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Abstract

In [3], we proposed a technique for robust joint multi-layer segmentation and reconstruction of large scale outdoor scenes
from multiple loosely calibrated moving cameras separated by a wide-baseline. The technique combines multiple visual cues
such as dense photo-consistency scores, sparse affine covariant feature constraints, probabilistic colour models of layers,
contrast and smoothness priors into an energy function which must be minimised. The resulting energy function is non-
convex and has a large number of variables. Global minimisation of this type of energy function is known to be NP-hard. In
this technical report, we demonstrate that the defined energy function satisfies the regularity constraint required for graph-cut
optimisation via the expansion move algorithm. This allows computation of a strong local optimum which is guaranteed to
be within a known factor of the global optimum.

This technical report is structured as follows. We start by rewriting the energy function in a form suitable for the proof of
regularity. Then we give a brief description of graph-cut optimisation via expansion move algorithm. Finally we demonstrate
that the energy function satisfies the regularity condition required for minimisation using this framework.

1. Energy function formulation
The energy function is defined is Section 3 of [3]. In this technical report, we use the same notation as in [3]. Whenever

the definition of a variable has been omitted, the reader is referred to [3]. The energy function that we seek to optimise can
be written in its generic form as

E(l, d) =
∑
p∈P

Dp(lp, dp) +
∑

(p,q)∈N

Vp,q(lp, dp, lq, dq). (1)

Dp(lp, dp) is a unary term which measures the cost of assigning a label (lp, dp) to pixel p based on the observed data. It
is defined as

Dp(lp, dp) = D
′

p(lp, dp) + D
′′

p(lp, dp), (2)

where
D

′

p(lp, dp) = −λcolour log P (Ip|lp), (3)

and
D

′′

p(lp, dp) = λmatch(edense(p, dp) + esparse(p, dp)). (4)

The term D
′

p uses learnt colour models for each layer to encourage assignment of pixels to the layer following the most
similar colour model, while D

′′

p encourages depth assignments to maximise a dense photo-consistency measure as well as
some sparse affine covariant feature constraints.

Vp,q(lp, dp, lq, dq) is a pairwise term which measures the cost of assigning a pair of labels (lp, dp) and (lq, dq) to neigh-
bouring pixels p and q based on some priors. It is defined as

Vp,q(lp, dp, lq, dq) = V
′

p,q(lp, dp, lq, dq) + V
′′

p,q(lp, dp, lq, dq), (5)
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where

V
′

p,q(lp, dp, lq, dq) = λcontrast

{
0 if lp = lq,

exp (−βC(Ip, Iq)) otherwise, (6)

and

V
′′

p,q(lp, dp, lq, dq) = λsmooth

 min(|dp − dq|, dmax) if lp = lq and dp, dq 6= U ,
0 if lp = lq and dp, dq = U ,

dmax otherwise.
(7)

The term V
′

p,q encourages discontinuities to follow high contrast regions, while the term V
′′

p,q encourages the depth labels to
vary smoothly within each layer.

2. Graph-cut optimisation using the expansion move algorithm
In order to compute a solution to the joint segmentation and reconstruction problem, the previous energy function must be

minimised. Because the energy function defined is non-convex and has a large number of variables, finding a global minimum
is NP-hard. However, recent work on graph-cut optimisation in [2] has shown that it is possible to compute a strong local
minimum which is guaranteed to be within a know factor of the global optimum by using the expansion move algorithm. The
main idea of the algorithm is to cycle through the set of labels and perform an expansion move with respect to each label until
the energy cannot be decreased. Each expansion move requires solving a binary optimisation problem for which a global
solution is obtained using the min-cut/max-flow algorithm [1]. In [4], Kolmogorov and Zabih demonstrate that in order to be
minimisable via graph-cuts, the energy function must satisfy a property called regularity (also called sub-modularity). In the
next section, we demonstrate that the energy function considered satisfies this property.

3. Proof of regularity
According to [4], the energy is graph representable if and only if each pairwise term satisfies the inequality

Vp,q(lp, dp, lq, dq) + Vp,q(lα, dα, lα, dα) ≤ Vp,q(lp, dp, lα, dα) + Vp,q(lα, dα, lq, dq). (8)

Functions satisfying this inequality are called regular and can be efficiently optimised via graph-cuts. For the energy function
considered, we have Vp,q(lα, dα, lα, dα) = 0, therefore the previous inequality simplifies to

Vp,q(lp, dp, lq, dq) ≤ Vp,q(lp, dp, lα, dα) + Vp,q(lα, dα, lq, dq). (9)

We show that both the contrast terms V
′

p,q and the smoothness terms V
′′

p,q satisfy this inequality. This is a sufficient condition
for the regularity constraint to be satisfied.

3.1. Contrast term

This term does not depend on depth labels. We distinguish the following cases which cover all possible label configura-
tions.

Case 1: lp = lq Then V
′

p,q(lp, dp, lq, dq) = 0 and the regularity constraint is equivalent to

0 ≤ V
′

p,q(lp, dp, lα, dα) + V
′

p,q(lα, dα, lq, dq), (10)

which is always satisfied because V
′

p,q is by definition positive.

Case 2: lp 6= lq, lp 6= lα, lq 6= lα Each term V
′

p,q is constant with respect to the labels and the regularity constraint is triv-
ially satisfied.

Case 3: lp 6= lq, lp = lα, lq 6= lα We have V
′

p,q(lp, dp, lq, dq) = V
′

p,q(lα, dα, lq, dq) so the regularity constraint is equiva-
lent to

0 ≤ V
′

p,q(lp, dp, lα, dα), (11)

which is always satisfied because V
′

p,q is by definition positive.

Case 4: lp 6= lq, lp 6= lα, lq = lα The proof is identical to the previous case after permutation of lp and lq .



3.2. Smoothness term

We distinguish the following cases which cover all possible label configurations.

Case 1: lp = lq = lα We consider the following sub-cases.

Sub-case i: dp = dq = U We have V
′′

p,q(lp, dp, lq, dq) = 0 and the regularity constraint is equivalent to

0 ≤ V
′′

p,q(lp, dp, lα, dα) + V
′′

p,q(lα, dα, lq, dq), (12)

which always holds because by definition V
′′

p,q is positive.

Sub-case ii: dp = U , dq 6= U If dα = U , we have V
′′

p,q(lp, dp, lq, dq) = V
′′

p,q(lα, dα, lq, dq) and the regularity con-
straint is equivalent to

0 ≤ V
′′

p,q(lp, dp, lα, dα). (13)

If dα 6= U , we have V
′′

p,q(lp, dp, lq, dq) = V
′′

p,q(lp, dp, lα, dα) and the regularity constraint is equivalent to

0 ≤ V
′′

p,q(lα, dα, lq, dq). (14)

In both cases the inequality is satisfied because V
′′

p,q is by definition positive.

Sub-case iii: dp 6= U , dq = U The proof is identical to the previous case after permutation of p and q.

Sub-case iv: dp 6= U , dq 6= U If dα = U , then the regularity constraint is equivalent to

V
′′

p,q(lp, dp, lq, dq) ≤ 2λsmoothdmax, (15)

which is always satisfied. If dα 6= U , then the regularity constraint is equivalent to

min(|dp − dq|, dmax) ≤ min(|dp − dα|, dmax) + min(|dα − dq|, dmax), (16)

which is always true because the truncated linear distance defines a metric on space of the depth labels.

Case 2: lp 6= lq, lp 6= lα, lq 6= lα Each term V
′′

p,q is constant, so the regularity constraint is trivially satisfied.

Case 3: lp = lα, lp 6= lq We have Vp,q(lp, dp, lq, dq) = Vp,q(lα, dα, lq, dq) and the regularity constraint is satisfied be-
cause the remaining term Vp,q(lp, dp, lα, dα) is by definition non-negative.

Case 4: lq = lα, lp 6= lq The proof is equivalent to the previous case after permutation of p and q.

Case 5: lp = lq, lp 6= lα The regularity constraint is equivalent to

V
′′

p,q(lp, dp, lq, dq) ≤ 2λsmoothdmax, (17)

which is always satisfied.

This completes the proof.
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