automatically without the requiring training data.
The approach is domain-independent but also relies on text
data. The keyword only data allows using existing distance
metrics such as cosine distance to find similar concepts. In
our approach we had to introduce a similarity function for the
special domain of sensor data.

With the upcoming of the semantic sensor web, several work
have been conducted in providing sensor data with semantic
representations. Sheth et al. use semantics to represent and
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structure real world data in 2009 [1]. However, transforming
the raw data into the semantic representation remains a chal-
lenge, especially with the deluge of data that is not not feasible
to manage them using manual solutions.

Dietze et al. [24] describe the problem of symbolic grounding
and the semantic sensor web and introduces an approach
that uses conceptual spaces to bridge the gap between sensor
measurements and symbolic ontologies in an automatic man-
ner. The authors state that finding the right distance function
remains as one of the challenges. In the current work, we
define a distance function that includes the three main features
of interest; pattern shape, type of measurement and observation
period and provide a distance function.

Stocker et al. [25] describe a system to detect and classify
different types of road vehicles passing a street with the help of
vibration sensors and machine learning algorithms. The work
acquires knowledge represented as an ontology by using two
abstraction layers; the physical sensor layer and the sensor
data layer.

However, the approach requires user interaction and/or
domain-dependent training data to train the system to a certain
environment. In our approach we introduce an autonomous
system that does not rely on training data.

B. Data Processing mechanisms

The knowledge acquisition requires several processing
steps. Due to the large volume of real world data, techniques
are required to lower the amount (or dimension) of the data
input to make it manageable for processing algorithms such
as clustering and statistical methods. In the domain of time-
series analysis there has been a large amount of dimen-
sion reduction techniques such as Fast-Fourier transformation
(FFT) [26], Discrete Wavelete Transformation (DWT) [27] and
Piecewise Aggregate Approximation (PAA) [28] and Symbolic
Aggregate ApproXimation (SAX). The comparative study by
Ding [29] reveals that SAX performs best in preserving the
data features by remaining high dimension reduction (data
compression).

To reduce the flood of real world sensor data we use the SAX
method introduced by Lin et al. [8]. SAX transforms time-
series data into aggregated words that can be used for pattern
detection and indexing. However SAX was not developed for
small constrained devices and we therefore introduce Sensor-
SAX [10], a modified version that has less data transmission
in times of low activity in the sensor signal that is processed.
In order to group similar types of patterns and events,
clustering mechanisms are used. Cluster mechanism do not
require training data and can be unsupervised. However, the
clustering methods rely on distance functions that map the
data samples to a comparable space. The k-means clustering
method provides fast computation of the groups even in large
datasets. However, the biggest drawback is that the number of
clusters (i.e. k) is an input parameter, and therefore should be
known beforehand.

In order to create the properties, we use a rule mining approach
similar to Hu et al. [30]. The authors aim at creating ontologies
automatically by learning the logical rules to construct the
ontology. In this paper we use a rule learning approach similar

to the one of Hu et al. to label the unnamed concepts in the
ontology.

In overall, the concepts that are created using the clustering
algorithm are named using a logical rule-mining approach.
This allows the ontology construction method to insert new
named concepts into the ontology and define the relations
between the concepts.

VI. CONCLUSION

In this paper we introduce an approach that automatically
generates a semantic ontology from raw sensor data that
represents information and new insights gathered through a
knowledge acquisition process. We introduce three mecha-
nisms namely a discrete k-means clustering method, a sta-
tistical method and a rule-based system to provide a frame-
work that is able to construct a knowledge representation
for sensor data without requiring a preliminary training data.
The proposed ontology learning solution will allow creating
a machine-readable and machine-interpretable representation
of the concepts (i.e. patterns) and their relations that are
defined based on spatio-temporal and thematic attributes of the
streams. The constructed ontology can be used in control and
monitoring applications that use the sensory data to observe
the status of an environment or a physical entity or it can be
used to provide an overall view of the changes and related
occurrences over a period.

We evaluate our approach with the help of a prototypical
implementation and real world data gathered from sensors
deployed in an office environment. We construct an ontology
representing a work week in an office with a manual defined
cluster size.

The results show an effective way in representing and naming
semantic concepts from sensor data. However, the current
execution time does not reflect the requirements for real-time
processing, therefore more investigation has to be made to
make this approach more suitable for learning and ontology
construction from real-time streaming data. The approach also
creates properties between semantic concepts; however, we
use a pre-defined threshold to filter unwanted relationships.
For the future work we will investigate how to find the best
parameters for the framework in terms of window lengths
for the dimensionality reduction process, the cluster size (k)
and the threshold that selects the amount of relations created.
Besides the technical aspects the approach can be exploited
to automatically model relationships between different users
and their habits (assumed the rule base contains the right
information) and therefore the impact on privacy has to be
considered.
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