
Fundamentals of Computer

Graphics - CM20219

Lecture Notes

Dr John Collomosse

University of Bath, UK

i

SUMMARY

Welcome to CM20219 — Fundamentals of Computer Graphics. This course aims to provide
both the theoretical and practical skills to begin developing Computer Graphics software.

These notes are a supplementary resource to the lectures and lab sessions. They should not
be regarded as a complete account of the course content. In particular Chapter 4 provides
only very introductory material to OpenGL and further resources (e.g. Powerpoint slides)
handed out in lectures should be referred to. Furthermore it is not possible to pass the course
simply by learning these notes; you must be able to apply the techniques within to produce
viable Computer Graphics solutions.

All Computer Graphics demands a working knowledge of linear algebra (matrix manipula-
tion, linear systems, etc.). A suitable background is provided by first year unit CM10197,
and Chapter 1 provides a brief revision on some key mathematics. This course also requires a
working knowledge of the C language, such as that provided in CM20214 (runs concurrently
with this course).

The course and notes focus on four key topics:

1. Image Representation
How digital images are represented in a computer. This ’mini’-topic explores different
forms of frame-buffer for storing images, and also different ways of representing colour
and key issues that arise in colour (Chapter 2)

2. Geometric Transformation
How to use linear algebra, e.g. matrix transformations, to manipulate points in space
(Chapter 3). This work focuses heavily on the concept of reference frames and their
central role in Computer Graphics. Also on this theme, eigenvalue decomposition is dis-
cussed and a number of applications relating to visual computing are explored (Chapter
5).

3. OpenGL Programming
Discusses how the mathematics on this course can be implemented directly in the C
programming language using the OpenGL library (Chapter 4). Note much of this
content is covered in Powerpoint handouts rather than these notes.

4. Geometric Modelling
Whereas Chapters 3,5 focus on manipulating/positioning of points in 3D space, this
Chapter explores how these points can be “joined up” to form curves and surfaces. This
allows the modelling of objects and their trajectories (Chapter 6).

This course and the accompanying notes, Moodle pages, lab sheets, exams, and course-
work were developed by John Collomosse in 2008/9. If you notice any errors please contact
jpc@cs.bath.ac.uk. Please refer to Moodle for an up to date list of supporting texts for
this course.

ii

Contents

1 Mathematical Background 1
1.1 Introduction . 1
1.2 Points, Vectors and Notation . 1
1.3 Basic Vector Algebra . 1

1.3.1 Vector Addition . 2
1.3.2 Vector Subtraction . 2
1.3.3 Vector Scaling . 2
1.3.4 Vector Magnitude . 2
1.3.5 Vector Normalisation . 3

1.4 Vector Multiplication . 3
1.4.1 Dot Product . 3
1.4.2 Cross Product . 4

1.5 Reference Frames . 5
1.6 Cartesian vs. Radial-Polar Form . 6
1.7 Matrix Algebra . 6

1.7.1 Matrix Addition . 6
1.7.2 Matrix Scaling . 7
1.7.3 Matrix Multiplication . 7
1.7.4 Matrix Inverse and the Identity . 7
1.7.5 Matrix Transposition . 8

2 Image Representation 9
2.1 Introduction . 9
2.2 The Digital Image . 9

2.2.1 Raster Image Representation . 9
2.2.2 Hardware Frame Buffers . 10
2.2.3 Greyscale Frame Buffer . 11
2.2.4 Pseudo-colour Frame Buffer . 11
2.2.5 True-Colour Frame Buffer . 12

2.3 Representation of Colour . 13
2.3.1 Additive vs. Subtractive Primaries . 14
2.3.2 RGB and CMYK colour spaces . 15
2.3.3 Greyscale Conversion . 16
2.3.4 Can any colour be represented in RGB space? 18
2.3.5 CIE colour space . 18
2.3.6 Hue, Saturation, Value (HSV) colour space 19
2.3.7 Choosing an appropriate colour space 21

iii

3 Geometric Transformation 23
3.1 Introduction . 23
3.2 2D Rigid Body Transformations . 23

3.2.1 Scaling . 24
3.2.2 Shearing (Skewing) . 24
3.2.3 Rotation . 25
3.2.4 Active vs. Passive Interpretation . 26
3.2.5 Transforming between basis sets . 27
3.2.6 Translation and Homogeneous Coordinates 28
3.2.7 Compound Matrix Transformations 30
3.2.8 Animation Hierarchies . 32

3.3 3D Rigid Body Transformations . 34
3.3.1 Rotation in 3D — Euler Angles . 35
3.3.2 Rotation about an arbitrary axis in 3D 36
3.3.3 Problems with Euler Angles . 38

3.4 Image Formation – 3D on a 2D display . 40
3.4.1 Perspective Projection . 40
3.4.2 Orthographic Projection . 43

3.5 Homography . 44
3.5.1 Applications to Image Stitching . 45

3.6 Digital Image Warping . 46

4 OpenGL Programming 50
4.1 Introduction . 50

4.1.1 The GLUT Library . 50
4.2 An Illustrative Example - Teapot . 51

4.2.1 Double Buffering and Flushing . 53
4.2.2 Why doesn’t it look 3D? . 53

4.3 Modelling and Matrices in OpenGL . 53
4.3.1 The Matrix Stack . 54

4.4 A Simple Animation - Spinning Teapot . 55
4.5 Powerpoint . 57

5 Eigenvalue Decomposition and its Applications in Computer Graphics 58
5.1 Introduction . 58

5.1.1 What is EVD? . 58
5.2 How to compute EVD of a matrix . 59

5.2.1 Characteristic Polynomial: Solving for the eigenvalues 59
5.2.2 Solving for the eigenvectors . 60

5.3 How is EVD useful? . 61
5.3.1 EVD Application 1: Matrix Diagonalisation 61
5.3.2 EVD Application 2: Principle Component Analysis (PCA) 62

5.4 An Introduction to Pattern Recognition . 63
5.4.1 A Simple Colour based Classifier . 63
5.4.2 Feature Spaces . 65
5.4.3 Distance Metrics . 66
5.4.4 Nearest-Mean Classification . 66
5.4.5 Eigenmodel Classification . 69

iv

5.5 Principle Component Analysis (PCA) . 72
5.5.1 Recap: Computing PCA . 73
5.5.2 PCA for Visualisation . 73
5.5.3 Decomposing non-square matrices (SVD) 75

6 Geometric Modelling 77
6.1 Lines and Curves . 77

6.1.1 Explicit, Implicit and Parametric forms 77
6.1.2 Parametric Space Curves . 79

6.2 Families of Curve . 81
6.2.1 Hermite Curves . 81
6.2.2 Bézier Curve . 83
6.2.3 Catmull-Rom spline . 85
6.2.4 β-spline . 87

6.3 Curve Parameterisation . 87
6.3.1 Frenet Frame . 88

6.4 Surfaces . 90
6.4.1 Planar Surfaces . 91
6.4.2 Ray Tracing with Implicit Planes . 92
6.4.3 Curved surfaces . 94
6.4.4 Bi-cubic surface patches . 95

v

Chapter 1

Mathematical Background

1.1 Introduction

The taught material in this course draws upon a mathematical background in linear algebra.
We briefly revise some of the basics here, before beginning the course material in Chapter 2.

1.2 Points, Vectors and Notation

Much of Computer Graphics involves discussion of points in 2D or 3D. Usually we write such
points as Cartesian Coordinates e.g. p = [x, y]T or q = [x, y, z]T . Point coordinates are
therefore vector quantities, as opposed to a single number e.g. 3 which we call a scalar
quantity. In these notes we write vectors in bold and underlined once. Matrices are written
in bold, double-underlined.

The superscript [...]T denotes transposition of a vector, so points p and q are column vectors
(coordinates stacked on top of one another vertically). This is the convention used by most
researchers with a Computer Vision background, and is the convention used throughout this
course. By contrast, many Computer Graphics researchers use row vectors to represent
points. For this reason you will find row vectors in many Graphics textbooks including Foley
et al, one of the course texts. Bear in mind that you can convert equations between the
two forms using transposition. Suppose we have a 2 × 2 matrix M acting on the 2D point
represented by column vector p. We would write this as Mp.

If p was transposed into a row vector p′ = pT , we could write the above transformation

p′MT . So to convert between the forms (e.g. from row to column form when reading the
course-texts), remember that:

Mp = (pT MT)T (1.1)

For a reminder on matrix transposition please see subsection 1.7.5.

1.3 Basic Vector Algebra

Just as we can perform basic operations such as addition, multiplication etc. on scalar
values, so we can generalise such operations to vectors. Figure 1.1 summarises some of these
operations in diagrammatic form.

1

MATHEMATICAL BACKGROUND (CM20219) J. P. Collomosse

Figure 1.1: Illustrating vector addition (left) and subtraction (middle). Right: Vectors have
direction and magnitude; lines (sometimes called ‘rays’) are vectors plus a starting point.

1.3.1 Vector Addition

When we add two vectors, we simply sum their elements at corresponding positions. So for
a pair of 2D vectors a = [u, v]T and b = [s, t]T we have:

a + b = [u + s, v + t]T (1.2)

1.3.2 Vector Subtraction

Vector subtraction is identical to the addition operation with a sign change, since when we
negate a vector we simply flip the sign on its elements.

−b = [−s,−t]T

a − b = a + (−b) = [u − s, v − t]T (1.3)

1.3.3 Vector Scaling

If we wish to increase or reduce a vector quantity by a scale factor λ then we multiply each
element in the vector by λ.

λa = [λu, λv]T (1.4)

1.3.4 Vector Magnitude

We write the length of magnitude of a vector s as |s|. We use Pythagoras’ theorem to
compute the magnitude:

|a| =
√

u2 + v2 (1.5)

Figure 1.3 shows this to be valid, since u and v are distances along the principal axes (x and
y) of the space, and so the distance of a from the origin is the hypotenuse of a right-angled
triangle. If we have an n-dimensional vector q = [q1, q2, q3, q..., qn] then the definition of vector
magnitude generalises to:

|q| =
√

q2
1

+ q2
2

+ q2
... + q2

n =

√

√

√

√

n
∑

i=1

q2
i (1.6)

2

MATHEMATICAL BACKGROUND (CM20219) J. P. Collomosse

Figure 1.2: (a) Demonstrating how the dot product can be used to measure the component of
one vector in the direction of another (i.e. a projection, shown here as p). (b) The geometry
used to prove a ◦ b = |a||b|cosθ via the Law of Cosines in equation 1.11.

1.3.5 Vector Normalisation

We can normalise a vector a by scaling it by the reciprocal of its magnitude:

â =
a

|a| (1.7)

This produces a normalised vector pointing in the same direction as the original (un-
normalised) vector, but with unit length (i.e. length of 1). We use the superscript ’hat’
notation to indicate that a vector is normalised e.g. â.

1.4 Vector Multiplication

We can define multiplication of a pair of vectors in two ways: the dot product (sometimes
called the ‘inner product’, analogous to matrix multiplication), and the cross product
(which is sometimes referred to by the unfortunately ambiguous term ‘vector product’).

1.4.1 Dot Product

The dot product sums the products of corresponding elements over a pair of vectors. Given
vectors a = [a1, a2, a3, a..., an]T and b = [b1, b2, b3, b..., bn]T , the dot product is defined as:

a ◦ b = a1b1 + a2b2 + a3b3 + ... + anbn

=
n
∑

i=1

aibi (1.8)

The dot product is both symmetric and positive definite. It gives us a scalar value that has
three important uses in Computer Graphics and related fields. First, we can compute the
square of the magnitude of a vector by taking the dot product of that vector and itself:

a ◦ a = a1a1 + a2a2 + ... + anan

=

n
∑

i=1

a2
i

= |a|2 (1.9)

3

MATHEMATICAL BACKGROUND (CM20219) J. P. Collomosse

Second, we can more generally compute a ◦ b, the magnitude of one vector a in the direction
of another b, i.e. projecting one vector onto another. Figure 1.2a illustrates how a simple
rearrangement of equation 1.10 can achieve this.

Third, we can use the dot product to compute the angle θ between two vectors (if we normalise
them first). This relationship can be used to define the concept of an angle between vectors
in n−dimensional spaces. It is also fundamental to most lighting calculations in Graphics,
enabling us to determine the angle of a surface (normal) to a light source.

a ◦ b = |a||b|cosθ (1.10)

A proof follows from the “law of cosines”, a general form of Pythagoras’ theorem. Consider
triangle ABC in Figure 1.2b, with respect to equation 1.10. Side ~CA is analogous to vector
a, and side ~CB analogous to vector b. θ is the angle between ~CA and ~CB, and so also vectors
a and b.

|c|2 = |a|2 + |b|2 − 2|a||b|cosθ (1.11)

c ◦ c = a ◦ a + b ◦ b − 2|a||b| cos θ (1.12)

Now consider that c = a − b (refer back to Figure 1.1):

(a − b) ◦ (a − b) = a ◦ a + b ◦ b − 2|a||b| cos θ (1.13)

a ◦ a − 2(a ◦ b) + b ◦ b = a ◦ a + b ◦ b − 2|a||b| cos θ (1.14)

−2(a ◦ b) = −2|a||b| cos θ (1.15)

a ◦ b = |a||b| cos θ (1.16)

Another useful result is that we can quickly test for the orthogonality of two vectors by
checking if their dot product is zero.

1.4.2 Cross Product

Taking the cross product (or “vector product”) of two vectors returns us a vector or-
thogonal to those two vectors. Given two vectors a = [ax, ay, az]

T and B = [bx, by, bz]
T , the

cross product a × b is defined as:

a × b =

aybz − azby

azbx − axbz

axby − aybx

 (1.17)

This is often remembered using the mnemonic ‘xyzzy’. In this course we only consider the
definition of the cross product in 3D. An important Computer Graphics application of the
cross product is to determine a vector that is orthogonal to its two inputs. This vector is
said to be normal to those inputs, and is written n in the following relationship (care: note
the normalisation):

a × b = |a||b| sin θn̂ (1.18)

A proof is beyond the requirements of this course.

4

MATHEMATICAL BACKGROUND (CM20219) J. P. Collomosse

Figure 1.3: Left: Converting between Cartesian (x, y) and radial-polar (r, θ) form. We treat
the system as a right-angled triangle and apply trigonometry. Right: Cartesian coordinates
are defined with respect to a reference frame. The reference frame is defined by basis vectors
(one per axis) that specify how ‘far’ and in what direction the units of each coordinate will
take us.

1.5 Reference Frames

When we write down a point in Cartesian coordinates, for example p = [3, 2]T , we interpret
that notation as “the point p is 3 units from the origin travelling in the positive direction of
the x axis, and 2 units from the origin travelling in the positive direction of the y axis”. We
can write this more generally and succinctly as:

p = xî + yĵ (1.19)

where î = [1, 0]T and ĵ = [0, 1]T . We call î and ĵ the basis vectors of the Cartesian space,
and together they form the basis set of that space. Sometimes we use the term reference
frame to refer to the coordinate space, and we say that the basis set (̂i, ĵ) therefore defines
the reference frame (Figure 1.3, right).

Commonly when working with 2D Cartesian coordinates we work in the reference frame de-
fined by î = [1, 0]T , ĵ = [0, 1]T . However other choices of basis vector are equally valid, so
long as the basis vectors are neither parallel not anti-parallel (do not point in the same
direction). We refer to our ‘standard’ reference frame (̂i = [1, 0]T , ĵ = [0, 1]T) as the root
reference frame, because we define the basis vectors of ‘non-standard’ reference frames
with respect to it.

For example a point [2, 3]T defined in reference frame (i = [2, 0]T , j = [0, 2]T) would have

coordinates [4, 6]T in our root reference frame. We will return to the matter of converting
between reference frames in Chapter 3, as the concept underpins a complete understanding
of geometric transformations.

5

MATHEMATICAL BACKGROUND (CM20219) J. P. Collomosse

1.6 Cartesian vs. Radial-Polar Form

We have so far recapped on Cartesian coordinate systems. These describe vectors in terms of
distance along each of the principal axes (e.g. x,y) of the space. This Cartesian form is
by far the most common way to represent vector quantities, like the location of points in space.

Sometimes it is preferable to define vectors in terms of length, and their orientation. This
is called radial-polar form (often simply abbreviated to ‘polar form’). In the case of 2D
point locations, we describe the point in terms of: (a) its distance from the origin (r), and
(b) the angle (θ) between a vertical line (pointing in the positive direction of the y axis), and
the line subtended from the point to the origin (Figure 1.3).

To convert from Cartesian form [x, y]T to polar form (r, θ) we consider a right-angled triangle
of side x and y (Figure 1.3, left). We can use Pythagoras’ theorem to determine the length
of hypotenuse r, and some basic trigonometry to reveal that θ = tan(y/x) and so:

r =
√

x2 + y2 (1.20)

θ = atan(y/x) (1.21)

To convert from polar form to Cartesian form we again apply some trigonometry (Figure 1.3,
left):

x = rcosθ (1.22)

y = rsinθ (1.23)

1.7 Matrix Algebra

A matrix is a rectangular array of numbers. Both vectors and scalars are degenerate forms
of matrices. By convention we say that an (n×m) matrix has n rows and m columns; i.e. we
write (height × width). In this subsection we will use two 2 × 2 matrices for our examples:

A =

[

a11 a12

a21 a22

]

B =

[

b11 b12

b21 b22

]

(1.24)

Observe that the notation for addressing an individual element of a matrix is xrow,column.

1.7.1 Matrix Addition

Matrices can be added, if they are of the same size. This is achieved by summing the elements
in one matrix with corresponding elements in the other matrix:

A + B =

[

a11 a12

a21 a22

] [

b11 b12

b21 b22

]

=

[

(a11 + b11) (a12 + b12)
(a21 + b21) (a22 + b22)

]

(1.25)

This is identical to vector addition.

6

MATHEMATICAL BACKGROUND (CM20219) J. P. Collomosse

1.7.2 Matrix Scaling

Matrices can also be scaled by multiplying each element in the matrix by a scale factor.
Again, this is identical to vector scaling.

sA =

[

sa11 sa12

sa21 sa22

]

(1.26)

1.7.3 Matrix Multiplication

As we will see in Chapter 3, matrix multiplication is a cornerstone of many useful geometric
transformations in Computer Graphics. You should ensure that you are familiar with this
operation.

AB =

[

a11 a12

a21 a22

] [

b11 b12

b21 b22

]

=

[

(a11b11 + a12b21) (a11b12 + a12b22)
(a21b11 + a22b21) (a21b21 + a22b22)

]

(1.27)

In general each element cij of the matrix C = AB, where A is of size (n×P) and B is of size
(P × m) has the form:

cij =
P
∑

k=1

aikbkj (1.28)

Not all matrices are compatible for multiplication. In the above system, A must have as
many columns as B has rows. Furthermore, matrix multiplication is non-commutative,
which means that BA 6= AB, in general. Given equation 1.27 you might like to write out the
multiplication for BA to satisfy yourself of this.

Finally, matrix multiplication is associative i.e.:

ABC = (AB)C = A(BC) (1.29)

If the matrices being multiplied are of different (but compatible) sizes, then the complexity
of evaluating such an expression varies according to the order of multiplication1.

1.7.4 Matrix Inverse and the Identity

The identity matrix I is a special matrix that behaves like the number 1 when multiplying
scalars (i.e. it has no numerical effect):

IA = A (1.30)

The identity matrix has zeroes everywhere except the leading diagonal which is set to 1,
e.g. the (2 × 2) identity matrix is:

I =

[

1 0
0 1

]

(1.31)

1Finding an optimal permutation of multiplication order is a (solved) interesting optimization problem,
but falls outside the scope of this course (see Rivest et al. text on Algorithms)

7

MATHEMATICAL BACKGROUND (CM20219) J. P. Collomosse

The identity matrix leads us to a definition of the inverse of a matrix, which we write
A−1. The inverse of a matrix, when pre- or post-multiplied by its original matrix, gives the
identity:

AA+−1 = A−1A = I (1.32)

As we will see in Chapter 3, this gives rise to the notion of reversing a geometric transfor-
mation. Some geometric transformations (and matrices) cannot be inverted. Specifically, a
matrix must be square and have a non-zero determinant in order to be inverted by conven-
tional means.

1.7.5 Matrix Transposition

Matrix transposition, just like vector transposition, is simply a matter of swapping the rows
and columns of a matrix. As such, every matrix has a transpose. The transpose of A is

written AT :

AT =

[

a11 a21

a12 a22

]

(1.33)

For some matrices (the orthonormal matrices), the transpose actually gives us the inverse
of the matrix. We decide if a matrix is orthonormal by inspecting the vectors that make up
the matrix’s columns, e.g. [a11, a21]

T and [a12, a22]
T . These are sometimes called column

vectors of the matrix. If the magnitudes of all these vectors are one, and if the vectors
are orthogonal (perpendicular) to each other, then the matrix is orthonormal. Examples of
orthonormal matrices are the identity matrix, and the rotation matrix that we will meet in
Chapter 3.

8

Chapter 2

Image Representation

2.1 Introduction

Computer Graphics is principally concerned with the generation of images, with wide ranging
applications from entertainment to scientific visualisation. In this chapter we begin our
exploration of Computer Graphics by introducing the fundamental data structures used to
represent images on modern computers. We describe the various formats for storing and
working with image data, and for representing colour on modern machines.

2.2 The Digital Image

Virtually all computing devices in use today are digital; data is represented in a discrete form
using patterns of binary digits (bits) that can encode numbers within finite ranges and with
limited precision. By contrast, the images we perceive in our environment are analogue. They
are formed by complex interactions between light and physical objects, resulting in continu-
ous variations in light wavelength and intensity. Some of this light is reflected in to the retina
of the eye, where cells convert light into nerve impulses that we interpret as a visual stimulus.

Suppose we wish to ‘capture’ an image and represent it on a computer e.g. with a scanner
or camera (the machine equivalent of an eye). Since we do not have infinite storage (bits),
it follows that we must convert that analogue signal into a more limited digital form. We
call this conversion process sampling. Sampling theory is an important part of Computer
Graphics, underpinning the theory behind both image capture and manipulation — we re-
turn to the topic briefly in Chapter 4 (and in detail next semester in CM20220).

For now we simply observe that a digital image can not encode arbitrarily fine levels of
detail, nor arbitrarily wide (we say ‘dynamic’) colour ranges. Rather, we must compromise
on accuracy, by choosing an appropriate method to sample and store (i.e. represent) our
continuous image in a digital form.

2.2.1 Raster Image Representation

The Computer Graphics solution to the problem of image representation is to break the
image (picture) up into a regular grid that we call a ‘raster’. Each grid cell is a ‘picture cell’,
a term often contracted to pixel. The pixel is the atomic unit of the image; it is coloured uni-

9

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Figure 2.1: Rasters are used to represent digital images. Modern displays use a rectangular
raster, comprised of W × H pixels. The raster illustrated here contains a greyscale image;
its contents are represented in memory by a greyscale frame buffer. The values stored in the
frame buffer record the intensities of the pixels on a discrete scale (0=black, 255=white).

formly — its single colour representing a discrete sample of light e.g. from a captured image.
In most implementations, rasters take the form of a rectilinear grid often containing many
thousands of pixels (Figure 2.1). The raster provides an orthogonal two-dimensional basis
with which to specify pixel coordinates. By convention, pixels coordinates are zero-indexed
and so the origin is located at the top-left of the image. Therefore pixel (W − 1, H − 1) is
located at the bottom-right corner of a raster of width W pixels and height H pixels. As
a note, some Graphics applications make use of hexagonal pixels instead 1, however we will
not consider these on the course.

The number of pixels in an image is referred to as the image’s resolution. Modern desktop
displays are capable of visualising images with resolutions around 1024 × 768 pixels (i.e. a
million pixels or one mega-pixel). Even inexpensive modern cameras and scanners are now
capable of capturing images at resolutions of several mega-pixels. In general, the greater the
resolution, the greater the level of spatial detail an image can represent.

2.2.2 Hardware Frame Buffers

We represent an image by storing values for the colour of each pixel in a structured way.
Since the earliest computer Visual Display Units (VDUs) of the 1960s, it has become com-
mon practice to reserve a large, contiguous block of memory specifically to manipulate the
image currently shown on the computer’s display. This piece of memory is referred to as a
frame buffer. By reading or writing to this region of memory, we can read or write the
colour values of pixels at particular positions on the display2.

Note that the term ‘frame buffer’ as originally defined, strictly refers to the area of mem-
ory reserved for direct manipulation of the currently displayed image. In the early days of

1Hexagonal displays are interesting because all pixels are equidistant, whereas on a rectilinear raster neigh-
bouring pixels on the diagonal are

p

(2) times further apart than neighbours on the horizontal or vertical.
2Usually the frame buffer is not located on the same physical chip as the main system memory, but on

separate graphics hardware. The buffer ‘shadows’ (overlaps) a portion of the logical address space of the
machine, to enable fast and easy access to the display through the same mechanism that one might access any
‘standard’ memory location.

10

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Graphics, special hardware was needed to store enough data to represent just that single
image. However we may now manipulate hundreds of images in memory simultaneously, and
the term ‘frame buffer’ has fallen into informal use to describe any piece of storage that
represents an image.

There are a number of popular formats (i.e. ways of encoding pixels) within a frame buffer.
This is partly because each format has its own advantages, and partly for reasons of back-
ward compatibility with older systems (especially on the PC). Often video hardware can be
switched between different video modes, each of which encodes the frame buffer in a differ-
ent way. We will describe three common frame buffer formats in the subsequent sections; the
greyscale, pseudo-colour, and true-colour formats. If you do Graphics, Vision or mainstream
Windows GUI programming then you will likely encounter all three in your work at some
stage.

2.2.3 Greyscale Frame Buffer

Arguably the simplest form of frame buffer is the greyscale frame buffer; often mistakenly
called ‘black and white’ or ‘monochrome’ frame buffers. Greyscale buffers encodes pixels
using various shades of grey. In common implementations, pixels are encoded as an unsigned
integer using 8 bits (1 byte) and so can represent 28 = 256 different shades of grey. Usually
black is represented by value 0, and white by value 255. A mid-intensity grey pixel has value
128. Consequently an image of width W pixels and height H pixels requires W ×H bytes of
memory for its frame buffer.

The frame buffer is arranged so that the first byte of memory corresponds to the pixel at
coordinates (0, 0). Recall that this is the top-left corner of the image. Addressing then
proceeds in a left-right, then top-down manner (see Figure 2.1). So, the value (grey level)
of pixel (1, 0) is stored in the second byte of memory, pixel (0, 1) is stored in the (W + 1)th
byte, and so on. Pixel (x, y) would be stored at buffer offset A where:

A = x + Wy (2.1)

i.e. A bytes from the start of the frame buffer. Sometimes we use the term scan-line to refer
to a full row of pixels. A scan-line is therefore W pixels wide.

Old machines, such as the ZX Spectrum, required more CPU time to iterate through each
location in the frame buffer than it took for the video hardware to refresh the screen. In an
animation, this would cause undesirable flicker due to partially drawn frames. To compensate,
byte range [0, (W − 1)] in the buffer wrote to the first scan-line, as usual. However bytes
[2W, (3W −1)] wrote to a scan-line one third of the way down the display, and [3W, (4W −1)]
to a scan-line two thirds down. This interleaving did complicate Graphics programming, but
prevented visual artifacts that would otherwise occur due to slow memory access speeds.

2.2.4 Pseudo-colour Frame Buffer

The pseudo-colour frame buffer allows representation of colour images. The storage
scheme is identical to the greyscale frame buffer. However the pixel values do not represent
shades of grey. Instead each possible value (0 − 255) represents a particular colour; more

11

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

specifically, an index into a list of 256 different colours maintained by the video hardware.

The colours themselves are stored in a “Colour Lookup Table” (CLUT) which is essen-
tially a map < colourindex, colour > i.e. a table indexed with an integer key (0−255) storing
a value that represents colour. In alternative terminology the CLUT is sometimes called a
palette. As we will discuss in greater detail shortly (Section 2.3), many common colours can
be produced by adding together (mixing) varying quantities of Red, Green and Blue light.
For example, Red and Green light mix to produce Yellow light. Therefore the value stored
in the CLUT for each colour is a triple (R, G, B) denoting the quantity (intensity) of Red,
Green and Blue light in the mix. Each element of the triple is 8 bit i.e. has range (0 − 255)
in common implementations.

The earliest colour displays employed pseudo-colour frame buffers. This is because mem-
ory was expensive and colour images could be represented at identical cost to greyscale
images (plus a small storage overhead for the CLUT). The obvious disadvantage of a pseudo-
colour frame buffer is that only a limited number of colours may be displayed at any
one time (i.e. 256 colours). However the colour range (we say gamut) of the display is
28 × 28 × 28 = 224 = 16, 777, 216 colours.

Pseudo-colour frame buffers can still be found in many common platforms e.g. both MS
and X Windows (for convenience, backward compatibility etc.) and in resource constrained
computing domains (e.g. low-spec games consoles, mobiles). Some low-budget (in terms of
CPU cycles) animation effects can be produced using pseudo-colour frame buffers. Consider
an image filled with an expanses of colour index 1 (we might set CLUT < 1, Blue >, to create
a blue ocean). We could sprinkle consecutive runs of pixels with index ‘2,3,4,5’ sporadically
throughout the image. The CLUT could be set to increasing, lighter shades of Blue at those
indices. This might give the appearance of waves. The colour values in the CLUT at indices
2,3,4,5 could be rotated successively, so changing the displayed colours and causing the waves
to animate/ripple (but without the CPU overhead of writing to multiple locations in the frame
buffer). Effects like this were regularly used in many ’80s and early ’90s computer games,
where computational expense prohibited updating the frame buffer directly for incidental
animations.

2.2.5 True-Colour Frame Buffer

The true-colour frame-buffer also represents colour images, but does not use a CLUT. The
RGB colour value for each pixel is stored directly within the frame buffer. So, if we use 8
bits to represent each Red, Green and Blue component, we will require 24 bits (3 bytes) of
storage per pixel.

As with the other types of frame buffer, pixels are stored in left-right, then top-bottom order.
So in our 24 bit colour example, pixel (0, 0) would be stored at buffer locations 0, 1 and 2.
Pixel (1, 0) at 3, 4, and 5; and so on. Pixel (x, y) would be stored at offset A where:

S = 3W

A = 3x + Sy (2.2)

where S is sometimes referred to as the stride of the display.

12

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

The advantages of the true-colour buffer complement the disadvantages of the pseudo-colour
buffer We can represent all 16 million colours at once in an image (given a large enough
image!), but our image takes 3 times as much storage as the pseudo-colour buffer. The image
would also take longer to update (3 times as many memory writes) which should be taken
under consideration on resource constrained platforms (e.g. if writing a video codec on a
mobile phone).

Alternative forms of true-colour buffer

The true colour buffer, as described, uses 24 bits to represent RGB colour. The usual conven-
tion is to write the R, G, and B values in order for each pixel. Sometime image formats (e.g.
Windows Bitmap) write colours in order B, G, R. This is primarily due to the little-endian
hardware architecture of PCs, which run Windows. These formats are sometimes referred to
as RGB888 or BGR888 respectively.

2.3 Representation of Colour

Our eyes work by focussing light through an elastic lens, onto a patch at the back of our eye
called the retina. The retina contains light sensitive rod and cone cells that are sensitive
to light, and send electrical impulses to our brain that we interpret as a visual stimulus (Fig-
ure 2.2).

Cone cells are responsible for colour vision. There are three types of cone; each type has
evolved to be optimally sensitive to a particular wavelength of light. Visible light has wave-
length 700-400nm (red to violet). Figure 2.3 (left) sketches the response of the three cone
types to wavelengths in this band. The peaks are located at colours that we have come to call
“Red”, “Green” and “Blue”3. Note that in most cases the response of the cones decays mono-
tonically with distance from the optimal response wavelength. But interestingly, the Red cone
violates this observation, having a slightly raised secondary response to the Blue wavelengths.

Given this biological apparatus, we can simulate the presence of many colours by shining
Red, Green and Blue light into the human eye with carefully chosen intensities. This is the
basis on which all colour display technologies (CRTs, LCDs, TFTs, Plasma, Data projectors)
operate. Inside our machine (TV, Computer, Projector) we represent pixel colours using
values for Red, Green and Blue (RGB triples) and the video hardware uses these values to
generate the appropriate amount of Red, Green and Blue light (subsection 2.2.2).

Red, Green and Blue are called the “additive primaries” because we obtain other, non-
primary colours by blending (adding) together different quantities of Red, Green and Blue
light. We can make the additive secondary colours by mixing pairs of primaries: Red and
Green make Yellow; Green and Blue make Cyan (light blue); Blue and Red make Magenta
(light purple). If we mix all three additive primaries we get White. If we don’t mix any
amount of the additive primaries we generate zero light, and so get Black (the absence of
colour).

3Other animals have cones that peak at different colours; for example bees can see ultra-violet as they
have three cones; one of which peaks at ultra-violet. The centres of flowers are often marked with ultra-violet
patterns invisible to humans.

13

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Figure 2.2: In the human eye, light is focused through an elastic lens onto a light sensitive
patch (the retine). Special cells (rods and cones) in the retina convert light into electrical
impulses that travel to the brain via the optic nerve. The site where the nerve exits the
eye contains no such cells, and is termed the “blind spot”. The cone cells in particular are
responsible for our colour vision.

2.3.1 Additive vs. Subtractive Primaries

You may recall mixing paints as a child; being taught (and experimentally verifying) that
Red, Yellow and Blue were the primary colours and could be mixed to obtain the other
colours. So how do we resolve this discrepancy; are the primary colours Red, Green, and
Blue; or are they Red, Yellow, and Blue?

When we view a Yellow object, we say that it is Yellow because light of a narrow band of
wavelengths we have come to call “Yellow” enters our eye, stimulating the Red and Green
cones. More specifically, the Yellow object reflects ambient light of the Yellow wavelength
and absorbs all other light wavelengths.

We can think of Yellow paint as reflecting a band wavelengths spanning the Red-Green part
of the spectrum, and absorbing everything else. Similarly, Cyan paint reflects the Green-Blue
part of the spectrum, and absorbs everything else. Mixing Yellow and Cyan paint causes the
paint particles to absorb all but the Green light. So we see that mixing Yellow and Cyan
paint gives us Green. This allies with our experience mixing paints as a child; Yellow and
Blue make Green. Figure 2.3 (right) illustrates this diagrammatically.

In this case adding a new paint (Cyan) to a Yellow mix, caused our resultant mix to become
more restrictive in the wavelengths it reflected. We earlier referred to Cyan, Magenta and
Yellow as the additive secondary colours. But these colours are more often called the “sub-
tractive primaries”. We see that each subtractive primary we contribute in to the paint
mix “subtracts” i.e. absorbs a band of wavelengths. Ultimately if we mix all three primaries;
Cyan, Yellow and Magenta together we get Black because all visible light is absorbed, and
none reflected.

So to recap; RGB are the additive primaries and CMY (Cyan, Magenta, Yellow) the sub-
tractive primaries. They are used respectively to mix light (e.g. on displays), and to mix
ink/paint (e.g. when printing). You may be aware that colour printer cartridges are sold

14

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Figure 2.3: Left: Sketching the response of each of the three cones to differing wavelengths
of light. Peaks are observed around the colours we refer to as Red, Green and Blue. Observe
the secondary response of the Red cone to Blue light. Right: The RGB additive primary
colour wheel, showing how light is mixed to produce different colours. All 3 primaries (Red,
Green, Blue) combine to make white.

containing Cyan, Magenta and Yellow (CMY) ink; the subtractive primaries. Returning to
our original observation, CMY are the colours approximated by the child when mixing Red,
Yellow and Blue paint (blue is easier to teach than ‘cyan’; similarly magenta).

2.3.2 RGB and CMYK colour spaces

We have seen that displays represent colour using a triple (R,G,B). We can interpret each
colour as a point in a three dimensional space (with axes Red, Green, Blue). This is one
example of a colour space — the RGB colour space. The RGB colour space is cube-shaped
and is sometimes called the RGB colour cube. We can think of picking colours as picking
points in the cube (Figure 2.4, left). Black is located at (0, 0, 0) and White is located at
(255, 255, 255). Shades of grey are located at (n, n, n) i.e. on the diagonal between Black and
White.

We have also seen that painting processes that deposit pigment (i.e. printing) are more ap-
propriately described using colours in CMY space. This space is also cube shaped.

We observed earlier that to print Black requires mixing of all three subtractive primaries
(CMY). Printer ink can be expensive, and Black is a common colour in printed documents.
It is therefore inefficient to deposit three quantities of ink onto a page each time we need
to print something in Black. Therefore printer cartridges often contain four colours: Cyan,
Magenta, Yellow, and a pre-mixed Black. This is written CMYK, and is a modified form of
the CMY colour space.

CMYK can help us print non-black colours more efficiently too. If we wish to print a colour
(c, y, m) in CMY space, we can find the amount of Black in that colour (written k for ‘key’)

15

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Figure 2.4: Left: The RGB colour cube; colours are represented as points in a 3D space each
axis of which is an additive primary. Right: CMYK; the quantity of black (C, M, and Y ink
mix) contained within a colour is substituted with pure black (K) ink. This saves ink and
improves colour tone, since a perfectly dark black is difficult to mix using C, M, and Y inks.

by computing:

k = min(c, y, m) (2.3)

We then compute c = c − k, y = y − k, m = m − k (one or more of which will be zero)
and so represent our original CMY colour (c, y, m) as a CMYK colour (c, m, y, k). Figure 2.4
(right) illustrates this process. It is clear that a lower volume of ink will be required due to
economies made in the Black portion of the colour, by substituting CMY ink for K ink.

You may be wondering if an “RGB plus White” space might exist for the additive primaries.
Indeed some devices such as data projectors do feature a fourth colour channel for White (in
addition to RGB) that works in a manner analogous to Black in CMYK space. The amount
of white in a colour is linked to the definition of colour saturation, which we will return to
in subsection 2.3.6.

2.3.3 Greyscale Conversion

Sometimes we wish to convert a colour image into a greyscale image; i.e. an image where
colours are represented using shades of grey rather than different hues. It is often desirable to
do this in Computer Vision applications, because many common operations (edge detection,
etc) require a scalar value for each pixel, rather than a vector quantity such as an RGB triple.
Sometimes there are aesthetic motivations behind such transformations also.

Referring back to Figure 2.3 we see that each type of cones responds with varying strength to
each wavelength of light. If we combine (equation 2.4) the overall response of the three cones
for each wavelength we would obtain a curve such as Figure 2.5 (left). The curve indicates the
perceived brightness (the Graphics term is luminosity) of each light wavelength (colour),
given a light source of constant brightness output.

By experimenting with the human visual system, researchers have derived the following
equation to model this response, and so obtain the luminosity (l) for a given RGB colour
(r, g, b) as:

l(r, g, b) = 0.30r + 0.59g + 0.11b (2.4)

16

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Figure 2.5: Greyscale conversion. Left: The human eye’s combined response (weighted sum
of cone responses) to light of increasing wavelength but constant intensity. The perceived
luminosity of the light changes as a function of wavelength. Right: A painting (Impressionist
Sunrise by Monet) in colour and greyscale; note the isoluminant colours used to paint the
sun against the sky.

Figure 2.6: Tri-stimulus experiments attempt to match real-world colours with a mix of red,
green and blue (narrow bandwidth) primary light sources. Certain colours cannot be matched
because cones have a wide bandwidth response e.g. the blue cone responds a little to red and
green light (see subsection 2.3.4).

As a note, usually we denote luminosity using Y — do not confuse this with the Y in CMYK.

You can write Matlab code to convert a colour JPEG image into a greyscale image as follows:

img=double(imread(’image.jpg’))./255;

r=img(:,:,1);

g=img(:,:,2);

b=img(:,:,3);

y=0.3.*r + 0.69.*g + 0.11.*b;

imshow(y);

This code was applied to the source image in Figure 2.5. This Figure gives clear illustration
that visually distinct colours (e.g. of the sun and sky in the image) can map to similar
greyscale values. Such colours are called “isoluminant” (i.e. of same luminance).

17

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

2.3.4 Can any colour be represented in RGB space?

No. This can be shown using the tri-stimulus experiment; a manual colour matching
exercise performed under controlled conditions as follows:

A human participant is seated in a darkened room, with two pieces of card before him/her.
One piece of card is coloured uniformly with a target colour, and illuminated with white light.
The other piece of card is white, and illuminated simultaneously by a Red, Green and Blue
light source. The human is given control over the intensities of the Red, Green and Blue pri-
mary sources and asked to generate a colour on the white card that matches the coloured card.

To illustrate why we cannot match some colours (and thus represent those colours in RGB
space), consider the following. The participant attempts to match a colour by starting with
all three primary sources at zero (off), and increasing the red and green primaries to match
the wavelength distribution of the original colour (see Figure 2.6). Although the red end of
the spectrum is well matched, the tail ends of the red and green cone responses cause us to
perceive a higher blue component in the matched colour than there actually is in the target
colour. We would like to “take some blue out” of the matched colour, but the blue light is
already completely off.

Thus we could match any colour if we allowed negative values of the RGB primaries, but
this is not physically possible as our primaries are additive by definition. The best we could
do to create a match is cheat by shining a blue light on the target card, which is equivalent
mathematically to a negative primary but of course is not a useful solution to representing
the target (white illuminated) card in RGB space.

2.3.5 CIE colour space

We can represent all physically realisable colours in an alternative colour space named CIE
after Commission Internationale de L’Eclairage who developed the space in 1976 in an at-
tempt to “standardise” the representation of colour.

The CIE colour space is sometimes known as the CIEXYZ model, because it represents
colours as a weighted sum of three ideal primaries that are written X, Y and Z. These
primaries are offset from Red, Green and Blue in such a way that we need only positive
contributions from those primaries to produce all visible colours. For the reasons outlined in
subsection 2.3.4 the ideal primaries are not physically realisable light sources. Rather they
are mathematical constants in the CIEXYZ model.

Thus a colour C is written:

C = XX + Y Y + ZZ (2.5)

The triple (X, Y, Z) is known as the chromaticity coordinates of the colour C. We more
commonly work with normalised chromaticity coordinates (x, y, z) as follows:

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, z =

Z

X + Y + Z
(2.6)

18

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Since x + y + z = 1, we need only note down two of the three normalised coordinates to
represent chromaticity. The loss of a dimension is caused by the normalisation, which has
divided out intensity (brightness) information. To fully represent a colour, we therefore need
one of the non-normalised coordinates and two normalised coordinates. Say, for example we
have Y then we recover (X, Y, Z) as:

X =
x

y
Y

Y = Y

Z =
1 − x − y

y
Y (2.7)

To recap; we need just two normalised coordinates e.g. (x, y) to represent the colour’s chro-
maticity (e.g. whether it is red, yellow, blue, etc.) and an extra non-normalised coordinate
e.g. Y to recover the colour’s luminance (its brightness).

Figure 2.7 (left) shows how colours map on to a plot of (x, y) i.e. the chromaticity space
of CIEXYZ. White is located somewhere close to x = y = 1

3
; as points (colours) in the

space approach this “white point” they become de-saturated (washed out) producing pastel
shades. Colours of the spectrum fall on the curved part of the boundary. All colours in the
chromaticity space are of unit intensity due to the normalisation process, thus there are no
intensity related colours e.g. browns.

We do not need to explore the CIEXYZ model in greater depth for the purposes of this course.
There are some small modifications that can be made to the CIEXYZ model to transform
the space into one where Euclidean distance between points in the space corresponds to per-
ceptual distance between colours. This can be useful for colour classification (Chapter 5).
For further details look up the CIELAB colour space in Foley et al.

However there is one final, important observation arising from the CIE model to discuss.
We can see that Red, Green and Blue are points in the space. Any linear combination of
those additive primaries must therefore fall within a triangle on the CIE (x, y) space. The
colours in that triangle are those that can be realised using three physical primaries (such
as phosphors in a VDU). We can also see that Cyan, Magenta and Yellow are points in the
space forming a second triangle. Similarly, the printable colours (from these subtractive pri-
maries) are all those within this second triangle. Some VDUs and Printers have the CIEXYZ
coordinates of their primaries stamped on their machine casings.

It is very likely that the triangle created by your printer’s primaries does not exactly overlap
the triangle created by your VDU’s primaries (and vice versa) (Figure 2.7). Thus it is
difficult to ensure consistency of colour between screen and print media. Your computer’s
printer driver software manages the transformation of colours from one region (triangle) in
CIEXYZ space to another. With the driver, various (often proprietary) algorithms exist
to transform between the two triangles in CIEXYZ space without introducing perceptually
unexpected artifacts.

2.3.6 Hue, Saturation, Value (HSV) colour space

The RGB, CMYK and CIE models are not very intuitive for non-expert users. People tend
to think of colour in terms of hue, rather than primaries. The Hue, Saturation, Value

19

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Figure 2.7: Left: The (x, y) normalised chromaticity space of the CIEXYZ model. Spectral
colours appear around the curved edge of the space (wavelengths noted here in nanometres).
The white point is roughly in the centre of the space. Right: Colours obtainable via the RGB
(additive) primaries and CMY (subtractive) primaries create separate triangular regions in
the normalised chromaticity space. The area of overlap shows which VDU colours can be
faithfully reproduced on a printer, and vice versa.

(HSV) model tries to model this. It is used extensively in GUIs for colour picker interfaces.

Here, we define HSV by describing conversion of a colour from RGB. Throughout this section,
we will assume colours in RGB space have been normalised to range (0 − 1) instead of the
more common (0 − 255).

As discussed in subsection 2.3.1, we can compute the amount of White (W) in an RGB colour
just as we can compute the amount of Black in a CMY colour — by taking the minimum of
the three colour components.

W = min(R, G, B) (2.8)

The saturation (S) of a colour is defined as S = 1 − W . Thus a de-saturated colour has a
lot of white in it; such colours resemble pastel shades. A highly saturated colour would be a
rich red, yellow, green etc. as might be seen on an advertisement/poster. The saturation S
forms one of the three values (H, S and V) of the HSV colour.

Equally simple to compute is the ‘V ’ component or value. In HSV space this is computed
as the maximum of the R, G and B components.

V = max(R, G, B) (2.9)

This is a quick (to compute) approximation to luminance. In the related Hue, Saturation,
Luminance (HSL) colour model, equation 2.4 is used instead of equation 2.9. The two
models are functionally near-identical.

Finally, hue is computed by subtracting the white component W from each of the colour com-
ponents R, G and B. For example, RGB colour (0.3, 0.6, 0.2) would yield triple (0.1, 0.4, 0.0)

20

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Figure 2.8: Left: The Hue colour wheel; hue is represented as degrees around a circle. Right:
The HSV colour space can be visualised as a cone; the apex (Black) having any Hue or
Saturation, but Value=0. Similarly, colours at the centre of the cone are white (completely
desaturated). The above images are reproduced under Creative Commons/Wikimedia licence.

after subtracting the white component (W = 0.2) from the colour. Because one of the values
in the white-subtracted triple is always zero (just as in CMYK — subsection 2.3.1) we only
have two numbers to represent. The convention is to represent hue as degrees around a circle
(see Figure 2.8).

Continuing our example, the two non-zero components of the white-subtracted colour are
used to compute the hue as follows. We observe that the colour 0.4/(0.4+0.1) i.e. 4/5 of the
way along the arc between Red and Green. Expressing hue as an angle, this is 4/5×120 = 96
around the hue circle.

Hue is computed similarly for colours with 0.0 in the Red, or Green positions within the white-
subtracted RGB triple. However a constant (120◦ or 240◦) is added to shift the hue value
into the appropriate range. To illustrate, consider an example where RGB=(0.4, 0.3, 0.6).
We compute V = 0.6 and S = 0.7. The white-subtracted RGB triple is (0.1, 0.0, 0.3). The
hue is therefore 0.3/(0.1 + 0.3) = 3/4 of the way along the arc between Blue and Red, i.e.
90◦. The total angle around the circle (our final value for Hue) is 240◦ + 90◦ = 330◦.

2.3.7 Choosing an appropriate colour space

We have discussed four colour spaces (RGB, CMYK, CIELAB and HSV), and summarised
the advantages of each. Although RGB is by far the most commonly used space, the space
you should choose for your work is a function of your requirements. For example, HSV is
often more intuitive for non-expert users to understand and so is commonly used for GUI
colour pickers. However the fact that many points in HSV space e.g. (h, s, 0) map to Black
can be problematic if using HSV for colour classification in Computer Vision; perhaps RGB
would be more suitable as each point in the RGB colour cube identifies a unique colour.

Another consideration in your choice should be interpolation. Suppose we have two colours,

21

IMAGE REPRESENTATION (CM20219) J. P. Collomosse

Bright Red and Bright Green that we wish to mix in equal parts e.g. in a photo editing
package. In RGB space these colours are (255, 0, 0) and (0, 255, 0) respectively. In HSV space
these colours are (0◦, 1, 1) and (120◦, 1, 1) respectively. Using linear interpolation, a colour
halfway between Red and Green is therefore (128, 128, 0) and (60◦, 1, 1) in RGB and HSV
space respectively (i.e. the mean average of Red and Green).

However (128, 128, 0) in RGB space is a dull yellow, whereas (60, 1, 1) in HSV space is a bright
yellow. Clearly the choice of colour space affects the results of blending (i.e. interpolating)
colours.

22

Chapter 3

Geometric Transformation

3.1 Introduction

In this chapter we will describe how to manipulate models of objects and display them on
the screen.

In Computer Graphics we most commonly model objects using points, i.e. locations in 2D or
3D space. For example, we can model a 2D shape as a polygon whose vertices are points. By
manipulating the points, we can define the shape of an object, or move it around in space.
In 3D too, we can model a shape using points. Points might define the locations (perhaps
the corners) of surfaces in space.

Later in Chapter 6 we will consider various object modelling techniques in 2D and 3D. For
now, we need concern ourselves only with points and the ways in which we may manipulate
their locations in space.

3.2 2D Rigid Body Transformations

Consider a shape, such as a square, modelled as a polygon in 2D space. We define this shape
as a collection of points p = [p1 p2 p3 p4], where pi are the corners of the square. Commonly

useful operations might be to enlarge or shrink the square, perhaps rotate it, or move it
around in space. All such operations can be achieved using a matrix transformation of the
form:

p′ = Mp (3.1)

where p are the original locations of the points, and p′ are the new locations of the points.
M is the transformation matrix, a 2 × 2 matrix that we fill appropriate values to achieve
particular transformations.

These “matrix transformations” are sometimes called rigid body transformations because
all points p under-go the same transformation. Although many useful operations can be
performed with rigid body transformations, not all can be. For example we couldn’t squash
the sides of a square inward to produce a pin-cushion distortion as in Figure 3.1 using a
matrix transformation; pin-cushion distortion is an example of a more general geometric

23

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.1: Various geometric transformations applied to an image. The results were achieved
using two rigid body transformations (reflection, and a combined rotation and scaling) and a
non-rigid transformation (pin-cushion distortion). Note that only rigid body transformations
can be realised using matrix multiplication.

transformation. Rigid body transformations do however form a useful subset of geometric
transformations, and we will explore some of these now.

3.2.1 Scaling

We can scale (enlarge or shrink) a 2D polygon using the following scaling matrix:

M =

[

Sx 0
0 Sy

]

(3.2)

where Sx is the scale factor by which we wish to enlarge the object in the direction of the x-
axis similarly Sy for the y-axis. So a point (x, y)T will be transformed to location (Sxx, Syy)T .

For example, setting Sx = Sy = 2 will double the size of the object, and Sx = Sy = 1

2
will

halve the size of the object. The centre of projection for the scaling is the origin, so the
centre of the shape will become farther or nearer to the origin respectively as a result of the
transformation. Figure 3.2 (red) shows an example of scaling where Sx = 2, Sy = 1, resulting
in square p being stretched in th direction of the x-axis to become a rectangle.

You may note that setting the scale factor to 1 resulting in the identity matrix, i.e. with no
effect.

A negative scale factor will reflect points. For example, setting Sx = −1andSy = 1 will reflect
points in the y-axis.

3.2.2 Shearing (Skewing)

We can shear (skew) a 2D polygon using the following shearing matrix:

M =

[

1 q
0 1

]

(3.3)

So a point (x, y)T will be transformed to location (x + qy, y)T , so shifting the x component
of the point by an amount proportional to its y component. Parameter q is the constant of
proportionality and results, for example, in the vertical lines of the polygon “tipping” into
diagonal lines with slope 1/q. Figure 3.2 (green) illustrates this.

24

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.2: Illustrating various linear transformations. Left: a blue unit square, with one
corner at the origin. A scaled square in red (Sx = 2, Sy = 1), a sheared square in green
(q = 2), a rotated square in magenta (θ = π/3 radians). Right: A diagram illustrating
rotation θ degrees anti-clockwise about the origin. A corner at point (1, 0)T moves to points
(cos θ, sin θ)T under the rotation.

3.2.3 Rotation

We can rotate a 2D polygon θ degrees anti-clockwise about the origin using the following
rotation matrix:

M =

[

cos θ − sin θ
sin θ cos θ

]

(3.4)

Figure 3.2 (magenta) demonstrates operation of this matrix upon a square. Consider the cor-
ner (1, 0)T transformed by the above matrix. The resulting point has location (cos θ, sin θ)T .
We can see from the construction in Figure 3.2 that the point is indeed rotated θ de-
grees anti-clockwise about the origin. Now consider a rotation of the point (cos θ, sin θ)T

a further β degrees about the origin; we would expect the new location of the point to be
(cos(θ + β), sin(θ + β))T . As an exercise, perform this matrix multiplication and show that
the resulting point has location (cos θ cos β − sin θ sinβ, sin θ cos β + cos θsinβ)T . You may
recognise these as the double-angle formulae you learnt in trigonometry:

cos(θ + β) = cos θ cos β − sin θ sin β

sin(θ + β) = sin θ cos β + cos θ sin β (3.5)

The rotation matrix is orthonormal, so the inverse of the matrix can obtained simply by
transposing it (exchanging the signs on the sin θ elements). In general, when we multiply
by the inverse of a transformation matrix, it has the opposite effect. So, the inverse
of the rotation matrix defined in eq.(3.4) will rotate in a clockwise rather than anti-clockwise
direction (i.e. by −θ rather than θ). The inverse of a scaling matrix of factor two (i.e. making
objects 2 times larger), results in an scaling matrix of factor 0.5 (i.e. making objects 2 times
smaller).

25

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

3.2.4 Active vs. Passive Interpretation

We can interpret the actions of matrix transformations in two complementary ways (these
are different ways of thinking, and do not alter the mathematics). So far we have thought
of matrices as acting upon points to move them to new locations. This is called the active
interpretation of the transformation.

We could instead think of the point coordinates remaining the same, but the space in which
the points exist being warped by the matrix transformation. That is, the reference frame
of the space changes but the points do not. This is the passive interpretation of the
transformation. We illustrate this concept with two examples, a scaling and a rotation. You
may wish to refer to the discussion of basis sets and reference frames in the “Revision of
Mathematical Background” section of Chapter 1.

Example 1: Scaling Transformation

Recall eq.(3.2) which describes a scaling transformation. Setting Sx = Sy = 2 will scale
points up by a factor of 2. Consider the transformation acting on point p = (1, 1)T , i.e.:

Mp =

[

2 0
0 2

] [

1
1

]

=

[

2
2

]

(3.6)

The active interpretation of the transformation is that the x and y coordinates of the
point will be modified to twice their original value, moving the point away from the origin to
location (2, 2)T . This all occurs within root reference frame in which p is defined, i.e. where

î = [1 0]T and ĵ = [0 1]T .

In the passive interpretation of the transformation, we imagine p to stay “fixed”, whilst
the space it is defined in “slips beneath” p, contracting to half its size. The tick marks on the

axes of the space shrink towards the origin. p ends up aligned with coordinates (2, 2)T with

respect to the shrunken space, rather than (1, 1)T as was originally the case. Consequently
the space in which the point is defined as (1, 1)T is twice as large as the space in which the
point is defined as (2, 2)T ; that is, one step in the former space will take us twice as far as
one step in the latter space.

This explanation is made clearer with some mathematics. We interpret the transformation
matrix M as defining a new basis set with basis vectors (iM , jM) defined by the columns

of M , i.e. iM = [2 0]T and jM = [0 2]T . In the passive interpretation, we interpret point

(1, 1)T as existing within this new basis set (iM , jM) rather than the root reference frame.
However, we wish to convert from this reference frame to discover the coordinates of the point
within the root reference frame in which we usually work, i.e. where î = [1 0]T and ĵ = [0 1]T .

The x coordinate of the point within the [iM , jM] reference frame is 1, and the y coordinate

is also 1. So these coordinates contribute (1× 2)̂i + (1× 0)ĵ = 2̂i to the point’s x coordinate

in the root frame (the 2 and the 0 come from iM = [2 0]T). The y coordinate in the root

frame is contributed to by (1 × 0)̂i + (1 × 2)ĵ = 2ĵ. So the point’s coordinates in the root

reference frame is (2, 2)T .

26

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Thus to think in the passive interpretation is to affect our transformation by thinking
of the original coordinates (1, 1)T as existing within an arbitrary reference frame, as defined
by M . Multiplying the point’s coordinates in that frame by M takes the point out of the
arbitrary reference frame and into the root reference frame.

Example 2: Rotation Transformation

Recall eq.(3.4) which describes a rotation operation. Setting θ = 45◦ (or π/2 radians) will
rotate the points anti-clockwise about the origin by that amount. E.g. a point (1, 0)T would
under-go the following to end up at (cos θ, sin θ)T :

Mp =

[

cos θ − sin θ
sin θ cos θ

] [

1
0

]

=

[

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

] [

1
0

]

=

[

1/
√

2

1/
√

2

]

(3.7)

The active interpretation of this transformation is simply that the point has moved (ro-
tated) about the origin 45 degrees anti-clockwise, within the root reference frame i.e. where
î = [1 0]T and ĵ = [0 1]T . So the point moves from (1, 0)T to (0.707, 0.707)T . Figure 3.2
(right) illustrated this.

As with the previous example, the passive interpretation is that the point remains “fixed”
but the space warps via the inverse transformation. In this case the space “slips beneath”
the point, rotating θ degrees in a clockwise direction. Thus the point becomes aligned with
coordinates (cos θ, sin θ), in the slipped space, rather than (1, 0)T as it was in the space before
the transformation.

Again it may be clearer to look at a mathematical explanation. We view the coordinates
(1, 0)T as being defined in a new reference frame with basis vectors taken from the columns
of M , i.e. iM = [cos θ sin θ]T and jM = [− sin θ cos θ]T . When we multiply by M we
are computing the coordinates of that point within our root reference frame, i.e. where
î = [1 0]T and ĵ = [0 1]T . The x coordinate of the point within the [iM , jM] reference
frame is 1, and the y coordinate within that frame is 0. So these coordinates contribute
(1× cos θ)̂i+(0× sin θ)ĵ to the point’s x coordinate in the root frame (the cos θ and the sin θ
come from iM = [cos θ sin θ]). Similarly the point’s y coordinate within the root frame is

contributed to by (1×− sin θ)̂i+(0× cos θ)ĵ. So the point’s coordinates in the root reference

frame are (cos θ, sin θ) = (0.707, 0.707)T .

3.2.5 Transforming between basis sets

As we saw in both Chapter 1 and the previous subsection, we can talk about a single point
as having many different sets of coordinates each defined their own reference frame. In this
subsection we introduce a subscript notation pF to denote coordinates of a point p defined
in a reference frame F with basis vectors iF and jF .

We have seen that a point with coordinates pD, defined in an arbitrary reference frame
(iD, jD) can be represented by coordinates pR in the root reference frame by:

pR = DpD

pR =
[

iD jD

]

pD (3.8)

27

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Conversely , if we have a point pR defined in the root reference frame, we can convert those
coordinates into those any other reference frame e.g. D by multiplying by the inverse of of
D:

pD = D−1pR

pD =
[

iD jD

]

−1
pR (3.9)

Suppose we had pR = (1, 1)T and a reference frame defined by basis iD = [3 0]T and

jD = [0 3]T . The coordinates pD following eq.(3.9) would be (0.33, 0.33)T — which is as
we might expect because D is ‘three times as big’ as the root reference frame (we need to
move three steps in the root reference frame for every one we taken in frame D).

So we have seen how to transform coordinates to and from an arbitrary reference frame, but
how can we convert directly between two arbitrary frames without having to convert to the
root reference frame?

Transforming directly between arbitrary frames

Given a point pD in frame D, we can obtain that point’s coordinates in frame E i.e. pE as
follows.

First observe that points pD and pE can be expressed as coordinates in the root frame (pR)
by simply multiplying by the matrices defining the frames D and E:

pR = DpD

pR = EpE (3.10)

By a simple rearrangement then we obtain a direct transformation from frame D to frame
E:

EpE = DpD

pE = E−1DpD (3.11)

pD = D−1EpE (3.12)

3.2.6 Translation and Homogeneous Coordinates

So far we have seen that many useful transformations (scaling, shearing, rotation) can be
achieved by multiplying 2D points by a 2 × 2 matrix. Mathematicians refer to these as
linear transformations, because each output coordinate is a summation over every input
coordinate weighted by a particular factor. If you do not see why this is so, refer to Chapter
1 and the section on Matrix Multiplication.

There are a number of other useful rigid body transformations that cannot be achieved
using linear transformations. One example is translation or ”shifting” of points – say we
have a set of points describing a shape, and we wish to move that shape 2 units in the positive
direction of the x-axis. We can achieve this by simply adding 2 to each point’s x-coordinate.
However it is impossible to directly add a constant to a particular coordinate within the

28

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

framework of linear transformations, i.e. in general we resort to the messy form of a
’multiplication and an addition’ for translations:

p′ = Mp + t (3.13)

Fortunately there is a solution; we can write translations as a matrix multiplications using
homogeneous coordinates.

When we work with homogeneous coordinates, we represent an n-dimensional point in a
(n + 1)-dimensional space i.e.

[

x
y

]

∼

αx
αy
α

 (3.14)

By convention we usually set α = 1 so a point (2, 3)T is written (2, 3, 1)T in homogeneous
coordinates. We can manipulate such 2D points using 3 × 3 matrices instead of the 2 × 2
framework we have used so far. For example translation can be written as follows — where
Tx and Ty are the amount to shift (translate) the point in the x and y directions respectively:

p′ =

1 0 Tx

0 1 Ty

0 0 1

 p (3.15)

We can accommodate all of our previously discussed linear transformations in this 3 × 3
framework, by setting the matrix to the identity and overwriting the top-left 2× 2 section of
the matrix by the original 2× 2 linear transformation matrix. For example, rotation degrees
anticlockwise about the origin would be:

p′ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 p (3.16)

Following the transformation we end up with a point in the form p = [x, y, α]T . We divide
by α (the ‘homogeneous coordinate’) to obtain the true locations of the resultant point’s x
and y coordinates in the 2D space.

Classes of transformation enabled by homogeneous coordinates

We have seen that homogeneous coordinates allow us to effect linear transformations with
matrix multiplications. Not only this, but they enable translation too. Translation is one
example from a super-set of transformations called the affine transformations that in-
corporate all the linear transformations, and more besides (see next section for additional
examples).

Whereas the top-left 2 × 2 elements in the matrix are manipulated to perform linear trans-
formations, the top 2× 3 elements of the matrix are manipulated to perform affine transfor-
mations. In both cases the bottom row of the matrix remains [0 0 1] and so the homogeneous
coordinate (the α) of the resulting point is always 1. However there exists an even broader
class of transformations (the projective transformations) that are available by manipu-
lating the bottom row of the matrix. These may change the homogeneous coordinate to a

29

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

value other than 1. It is therefore important that we form the habit of dividing by the ho-
mogeneous coordinate, and not simply discarding it, following the result of a matrix
transformation.

In summary, homogeneous coordinates are a way of performing up to projective transforma-
tions using linear operators in a higher dimensional space. This is facilitated by mapping
points in regular (e.g. 2D) space to lines in the homogeneous space (e.g. 3D), and then
performing linear transforms on the line in that higher dimensional (homogeneous) space.

Advantages of homogeneous coordinates

An important consequence of homogeneous coordinates is that we can represent several im-
portant classes of transformation (linear, affine, projective) in a single framework - multipli-
cation by a 3 × 3 matrix. But why is this useful?

First, for software engineering reasons it is useful to have a common data-type by which we
can represent general transformations e.g. for passing as arguments between programmed
functions. Second, and more significantly, we are able to multiply 3× 3 matrices together to
form more sophisticated compound matrix transformations that are representable using
a single 3×3 matrix. As we will show in Section 3.2.7, we can, for example, multiply rotation
and translation matrices (eqs. 3.15–3.16) to derive a 3 × 3 matrix for rotation about an
arbitrary point — we are not restricted to rotation about the origin as before. Representing
these more complex operations as a single matrix multiplication (that can be pre-computed
prior to, say, running an animation), rather than applying several matrix multiplications
inside an animation loop, can yield substantial improvements in efficiency.

3.2.7 Compound Matrix Transformations

We can combine the basic building blocks of translation, rotation about the origin, scaling
about the origin, etc. to create a wider range of transformations. This is achieved by
multiplying together the 3 × 3 matrices of these basic building blocks, to create a single
”compound” 3 3 matrix.
Suppose we have a matrix S that scales points up by a factor of 2, and matrix T that
translates points 5 units to the left. We wish to translate points, then scale them up. Given
a point p we could write the translation step as:

p′ = Tp (3.17)

and the subsequent scaling step as:

p′′ = Sp′ (3.18)

where p′′ is the resultant location of our point. However we could equally have written:

p′′ = S(Tp) (3.19)

and because matrix multiplication is associative, we can write:

p′′ = STp

p′′ = Mp (3.20)

where M = ST . Thus we combine S and T to produce a 3 × 3 matrix M that has exactly
the same effect as multiplying the point by T and then by S.

30

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.3: Illustrating the three steps (matrix transformations) required to rotate a 2D point
about an arbitrary centre of rotation. These three operations are combined in a compound
matrix transformation able to perform this ‘complex’ operation using a single 3 × 3 matrix.

Order of composition

Recall that matrix operation is non-commutative (Chapter 1) this means that ST 6= TS. i.e.
a translation followed by a scaling about the origin is not the same as a scaling about the
origin followed by a translation. You may like to think through an example of this to see
why it is not so.

Also note the order of composition - because we are representing our points as column vectors,
the order of composition is counter-intuitive. Operations we want to perform first (the
translation in this case) are at the right-most end of the chain of multiplications. Operations
we perform last are at the left-most end — see eq.(3.20).

2D Rotation about an arbitrary point

We will now look in detail at a common use of compound transformations; generalising the
rotation operation to having an arbitrary centre of rotation, rather than being restricted to
the origin.

Suppose we wish to rotate a point p by θ degrees anti-clockwise about centre of rotation c.
This can be achieved using three matrix multiplications. First, we translate the reference
frame in which p is defined, so that c coincides with the origin (Figure 3.3). If we write

c = [cx cy]
T then this translation operation is simply:

T =

1 0 −cx

0 1 −cy

0 0 1

 (3.21)

Now that the centre of rotation is at the origin, we can apply our basic rotation matrix to
rotate the point the user-specified number of degrees θ.

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (3.22)

Finally, we translate the reference frame so that c moves back from the origin to its original
position. The point p has been rotated θ degrees about c. Figure 3.3 illustrates.

31

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Our operation was therefore first a translation, then rotation, then another translation (the
reverse of the first translation). This is written:

p′ =

1 0 cx

0 1 cy

0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 0 −cx

0 1 −cy

0 0 1

 p

p′ = T−1R(θ)Tp

p′ = Mp (3.23)

where M is the compound matrix transformation T−1R(θ)T .

An important observation is that matrix transformations down-stream from a particular
transformation (e.g. the first translation) operate in the reference frame output by that
transformation. This is how we were able to use our “standard” rotate-about-the-origin-
anticlockwise matrix to create a rotation about an arbitrary point. This observation is
important in the next section and also when we discuss 3D rotation.

We could use this compound transformation to create an animation of a point orbiting an-
other, by successively applying M at each time-step to rotate point p a further θ degrees
about c. After one time-step the position of the point would be Mp, after the second time-

step the position would be MMp and so on until the nth time-step where the point is at Mnp.
Pre-computing M saves us a lot of computational cost at each iteration of the animation.

We can also use the same compound approach to scale about an arbitrary point or in an
arbitrary direction, or perform any number of other affine transformations.

3.2.8 Animation Hierarchies

We can use the principles of compound matrix transformation to create more complex ani-
mations; where objects move around other objects, that are themselves moving. We will look
at two illustrative examples; the Moon orbiting the Earth, and a person walking.

Earth and Moon

Suppose we have a set of points e =
[

e1 e2 ... en

]

that describe vertices of a polygon repre-
senting the Earth, and a set of points m that similarly approximate the Moon. Both polygons
are squares centred at the origin; the moon’s square is smaller than the earth. Figure 3.4
(left) illustrates. We wish to animate both the Earth and Moon rotating in space, and the
Moon also orbiting the Earth.

Modelling the Earth and Moon rotating in space is simple enough; they are already centred
at the origin, so we can apply the standard rotation matrix to each of them:

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (3.24)

We increase θ as time progresses throughout the animation, to cause the polygons to spin
in-place. We could even use two variables θe and θm, for the Earth and Moon respectively,

32

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.4: Illustrating animation hierarchies. Left, middle: Steps toward animation of a
spinning Moon orbiting a spinning Earth (see subsection 3.2.8). Right: A hierarchy for an
articulated body such as a walking person. The torso’s frame moves within the root reference
frame, and limbs directly attached to the torso move within the reference frame defined by
the torso.

to enable the rotation speeds to differ e.g. if θm = 5θe then the Moon would rotate 5 times
faster than the Earth.

e′ = R(θe)e

m′ = R(θm)m (3.25)

Currently the Moon is spinning ‘inside’ the Earth, and so should be moved a constant distance
away with a translation. The translation should occur after the rotation, because we need to
rotate while the Moon is centred at the origin:

T =

1 0 5
0 1 0
0 0 1

m′ = TR(θm)m (3.26)

At this stage the Earth is spinning on its centre at the origin, and the Moon is spinning on
its centre to the right of the Earth. We would like to ‘connect’ the two, so that the Moon
not only spins on its axis but also rotates with the Earth. We must therefore place the
Moon within the Earth’s reference frame. We do this by pre-multiplying eq.(3.26)
with R(θe).

m′ = R(θe)TR(θm)m (3.27)

This results in the correct animation (Figure 3.4, middle). Recall our discussion of the
passive interpretation of transformations. This final multiplication by R(θe) is treating the
Moon’s coordinates as being written with respect to a reference frame rotating with the
Earth. Multiplying by R(θe) yields the Moon’s coordinates in the root reference frame, and
so tells us where to draw the Moon on our display.

Walking person

In the above example we saw the Moon rotating within the reference frame of another object,
the Earth. The Earth was itself rotating within the root reference frame. This idea gener-
alises to the concept of a hierarchy (specifically a n-ary tree) of reference frames, in which

33

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

nodes represent reference frames that are linked to (move with) their parent reference frames
in the tree.

A person’s body structure consists of limbs that can pivot on other limbs. As such, the
position of a limb (e.g. an arm) is not only a function of the angle it makes about its pivot
(e.g. shoulder) but also a function of the position of the torso. Such structures (comprising
rigid, pivoting limbs) are called articulated bodies and are amenable to modelling using a
hierarchy of reference frames. Figure 3.2.8 (right) illustrates.

For example, consider a person’s torso moving in the world. Its location in the world can
be described by some affine transformation given by a matrix Tt that transforms the torso

from a pre-specified constant reference point to its current position in the world. It may also
be subject to some rotation Rt. We can think of the torso being specified about the origin

of its own local “torso” reference frame, defined by TtRt. So if we consider vertices of the

torso polygon t, defined in that local frame, we would actually draw vertices TtRtt i.e. the

coordinates of t in the root (world) reference frame.

Now consider an upper-arm attached to the torso; its position is specified relative to the
torso. Just like the torso, the upper-arm is defined about its own origin; that origin is offset
from the torso’s origin by some translation Tu, and may rotate about its own origin (i.e. the

shoulder) using a matrix Rs. If we consider the upper-arm polygon s defined within its local

reference frame, then its coordinates within the torso reference frame are TsRss. And its

coordinates within the root (world) reference frame are:

TtRtTsRss (3.28)

So, just as with the Earth, we pre-multiplied by the matrix (TtRt) describing the torso’s

reference frame. Other, independent, matrices exist to describe the other upper-arm, legs
and so on. The lower-arm q’s position about elbow might be given by TqRqq, and its absolute

position therefore by TtRtTsRsTqRqq, and so on.

Thus we can use compound matrix transformations to control animation of an articulated
body. We must be careful to design our hierarchy to be as broad and shallow as possible;
matrix multiplications are usually performed in floating point which is an imprecise repre-
sentation system for Real numbers. The inaccuracies in representation are compounded with
each multiplication we perform, and can quickly become noticeable after 5 or 6 matrix mul-
tiplications in practice. For example, if we chose the root of our hierarchical model as the
right foot, we would have to perform more matrix multiplications to animate the head, say,
than if we chose the torso as the root of our tree. Articulated bodies are very common in
Computer Graphics; it is not always obvious how to design a animation hierarchy to avoid
this problem of multiplicative error and often requires some experimentation for bodies with
large numbers of moving parts.

3.3 3D Rigid Body Transformations

So far we have described only 2D affine transformations using homogeneous coordinates.
However the concept generalises to any number of dimensions; in this section we explore 3D

34

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

transformations. In 3D a point (x, y, z)T is written (αx, αy, αz, α)T in homogeneous form.
Rigid body transformations therefore take the form of 4 × 4 matrices.

We can perform 3D translation (T) and scaling (S) using the following matrices:

T =

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

(3.29)

S =

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

(3.30)

where Sx, Sy, Sz are the scale factors in the x, y and z directions respectively, and Tx, Ty, Tz are
similarly the shifts in the x, y and z directions. Rotation in 3D is slightly more complicated.

3.3.1 Rotation in 3D — Euler Angles

There is no concept of rotation about a point in 3D, as there is in 2D. The analogous concept
is rotation about an axis. Whereas there was one fundamental ‘building block’ matrix to
describe rotation in 2D, there are 3 such matrices in 3D. These matrices enable us to rotate
about the x-axis, y-axis and z-axis respectively. These rotation operations are sometimes
given special names, respectively “roll”, “pitch” and “yaw”. The following three matrices
will perform a rotation of θ degrees clockwise in each of these directions respectively. Note
that our definition of “clockwise” here assumes we are “looking along” along the principal
axis in the positive direction:

Rx(θ) =

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

(3.31)

Ry(θ) =

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

(3.32)

Rz(θ) =

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

(3.33)

We can effect any rotation we desire in 3D using some angular quantity of roll, pitch and yaw.
This would be performed using some sequence of Rx, Ry, and Rz i.e. a compound matrix

transformation. We will see in subsection 3.3.3 that the order of multiplication does matter,
because particular orderings prohibit particular rotations due to a mathematical phenomenon
known as “Gimbal lock”. This system of rotation is collectively referred to as Euler angles.

35

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.5: Illustrating the rotation of a point about an arbitrary axis in 3D – to be read in
conjunction with the description in subsection 3.3.2. The figure assumes the axis of rotation
(L) already passes through the origin.

3.3.2 Rotation about an arbitrary axis in 3D

In subsection 3.2.7 we saw that rotation about an arbitrary point could be performed using a
compound matrix transformation. Rotation degrees about an arbitrary axis can be achieved
using a generalisation of that process (see also Figure 3.5). The seven steps of this process
are:

• Given an arbitrary axis to rotate about, we first translate the 3D space using a 4 × 4
translation matrix T so that the axis passes through the origin.

• The axis is then rotated so that it lies in one of the principal planes of the 3D space.
For example we could roll around the x-axis using Rx so that the arbitrary axis lies in

the xz-plane.

• We then perform a rotation about another axis e.g. the y-axis (via Ry to align the axis

in the xz-plane with one of the principal axes e.g. the z-axis.

• Now that the axis of rotation lies along one of the principal axes (i.e. the z-axis, we
can apply Rz to rotate the user-specified number of degrees θ.

36

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

• Transform by the inverse of Ry.

• Transform by the inverse of Rx.

• Transform by the inverse of T .

So the complete transformation is p′ = T−1Rx
−1Ry

−1RzRyRxTp. Note that we could have

constructed this expression using a different ordering of the rotation matrices — the decision
to compose the transformation in this particular ordering was somewhat arbitrary.

Inspection of this transformation reveals that 2D rotation about a point is a special case of
3D rotation, when one considers that rotation about a point on the xy-plane is equivalent
to rotation about the z-axis (consider the positive z-axis pointing ’out of’ the page). In this
2D case, steps 2-3 (and so also 5-6) are redundant and equal to the identity matrix; because
the axis of rotation is already pointing down one of the principle axes (the z-axis). Only the
translations (steps 1 and 7) and the actual rotation by the user requested number of degrees
(step 3) have effect.

Determining values for the T and R matrices

Clearly the value of Rz is determined by the user who wishes to rotate the model, and spec-

ifies a value of degrees for the rotation. However the values of T , Rx, Ry are determined by

the equation of the line (axis) we wish to rotate around.

Let us suppose the axis of rotation (written L(s)) has the following parametric equation (see
Chapter 6 for parametric equation of a line):

L(s) =

x0

y0

z0

+ s

f
g
h

 (3.34)

Then a translation matrix that ensures the line passes through the origin is:

T =

1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1

(3.35)

With the rotation axis L passing through the origin (i.e. Step 1 of the 7 completed) we have
the setup shown in Figure 3.5. To obtain a value for Rx we need to know angle , and for Ry

we need to know angle . Fortunately the rotation matrices require only the sines and cosines
of these angles, and so we can use ratios in the geometry of Figure 3.5 to determine these
matrices.

Writing v =
√

g2 + h2 we can immediately see that sin α = g/v and cosα = h/v. These are
the values plugged into the “roll” or x-axis rotation matrix for Rx(α).

The length of line L in the construction is given by Pythagoras i.e. l =
√

f2 + g2 + h2. This
leads to the following expressions for the β angle: sinβ = f/l and cos β = v/l, which are
plugged into the “pitch” or y-rotation matrix for Ry.

37

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

3.3.3 Problems with Euler Angles

Recall the discussion of compound matrix transformations in subsection 3.2.7. We observed
that each matrix in the sequence of transformations operates in the reference frame of the
previous matrix. We use this observation to offer a geometric explanation of Euler angles
(Figure 3.6), which in turn reveals some of the shortfallings of this system.

Consider a plate upon the surface of which points are placed. This is analogous to the 3D
reference frame in which points are defined. The plate can pivot within a surrounding me-
chanical frame, allowing the plate to tilt to and fro. This is analogous to a rotation by one
of the Euler angle matrices – e.g. Rx. Now consider a mechanical frame surrounding the

aforementioned frame, allowing that frame to rotate in an orthogonal axis — this is analogous
to rotation by another Euler angle matrix, e.g. Ry. Finally consider a further mechanical

frame surrounding the frame of Ry, allowing that frame to pivot in a direction orthogonal to

both the two inner frames – this is analogous to rotation by the final Euler angle matrix i.e.
Rz. Figure 3.6 illustrates this mechanical setup, which is called a gimbal.

It is clear that the points on the plate are acted upon by Rx, which is in turn acted upon by

Ry, which is in turn acted upon by Rz. If we write the points on the plate as p then we have:

RzRyRxp (3.36)

Note that we could have configured the system to use any ordering of the frames e.g. RxRzRy,

and so on. But we must choose an ordering for our system.

Now consider what happens when we set θ in the middle frame i.e. Ry to 90 . The axis of

rotation of Rx is made to line up with the axis of rotation of Rz. We are no longer able to

move in the direction that Rx previously enabled us too; we have lost a degree of freedom.

An Euler angle system in this state is said to be in gimbal lock.

This illustrates one of the major problems with the Euler angle parameterisation of rotation.
Consideration of rotation as a roll, pitch and yaw component is quite intuitive, and be useful
in a graphics package interface for animators. But we see that without careful planning we
can manouver our system into a configuration that causes us to lose a degree of freedom.
Gimbal lock can be ’broken’ by changing the rotation parameter on the matrix that has
caused the lock (e.g. Ry) or by adding a new reference frame outside the system, e.g.

R′

xRzRyRx (3.37)

However adding a new reference frame is inadvisable; we may quickly find ourselves in Gimbal
lock again, and feel motivated to add a further frame, and so on – each time the animator
gains a new parameter to twiddle on the rotation control for his model, and this quickly
becomes non-intuitive and impractical.

The best solution to avoid Gimbal lock is not to use Euler Angles at all, but a slightly more
sophisticated form of rotation construct called a quaternion (which can also be expressed
as a 4 × 4 matrix transformation). However quaternions are beyond the scope of this intro-
ductory course; you might like to refer to Alan Watt’s ”Advanced Animation and Rendering
Techniques” text for more information.

38

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.6: A mechanical gimbal, showing how points (defined in a space at the centre of the
Gimbal) are acted upon by rotation operations along the x, y and z axes. Setting the middle
Gimbal at 90 degrees causes Gimbal lock; the axes of rotation of the inner and outer frames
become aligned.

Impact of Gimbal Lock on Articulated Motion

We have seen that each Euler angle rotation matrix operates in the reference frame of the
previous matrix in the chain. Similarly, each matrix transformation in the matrix hierarchy
of an articulated structure operates within the frame of the previous. Suppose we have an
articulated structure, such as a walking person (subsection 3.2.8), with hierarchy spanning
three or more nodes from root to leaf of the tree. Referring back to our previous example, we
might have a torso, upper-arm and low-arm. The points of the lower-arm l have the following
location in the root reference frame:

TtRtTuRuTlRll (3.38)

Suppose the R in the above equation are specified by Euler angles (e.g. R = RzRyRx).

Certain combinations of poses (e.g. where Ru is a 90◦ rotation about the y-axis) may cause

parts of the model to fall into Gimbal lock, and so lose a degree of freedom. This would cause
animators difficulty when attempting to pose parts of the model (e.g. l correctly).

The solution is to introduce a manually designed local reference frame for each limb, and
specify the Euler Angle rotation inside that frame. For example, instead of writing TlRl we

39

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

write Tl(Kl
−1RlKl) or maybe even Kl

−1(TlRl)Kl.
1. The final chain might end up as:

Tt(Kt
−1RtKt)Tu(Ku

−1RuKu)Tl(Kl
−1RlKl)l (3.39)

Suppose we had an articulated body where Ru was likely to be a rotation in the y-axis 90◦ due

to the nature of the motion being modelled. We might specify a Ku that rotated the y-axis

to align with another axis, to prevent this problematic transformation being introduced into
the matrix chain for later reference frames (i.e. Rl).

Non-sudden nature of Gimbal Lock

Recall Figure 3.6 where the system is in Gimbal lock when Ry is at 90◦. It is true that the

system is in Gimbal lock only at 90◦ (i.e. we completely lose or “lock out” one degree of
freedom). However our system is still very hard to control in that degree of freedom at 89◦.
The problems inherent to Gimbal lock (i.e. loss of control) become more troublesome as we
approach 90◦; they are not entirely absent before then.

3.4 Image Formation – 3D on a 2D display

We have talked about 3D points and how they may be manipulated in space using matrices.
Those 3D points might be the vertices of a cube, which we might rotate using our Euler
angle rotation matrices to create an animation of a spinning cube. They might form more
sophisticated objects still, and be acted upon by complex compound matrix transformations.
Regardless of this, for any modelled graphic we must ultimately create a 2D image of the
object in order to display it.

Moving from a higher dimension (3D) to a lower dimension (2D) is achieved via a projection
operation; a lossy operation that too can be expressed in our 4× 4 matrix framework acting
upon homogeneous 3D points. Common types of projection are perspective projection
and orthographic projection. We will cover both in this Section.

3.4.1 Perspective Projection

You may already be familiar with the concept of perspective projection from your visual
experiences in the real world. Objects in the distance appear smaller that those close-by.
One consequence is that parallel lines in the real world do not map to parallel lines in an
image under perspective projection. Consider parallel train tracks (tracks separated by a
constant distance) running into the distance. That distance of separation appears to shrink
the further away the tracks are from the viewer. Eventually the tracks appear to converge at
a vanishing point some way in to the distance.

Sometimes illustrators and draftsmen talk of “1-point perspective” or “2-point perspective”.
They are referring to the number of vanishing points present in their drawings. For example,
it is possible to draw a cube in 1 or even 3 point perspective — simply by varying the point of
view from which it is drawn. This terminology is largely redundant for purposes of Computer
Graphics; whether a rendering is characterised as having n-point perspective has no bearing

1The bracketing here is redundant and for illustration only

40

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.7: Schematic illustrating the perspective projection of a 3D flagpole to create a 3D
image. Light rays travel in straight lines from points on the flagpole to a eye/camera focal
point, passing through a planar surface representing the image to be rendered.

on the underlying mathematics that we use to model perspective.

We will now derive equations for modelling perspective projection in a computer graphics
system. Consider a flag pole in a courtyard, which we observe from within a building through
a window. Rays of light (travelling in straight lines) reflect from visible points on the flagpole
and into our eye via the window. Figure 3.7 illustrates this system, considering for clarity
only the y-axis and z-axis of the 3D setup. In this setup the tip of the flagpole is z distance
from us, and y high. The image of the flagpole is y high on a window d distance from us.

The geometry of the scene is a system of similar triangles:

z

d
=

y

y′
(3.40)

which we can rearrange to get an expression for y′ (height of the flagpole on the window) in
terms of the flagpole’s height y and distance z from us, and the distance between us and the
window d:

y′ =
dy

z
(3.41)

We see from this ratio that increasing the flagpole’s height creates a larger image on the
window. Increasing the flagpole’s distance from us decreases the size of the flagpole’s image
on the window. Increasing the distance d of the window from our eye also increases the size of
the flagpole’s image (in the limit when d = z this will equal the actual height of the flagpole).
Exactly the same mathematics apply to the x component of the scene, i.e.

x′ =
dx

z
(3.42)

Thus the essence of perspective projection is division by the z coordinate; which makes sense
as size of image should be inversely proportional to distance of object.

Cameras work in a similar manner. Rays of light enter the camera and are focused by a lens
to a point (analogous to the location of our eye in the flagpole example). The rays of light

41

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

‘cross’ at the focal point and fall upon a planar imaging sensor analogous to the window in
our flagpole example. Due to the cross-over of rays at the focal point, the image is upside
down on the image sensor and is inverted by the camera software. In this example we have
assumed a “pin-hole camera” (camera obscura), i.e. without a curved lens. These were the
earliest form of camera, developed during the Renaissance, and most modern cameras use
curved glass lenses leading to more complicated projection models as light is bent along its
path from object to sensor. However the pin-hole camera assumption is acceptable for most
Graphics applications.

The distance d between the camera focal point and the image plane is called the focal length.
Larger focal lengths create images contain less of the scene (narrower field of view) but larger
images of the objects in the scene. It is similar to a zoom or telephoto lens. Small focal
lengths accommodate larger fields of view, e.g. a wide-angle lens.

Matrix transformation for perspective projection

We can devise a matrix transformation P that encapsulates the above mathematics. Given

a 3D point in homogeneous form i.e. (x, y, z, 1)T we write:

d 0 0 0
0 d 0 0
0 0 d 0
0 0 1 0

x
y
z
1

=

dx
dy
dz
z

(3.43)

Note that the homogeneous coordinate is no longer unchanged, it is z. Therefore we must
normalise the point by dividing by the homogeneous coordinate. This leads to the point
(dx/z, dy/z, dz/z = d)T . The transformation has projected 3D points onto a 2D plane located
at z = d within the 3D space. Because we are usually unconcerned with the z coordinate at
this stage, we sometimes write the transformation omitting the third row of the perspective
projection matrix:

P =

d 0 0 0
0 d 0 0
0 0 1 0

 (3.44)

leading to:

P

x
y
z
1

=

dx
dy
z

 (3.45)

A matrix with equivalent functionality is:

P =

1 0 0 0
0 1 0 0
0 0 1/d 0

 (3.46)

Finally, note that any points “behind” the image plane will be projected onto the image plane
upside down. This is usually undesirable, and so we must inhibit rendering of such points —
a process known as point “culling” — prior to applying the projection transformation.

42

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.8: A spinning 3D cube is animated by manipulating its position in space using 3D
rigid body transformations (4 × 4 matrix transforms), and projected on the 2D screen using
the perspective projection matrix.

Putting it all together

With knowledge of perspective projection, we are finally in a position to create a full 3D ani-
mation. Imagine that we wish to create a single frame of animation for a spinning wire-frame
cube.

First, we model the cube as a set of points corresponding to the cube’s vertices. We define
associations between vertices that represent edges of the cube.

Second, we apply various 3D matrix transformations (say a translation T followed by a ro-
tation R) to position our cube in 3D space at a given instant in time.

Third, we create a 2D image of the cube by applying the perspective matrix P .

The compound matrix transformation would be PRT , which we apply to the vertices of the
cube. Note that the perspective transformation is applied last. Once the locations of the
vertices are known in 2D, we can join associated vertices by drawing lines between them in
the image. Figure 3.8 illustrates.

3.4.2 Orthographic Projection

A less common form of projection is orthographic projection (sometimes referred to as
orthogonal projection). Put simply we obtain 2D points from a set of 3D points by just
dropping the z coordinate; no division involved. This results in near and distant objects
projecting to the image as the same size, which is sometimes desirable for engineering or

43

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

architectural applications. This is achievable using the matrix:

P =

d 0 0 0
0 d 0 0
0 0 0 0
0 0 0 1

(3.47)

3.5 Homography

The final matrix transformation we shall discuss is the homography. The homography is
the general 3 × 3 matrix transformation that maps four 2D points (a quadrilateral) to a
further set of four 2D points (another quadrilateral); the points being in homogeneous form.
It has several major applications in Computer Vision and Graphics, one of which is stitching
together digital images to create panoramas or “mosaics”. We will elaborate on this appli-
cation in a moment, but first show how the homography may be computed between two sets
of corresponding homogeneous 2D points p = [p1 p2 ... pn] and q = [q1 q2 ... qn], where for

now n = 4. For this section, we introduce the notation pi
x to indicate, for example, “the x

component of the ith point p”.

First we observe that ‘computing the homography’ means finding the matrix H such
that Hp = q. This matrix is a 3 × 3 rigid body transformation, and we expand the equation

Hp = q to get:

h1 h2 h3

h4 h5 h6

h7 h8 h9

pi
x

pi
y

1

 =

αqi
x

αqi
y

α

 (3.48)

Our task is to find h1..9 to satisfy all i = [1, n] points. We can rewrite eq.(3.48) out as
individual linear equations:

h1p
i
x + h2p

i
y + h3 = αqi

x (3.49)

h4p
i
x + h5p

i
y + h6 = αqi

y (3.50)

h7p
i
x + h8p

i
y + h9 = α (3.51)

And substitute eq.(3.51) into eq.(3.49) and eq.(3.50) to get:

h1p
i
x + h2p

i
y + h3 = h7p

i
xqi

x + h8p
i
yq

i
x + h9q

i
x (3.52)

h4p
i
x + h5p

i
y + h6 = h7p

i
xqi

y + h8p
i
yq

i
y + h9q

i
y (3.53)

Rearranging these two equations we get:

h1p
i
x + h2p

i
y + h3 − h7p

i
xqi

x − h8p
i
yq

i
x − h9q

i
x = 0 (3.54)

h4p
i
x + h5p

i
y + h6 − h7p

i
xqi

y − h8p
i
yq

i
y − h9q

i
y = 0 (3.55)

We can then write these two equations as a homogeneous linear system (in the form Ax = 0)

which we duplicate for each ith point:

44

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.9: Demonstrating an image stitching operation facilitated by homography estima-
tion. Four corresponding points in each image were identified. The homography between
those points was computed. The homography was then used to warp the image from one
‘point of view’ to another; i.e. move all pixels in the image according to the homography
(Digital image warping is covered in the next section). The two images were then merged
together.

p1
x p1

y 1 0 0 0 −p1
xq1

x −p1
yq

1
x −q1

x

0 0 0 p1
x p1

y 1 −p1
xq1

y −p1
yq

1
y −q1

y

p2
x p2

y 1 0 0 0 −p2
xq2

x −p2
yq

2
x −q2

x

0 0 0 p2
x p2

y 1 −p2
xq2

y −p2
yq

2
y −q2

y

...

h1

h2

h3

h4

h5

h6

h7

h8

h9

= 0 (3.56)

We call A the design matrix, and is completely defined by the point correspondences.
Vector x is our solution vector. We can use standard techniques such as SVD (Singular
Value Decomposition) to solve this system for x and so recover h1..9 i.e. matrix H. In

brief the SVD algorithm ‘decomposes’ A into three matrices such that A = USV T . We will
discuss SVD and matrix decomposition in Chapter 5. In the context of this problem, we will
treat SVD as a “black box”; the columns making up output V are all possible solutions for

x. The value in Si,i is the error for the solution in the ith column of V . For number of points
n = 4 there will always be an exact solution. If n > 4 then the H computed will be a “best
fit” mapping between all n point correspondences, and may not have zero error. The system
is under-determined if n < 4. Further details are beyond the scope of this course.

3.5.1 Applications to Image Stitching

We can apply the homography transformation to perform a popular Computer Graphics task;
“stitching together” two overlapping photographs taken of an object e.g. two fragments of
a panoramic mountain view. By “overlapping photographs” we mean two photographs that
image a common part of the object. The motivation for doing this might be that the object
is too large to fit in a single image. Figure 3.9 illustrates this application.

45

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Given two images I1 and I2, we manually pick 4 points in I1 and four corresponding points
in I2. These can be any four points that are not co-linear; e.g. 4 corners of a doorway that
is visible in both images. Writing these four points as p and q we can apply the mathematics

of the previous section to compute the homography H between those points. Thus the ho-
mography describes an exact mapping from the coordinates of the doorway in I1 (i.e. p) to
the coordinates of the doorway in I2 (i.e. q).

Now, if the subject matter of the photograph is flat i.e. such that all the imaged points lie
on a plane in 3D, then the homography also gives us a mapping from any point in I1 to any
point in I2. Thus, if we had taken a couple of photographs e.g. of a painting on a flat wall,
the homography would be a perfect mapping between all points in I1 to all corresponding
points in I2 . A proof is beyond the scope of this course, but you may like to refer to the
text “Multiple View Geometry” by Hartley and Zisserman for more details.

It turns out that very distant objects (e.g. mountains/landscapes) can be approximated as
lying on a plane, and in general small violations of the planar constraint do not create large
inaccuracies in the mapping described by H. This is why the homography is generally useful
for stitching together everyday outdoor images into panoramas, but less useful in stitching to-
gether indoor images where multiple objects exist that are unlikely to be co-planar in a scene.

With the homography obtained we can warp pixels to I1 to new positions, which should
match up with the content in I2 . As the homography is simply a 3 × 3 matrix transforma-
tion, we can effect this operation using standard image warping techniques — as discussed
in Section 3.6. The result is that the image content of I1 is transformed to the point of view
from which I2 was taken. The warped I1 and original I2 images may then be overlayed to
create a final panorama (or trivial colour blending operations applied to mitigate any inac-
curacies in the mapping; e.g. caused by violation of the plane-plane mapping assumption of
the homography).

It is possible to obtain the 4 point correspondences (p and q) automatically, i.e. as most
photo stitching programs do without requiring manual identification of the matching points.
We can use Computer Vision algorithms to identify stable “interest points” in images; that is,
points that we can repeatably identify regardless of the point of view from which an image is
taken. Often we use simple “corner detectors”, such as the Harris/Stephens Corner Detector
(Alvey 1988). The problem of finding 4 corresponding points is then reduced to finding 4
interest points in one image, and a matching 4 interest points in the other image. This
search is usually performed stochastically via RANSAC or a similar algorithm; the details
are beyond the scope of this course.

3.6 Digital Image Warping

Throughout this Chapter we have discussed points and how matrices may act upon those
points to modify their locations under rigid body transformation. A common application of
these techniques is to apply a matrix transformation to a 2D image, e.g. to rotate, skew, or
scale a “source” (input) image to create a modified “target” (output) image. This process is
known as digital image warping and was the motivating example given back in Figure 3.1.

46

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

Figure 3.10: An image (left) subjected to a digital image warp using forward mapping (mid-
dle) and backward mapping (right). Substantial improvements in quality are achieved using
backward mapping.

The most straightforward and intuitive process for performing image warping is to iterate
over the source image, treating each pixel as a 2D point p = (x, y)T . We apply a matrix
transformation p′ = Mp to those coordinates to determine where each pixel “ends up” in

our target image, i.e. p′ = (x′, y′)T . We then colour in the target image pixel at p with the
colour of pixel p in the source image. This process is called forward mapping and example
Matlab code for it is given in Figure 3.11.

Unfortunately there are a number of problems with forward mapping. First, the resultant
target coordinates p are real valued; however pixels are addressed by integer coordinates and
so some sort of correction is usually made e.g. rounding p to the nearest integer, so that we
know which pixel to colour in. This creates aesthetically poor artifacts in the image. Second,
many transformations will result in pixels being “missed out” by the warping operation and
thus not receiving any colour. Consider a scaling of factor 2. Point (0, 0)T maps to (0, 0)T on
the target, point (1, 0)T maps to (2, 0)T on the target, (2, 0)T to (4, 0)T and so on. However
pixels with odd coordinates in the target are not coloured in by the algorithm. This leads to
’holes’ appearing in the target image (Figure 3.10, middle).

A better solution is backward mapping – Figure 3.12 contains code. In backward mapping
we iterate over the target image, rather than the source image. For each pixel we obtain
integer coordinates p′ = (x, y)T which we multiply by M−1 to obtain the corresponding pixel

in the source image p = M−1p. We then colour the target pixel with the colour of the
source pixel. This approach does not suffer from the ‘holes’ of forward mapping, because
we are guaranteed to visit and colour each pixel in the target image. The approach is still
complicated by the fact that the coordinates p = (x, y)T may not be integer valued. We
could simply round the pixel to the nearest integer; again this can create artifacts in the
image. Nevertheless the technique produce substantially improved results over forward map-
ping (Figure 3.10, right).

In practice we can use pixel interpolation to improve on the strategy of rounding pixel
coordinates to integer values. Interpolation is quite natural to implement in the framework of
backward mapping; we try to blend together colours from neighbouring pixels in the source
image to come up with an estimate of the colour at real-valued coordinates p. There are var-

47

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

source=double(imread(’c:\mona.jpg’))./255;

target=zeros(size(source));

T=[1 0 -size(source,2)/2 ; 0 1 -size(source,1)/2; 0 0 1]

t=pi/4;

R=[cos(t) -sin(t) 0 ; sin(t) cos(t) 0 ; 0 0 1]

M=inv(T)*R*T; % the warping transformation (rotation about arbitrary point)

% the forward mapping loop

for y=1:size(source,1)

for x=1:size(source,2)

p=[x ; y ; 1];

q=M*p;

u=round(q(1)/q(3));

v=round(q(2)/q(3));

if (u>0 & v>0 & u<=size(target,2) & v<=size(target,1))

target(v,u,:)=source(y,x,:);

end

end

end

imshow([source target]);

Figure 3.11: Matlab code to warp an image using forward mapping.

ious strategies for this (e.g. bi-linear or bi-cubic interpolation); these are beyond the scope
of this course.

However note that the ease with which interpolation may be integrated with backward map-
ping is another advantage to the approach. In the framework of forward mapping, interpola-
tion is very tricky to implement. We must project the quadrilateral of each pixel forward onto
the target image and maintain records of how much (and which) colour has contributed to ev-
ery pixel in the target image. However forward mapping can give good results if implemented
properly, and is the only solution if working with a non-invertible transformation.

48

GEOMETRIC TRANSFORMATION (CM20219) J. P. Collomosse

source=double(imread(’c:\mona.jpg’))./255;

target=zeros(size(source));

T=[1 0 -size(source,2)/2 ; 0 1 -size(source,1)/2; 0 0 1]

t=pi/4;

R=[cos(t) -sin(t) 0 ; sin(t) cos(t) 0 ; 0 0 1]

M=inv(T)*R*T; % the warping transformation (rotation about arbitrary point)

M=inv(M); % note, we invert the matrix because we are backward mapping

% the backward mapping loop

for u=1:size(target,2)

for v=1:size(target,1)

q=[u ; v ; 1];

p=M*q;

x=round(p(1)/p(3));

y=round(p(2)/p(3));

if (x>0 & y>0 & x<=size(source,2) & y<=size(source,1))

target(v,u,:)=source(y,x,:);

end

end

end

imshow([source target]);

Figure 3.12: Matlab code to warp an image using backward mapping.

49

Chapter 4

OpenGL Programming

4.1 Introduction

This chapter describes features of the OpenGL library - a 3D graphics programming library
that enables you to create high performance graphics applications using the mathematics cov-
ered on this course.

Like all software libraries, OpenGL consists of a series of function calls (an Application
Programmers Interface or ’API’) that can be invoked from your own programs. OpenGL
has been ported to a number of platforms and languages, but this course will focus on the C
programming language. In typical use cases OpenGL is invoked via C or C++; most graphics
applications demand efficient and fast-executing code - and this requirement is most often
satisfied by C or C++. However it is possible to use OpenGL with other languages such as
Java (via the JOGL API).

OpenGL was developed by Silicon Graphics (SGI); a company that pioneered many early
movie special effects and graphics techniques. OpenGL was derived from SGI’s properietary
graphics running on their IRIX operating system. The ’Open’ in OpenGL indicates that SGI
opened the library up to other operating systems - it does not indicate Open Source. Indeed,
there is often little code in an OpenGL library - the library often acts simply as an interface
to the graphics hardware in a machine e.g. a PC. However, in cases where a machine has
no specialised graphics hardware, an OpenGL library will often emulate its presence. This is
the case in Microsoft Windows - if your PC has no specialised graphics hardware, OpenGL
will imitate the hardware using software only. The results will be visually (near) identical,
but execute much more slowly.

4.1.1 The GLUT Library

If one were to use OpenGL by itself, graphics application programming would not be as simple
as might be hoped. It would be necessary to manage the keyboard, mouse, screen/window
re-paint requests, etc. manually. This would result in substantial amounts of boilerplate code
for even the simplest applications. For this reason the GLUT library was developed. GLUT
is an additional set of function calls that augment the OpenGL library to manage windowing
and event handling for your application. With GLUT it is possible to write a basic OpenGL
program in tens of lines of source code, rather than hundreds. We will be using GLUT on
this course, to enable us to focus on the graphics issues. Using GLUT also enables us to be

50

OPENGL PROGRAMMING (CM20219) J. P. Collomosse

platform independent; the code in this chapter will run with minimal changes on Windows,
Mac and Linux platforms.

4.2 An Illustrative Example - Teapot

Any programming course starts with an illustrative example; in graphics courses it is tradi-
tional to draw a Teapot. Here is the OpenGL (plus GLUT) code to draw a teapot.

#include "GL/gl.h"

#include "GL/glut.h"

void keyboard(unsigned char key, int x, int y);

void reshape(int w, int h);

void display(void);

void idle(void);

void init(void);

int main (int argc, char** argv) {

glutInit(&argc, argv);

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize (600, 600);

glutCreateWindow ("Hello Teapot");

glutReshapeFunc (reshape);

glutKeyboardFunc (keyboard);

glutDisplayFunc (display);

glutIdleFunc (idle);

glutMainLoop();

}

void keyboard(unsigned char key, int x, int y) {

switch (key) {

case 0x1b:

exit (0);

break;

}

}

void idle() { }

51

OPENGL PROGRAMMING (CM20219) J. P. Collomosse

void reshape(int w, int h) {

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(60,(GLfloat)w/(GLfloat)h,2,40.0);

}

void display(void) {

glClearColor (0.0, 0.0, 0.0, 0.0);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// glTranslatef(0,0,-10); // example translation

glutSolidTeapot(1.0);

glFlush();

glutSwapBuffers();

}

There are 4 functions in this code. The entry point to the program main(...) creates a window
of size 600×600 pixels and sets its title to ”Hello Teapot”. The function sets up a ”callback”
for the keyboard. Callbacks are functions without our own code that GLUT will invoke when
certain ”events” happen; in this case GLUT will invoke function keyboard(...) when a key
is pressed. A callback is also set up for ”displaying”; any time GLUT wants to refresh the
graphics on screen the display(...) function will be called. We therefore place our code for
drawing graphics inside the display(...) function. Finally a callback is set up for ”reshaping”.
This callback is invoked when we resize the window (and also when the window is first drawn).

The most crucial part of the main(...) function is the last line - the glutMainLoop() call.
This passes all control in our program to GLUT. GLUT will never return from this call, so it
is pointless writing code in main(...) beyond this invocation. We will only gain control again
when GLUT invokes any of our callbacks in response to an event. If we call the C function
exit(int) during a callback, then our program will end - this is the only way (other than
writing faulty code) that we can terminate our program. This inelegant control structure is
the price we pay for the simplicity of using GLUT.

52

OPENGL PROGRAMMING (CM20219) J. P. Collomosse

The keyboard callback function handles key presses. GLUT passes our keyboard function
a “key code”; the ASCII code for the key that has just been pressed. The ASCII code for
Escape is 27 (0x1b in hexadecimal). If Escape is pressed we call the aforementioned system
exit(...) function.

The reshape callback function sets up the perspective transformation necessary to render
our 3D graphics (the teapot) to our 2D display. Refer to Chapter 3 for the mathematics of
perspective - and later in this Chapter for how that mathematics is realised by OpenGL.

The display function clears the screen and draws our teapot. First there are a couple of lines
referring to matrices - OpenGL uses matrices exactly as we did in Chapter 3 to manipulate
objects using rigid body transformations. In this case the two lines tell OpenGL that no such
matrix transformations will occur, in this simple example. Then we have the command to
draw a Teapot - OpenGL/GLUT may be the only library in the world to contain a function
for drawing teapots. This function has limited utility in real world applications, but serves
for demonstrations. The final two commands in display(...) tell OpenGL to commit to the
screen any graphics drawn (i.e. the teapot). We discuss these command in more detail next.

4.2.1 Double Buffering and Flushing

It is possible to run your GLUT managed display in single or double buffered mode. In our
opening lines of main(...) we specified that the display would run in double buffered mode
(the GLUT DOUBLE flag was passed to glutInit). In single buffered mode, anything we
draw goes straight to the screen - i.e. is written to the frame buffer (recall Chapter 2) linked
to the screen. In double buffered mode we still have a frame buffer for the screen, but also
a ”spare” buffer. We draw onto a ”spare” buffer in our display(...) function, and then swap
the screen and spare frame-buffers with a call to glutSwapBuffers(). We would usually prefer
double-buffering when creating an animation in OpenGL. This is because drawing direct to
the screen (i.e. using single-buffering) can cause flickering.

The call to glFlush() prior to the glutSwapBuffers() is for compatibility with slower graphics
hardware. Slower hardware will queue up the various OpenGL library calls and execute them
in batches. Usually we want to ensure all our queued OpenGL calls are executed before we
swap frame-buffers (the calls to swap buffers are not queued). Therefore we ’flush’ the queue
for good practice prior to glutSwapBuffers().

4.2.2 Why doesn’t it look 3D?

The teapot has been modelled as 3D object, but has been rendered with the OpenGL default
scene lighting settings which give it a flat appearance. Later we will describe how to set up
the OpenGL lighting properly. For now, we can write glEnable(GL LIGHTING) before
the glutSolidTeapot(..) line to improve aesthetics.

4.3 Modelling and Matrices in OpenGL

The 3D matrix transformation theory described in Chapter 3 can be put into practice using
OpenGL, to create scaling, rotation, perspective projection effects and similar.

53

OPENGL PROGRAMMING (CM20219) J. P. Collomosse

Recall from Chapter 3 that we create 3D graphics by first modelling objects in 3D space.
These models comprise a series of vertices that may be linked together to form surfaces (see
Chapter 6) and so form 3D objects. We can then manipulate our modelled objects by applying
matrix transformations to the vertices in the model (for example applying translations T , or
rotations R). The vertices move, and thus so do the surfaces anchored to them. Finally we
apply a perspective transformation (for example P) to project our vertices from 3D to 2D,
and draw the 2D points on the screen. For example, for some vertices p:

p′ = PRTp (4.1)

In OpenGL the projection matrix (i.e. P) is stored in a ’variable’ called the PROJECTION
matrix. The rigid body transformations R, T (and any similar) are stored as a compound
matrix transformation in a ’variable’ called the MODELVIEW matrix.

We can write to these variables by first ’selecting’ them using a glMatrixMode(GL PROJECTION)
or glMatrixMode(GL MODELVIEW) call. We then use the various helper functions in
OpenGL to post-multiply the existing contents of the variable with another matrix. For
example, the call to gluPerspective(...) in Section 4.2 creates a perspective matrix P and
post-multiplies it with the current contents of the PROJECTION matrix. In that example
we had used another helper function glLoadIdentity() to load the identity matrix (I) into the
PROJECTION matrix. So the effect of the code in reshape(...) was to load I into PROJEC-
TION and then set projection to IP where P is a new perspective matrix configured with
the various parameters passed to gluPerspective(...).

Similarly inside the display(...) we first overwrite the MODELVIEW matrix with the identity
matrix I. We could then use other OpenGL helper functions to post-multiply I with rotations,
translations, or similar - to manipulate our model as we see fit. The most commonly used
helper functions are:-

glTranslatef(x,y,z) // Translation matrix with shift T_x=x, T_y=y, T_z=z

glRotatef(theta,x,y,z)// Rotation matrix theta degrees clockwise about

// axis pointing along vector (x,y,z)

glScalef(x,y,z) // Scale matrix with scale factors S_x=x, S_y=y, S_z=z.

Note that unlike most C calls the rotation angle is specified in degrees rather than radians.

We could ignore the distinction between PROJECTION and MODELVIEW matrices, and
just write our perspective, translations, scalings etc. all into a single variable e.g. MOD-
ELVIEW and leave the other matrix as the identity. However this is bad practice as typically
we would want to set the PROJECTION matrix up once e.g. during window reshape(...),
and then manipulate the MODELVIEW several times during display(..).

4.3.1 The Matrix Stack

At any time we can call glPushMatrix() to save the contents of the currently selected matrix
variable. The contents can later be restored with a call to glPopMatrix(). As the name
implies, the variables are saved onto a LIFO (stack) structure. This is very useful when

54

OPENGL PROGRAMMING (CM20219) J. P. Collomosse

drawing articulated bodies which are often represented as a hierarchy (tree) of reference
frames, and traversed recursively (recall Chapter 3).

4.4 A Simple Animation - Spinning Teapot

We can create animations in OpenGL by introducing a further callback - the idle(...) callback.
This function is called repeatedly by GLUT when the system is idling (doing nothing). We
can use this opportunity to increment a counter and redraw our graphics. For example, we
might maintain a counter that increments from 0 to 359 - indicating the number of degrees
to rotate a Teapot. The code is near identical to our previous example:

#include "GL/gl.h"

#include "GL/glut.h"

void keyboard(unsigned char key, int x, int y);

void reshape(int w, int h);

void display(void);

void idle(void);

void init(void);

static int gRotAngle = 0; // global variable for rotation

int main (int argc, char** argv) {

glutInit(&argc, argv);

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize (600, 600);

glutCreateWindow ("Animated Teapot");

glutReshapeFunc (reshape);

glutKeyboardFunc (keyboard);

glutDisplayFunc (display);

glutIdleFunc (idle);

glutMainLoop();

}

void keyboard(unsigned char key, int x, int y) {

switch (key) {

case 0x1b:

exit (0);

break;

}

55

OPENGL PROGRAMMING (CM20219) J. P. Collomosse

}

void idle() {

gRotAngle = (gRotAngle + 1) % 360;

glutPostRedisplay(); // trigger callback to display(..)

}

void reshape(int w, int h) {

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(60,(GLfloat)w/(GLfloat)h,2,40.0);

}

void display(void) {

glClearColor (0.0, 0.0, 0.0, 0.0);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// glTranslatef(0,0,-10); // example translation

glRotate(gRotAngle,0,0,1);

glutSolidTeapot(1.0);

glFlush();

glutSwapBuffers();

}

Key features of this code are:-

• The use of a global variable to store the counter. This is messy but necessary as GLUT
doesn’t let us pass state around as parameters to its callbacks.

• The use of the idle callback to increment the counter.

• The call to glutPostRedisplay() within the idle callback, which triggers a display event

56

OPENGL PROGRAMMING (CM20219) J. P. Collomosse

inside GLUT - and thus triggers a callback to display(...) - which draws the teapot at
a new angle.

In this case the counter is simply used as an input to glRotate to create a spinning teapot, but
more complex examples could be imagined. Note that the teapot will spin at the maximum
speed possible given the graphics hardware. This will vary greatly from machine to machine.
We could use operating system specific calls to govern the animation’s speed. For example,
under Windows, we could insert a Sleep(milliseconds) system call. Or we could repeatedly
read the system clock and loop (block) until a constant number of milliseconds has elapsed.
Again, an OS-specific system call is used to access the system clock.

4.5 Powerpoint

The remainder of the OpenGL content on this course was delivered via Powerpoint and you
should refer to the sets of Powerpoint handouts on Moodle.

57

Chapter 5

Eigenvalue Decomposition and its
Applications in Computer Graphics

5.1 Introduction

Linear algebra is essential to Computer Graphics. We have already seen (Chapter 3) that
matrix transformations can be applied to points to perform a wide range of essential graphics
operations, such as scaling, rotation, perspective projection etc. In this Chapter we will
explore a further aspect of linear algebra; eigenvalue decomposition (EVD) and the
many useful applications it has in both Computer Graphics and Pattern Recognition.

5.1.1 What is EVD?

EVD is a method for “factorising” (in linear algebra terminology we say decomposing) a
square matrix M into matrices U and V such that:

M = UV UT (5.1)

i.e. the EVD process outputs U and V for a given input matrix M . If M is an n×n matrix,
then U and V will also be n × n matrices. They have the form:

U =
[

u1 u2 ... un

]

V =

λ1 0 ... 0
0 λ2 ... 0

...
0 0 ... λn

(5.2)

i.e. V is a diagonalised matrix. The n-dimensional vectors ui are called the eigenvec-
tors and the scalar values λi are called the eigenvalues (where i = 1...n). Thus for every
eigenvector there is an associated eigenvalue — and there are n pairs of eigenvectors/values
for an n × n matrix M (e.g. there are two pairs of eigenvectors/values for a 2 × 2 matrix).

Eigenvectors and eigenvalues also satisfy this interesting property (in fact this property is
often used to formally define what an eigenvector/value is):

Mui = λiui (5.3)

58

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

To understand this, consider M as a matrix transformation acting on a point p, (i.e. Mp).

Points are simply vectors from the origin in a reference frame (i.e. (3, 2)T means 3 units
along, 2 units up from the origin). Eigenvectors (ui) are specially chosen vectors such that
when M acts upon them (i.e. Mui), the effect is identical to simply scaling vector ui by value
λi (i.e. λiui).

‘Eigen’ is the German stem word meaning “same” or “characteristic”. An eigenvector is
a vector ui that, when scaled by its corresponding eigenvalue λi, gives the same result as
multiplying that eigenvector by M .

5.2 How to compute EVD of a matrix

Before we discuss why this is useful — i.e. the applications of EVD, we will briefly describe
how to perform EVD. Most scientific computing packages have an EVD function built-in e.g.
in Matlab:

[U V]=eig(M)

performs EVD on matrix M to yield eigenvectors U and eigenvalues V as defined in eq.(5.2).
However there is value in knowing how to perform the mathematics manually.

Given a matrix M we first compute the eigenvalues λi by solving an equation known as the
characteristic polynomial (subsection 5.2.1). Once we have the eigenvalues we can then
solve a linear system to get the eigenvectors (subsection 5.2.2).

5.2.1 Characteristic Polynomial: Solving for the eigenvalues

Recall that, for an n × n matrix M , there are n eigenvector/value pairs. Any eigenvector u
and eigenvalue λ of M will satisfy:

Mu = λu (5.4)

Re-arranging this relationship we get:

Mu − λu = 0 (5.5)

And factoring out u we get:

(M − λI)u = 0 (5.6)

where I is the n × n identity matrix. There are solutions for this equation only when the
determinant of M − λI is zero. Writing the determinant as |...| we obtain solutions for λ by
solving:

|M − λI| = 0 (5.7)

If we expand out the determinant of the above equation we will obtain a polynomial in λ
of order n; i.e. with n roots. This is called the characteristic polynomial. The roots of
the characteristic polynomial are our eigenvalues. It follows that not all of the roots may be
real. In fact we are guaranteed real roots (i.e. real eigenvalues) only when M is
a symmetric matrix).

59

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

An example: Eigenvalues of a 2 × 2 matrix

We will illustrate the process of solving for eigenvalues using a simple 2× 2 example matrix:

M =

[

2 1
1 2

]

(5.8)

Substituting M into eq.(5.7) we need to solve:

∣

∣

∣

∣

[

2 1
1 2

]

−
[

λ 0
0 λ

]
∣

∣

∣

∣

= 0

∣

∣

∣

∣

[

2 − λ 1
1 2 − λ

]
∣

∣

∣

∣

= 0 (5.9)

Recall that the determinant of a 2 × 2 matrix is defined as:
∣

∣

∣

∣

[

a b
c d

]
∣

∣

∣

∣

= ad − bc (5.10)

So writing out the determinant of eq.(5.9) we get:

(2 − λ)2 − 1 = 0

λ2 − 4λ + 3 = 0 (5.11)

Solving this quadratic is straightforward, taking a = 1, b = −4, c = 3 we have:

λ =
−b ±

√
b2 − 4ac

2a
(5.12)

So the two roots of the characteristic polynomial (the eigenvalues) are λ = 3 and λ = 1.

5.2.2 Solving for the eigenvectors

Once we know the eigenvalues λ we need to find corresponding eigenvectors u. We do this
by substituting each eigenvalue solution λ into:

(M − λI)u = 0 (5.13)

and solving the resulting linear system to find u. So, continuing our previous 2× 2 example:

M =

[

2 1
1 2

]

(5.14)

with eigenvalues λ1 = 3 and λ2 = 1 we must find u1 and u2. Let’s look at u1 first:

(

[

2 1
1 2

]

−
[

3 0
0 3

]

)u1 = 0

[

−1 1
1 −1

]

u1 = 0 (5.15)

Writing u1 = [x1 y1]
T we have simultaneous equations:

−x1 + y1 = 0

x1 − y1 = 0 (5.16)

60

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

i.e. x1 = y1. This illustrates an ambiguity with eigenvectors; there are many possible vector
solutions for a particular eigenvector — all pointing in the same direction but with different
magnitudes. i.e. we can only solve up to a scale factor using these equations. But to satisfy
our original definition of eigenvectors/values:

Mu = λu (5.17)

the eigenvectors must be unit length, so in this case a solution is u1 = [0.707, 0.707]T al-
though u1 = [−0.707,−0.707]T is also perfectly valid for the first eigenvector.

The second eigenvector equation yields:

x2 + y2 = 0

x2 + y2 = 0 (5.18)

So x2 = −y2 and a unit length vector satisfying this is u2 = [0.707,−0.707]T . For EVD of
larger matrices it is sensible to use some alternative technique to solve the linear system and
thus find the eigenvectors; for example Gauss-Jordan elimination (covered in CM10197).

Orthonormal nature of eigenvectors

We will not prove it here, but eigenvectors are not only unit length but are also mutually
orthogonal to one another. Thus the matrix U formed of eigenvectors (subsection 5.1.1) is
an orthonormal matrix. This is a useful property to remember when we come to invert U
later on in the Chapter (since the inverse of an orthonormal matrix is simply its transpose).

5.3 How is EVD useful?

There are two main uses for EVD in Computer Graphics, and we will discuss these in the
remainder of this Chapter.

5.3.1 EVD Application 1: Matrix Diagonalisation

Consider an origin centred polygon p = [p1 p2 ... pn] acted upon by a transformation M :

M =

[

cos θ sin θ
− sin θ cos θ

] [

f 0
0 1

] [

cos θ − sin θ
sin θ cos θ

]

(5.19)

The resulting polygon Mp will be stretched by a factor f along an axis passing through the

origin, with direction [cos θ, sin θ]T . Figure 5.1 illustrates.

Suppose we did not know the matrix chain initially used to create compound matrix M . By
inspecting the elements of compound matrix M , it is not obvious what its operation is; we
would have to apply the matrix to a polygon to observe its effect. However, we could use
EVD to decompose M into an orthonormal matrix U and a diagonal matrix V (sometimes
this process is also referred to as matrix diagonalisation):

M = UV UT (5.20)

61

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 5.1: Polygon approximating a circle (red), stretched using the compound matrix
transformation (f = 2) outlined in Section 5.3.1. The green circle using the transformation
raised to power 1, the magenta circle using the transformation raise to power 1.5 using the
diagonalisation technique to raise matrices to an arbitrary power.

Because the rotation matrix is orthonormal, and the scaling matrix is diagonal, we have re-
covered the rotation matrix in U and the scaling in V .

Further uses for this operation are to raise a matrix to a power. For example, if we wanted
to produce double the effect of transform M we could multiply the points p by M twice

i.e. MMp, or M2. It is initially unclear how one might raise M to a non-integer or even a

negative power. However eq.(5.20) provides a solution; we can raise the diagonal elements of
V to any power we choose and recombine UV UT to create a compound matrix M raised to
the required power. Note we could also raise M to power -1 in this way to create the inverse
transformation, or we can even define the concept of a matrix square root.

Note that EVD matrix diagonalisation will only work for symmetric, square matrices; thus
this technique is restricted to only particular forms of compound matrix transformation. For
more general diagonalisations we can use SVD (Section 5.5.3).

5.3.2 EVD Application 2: Principle Component Analysis (PCA)

Consider a collection of n points p = [p1 p2 ... pn]; the space might be 1D, 2D, 3D or even

higher dimensional. We can perform a procedure “principal component analysis (PCA)”
to learn about the distribution of those points within the space. More specifically, PCA gives
us a reference frame embedded within the space known as a “data dependent reference frame”
or Eigenmodel. This reference frame is useful for a large number of applications, as we will
see later in this Chapter. EVD is one of the key steps in computing PCA.

Rather than introduce the mathematics of PCA directly, we introduce it within the context

62

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

of pattern recognition (Section 5.4); a very common application of PCA. However, as we
will see later, PCA can be used for data visualization and collision detection too, to name
but a few alternative applications.

5.4 An Introduction to Pattern Recognition

Pattern Recognition underpins much of Computer Vision; a complementary field to Com-
puter Graphics that deals with images as input (rather than output) data, and make decisions
based on that data. It is within that decision making process that Pattern Recognition tech-
niques are applied. As an example, consider the London Congestion Charging system. This
is a Computer Vision system, consisting of numerous cameras, that can read vehicle licence
plates and bill commuters for driving into Central London. Here, Pattern Recognition algo-
rithms are applied to extract a alphanumeric string (the vehicle licence plate) from pixels in
an image taken by one such camera.

Many Pattern Recognition problems are also classification problems. Given some data,
we ‘classify’ that data by making a decision on whether the data fits into category A, B, C,
etc. or perhaps does not fit well into any category (the null category). For example, given
an image of a character on a vehicle number plate, we could classify that image as being a
letter ’A’, ’B’, ’C’, or not a letter at all. We usually would also like to quantify the confidence
we have in our classification.

Many classification problems rely on the system designer training the classifier with example
data for each category. These data are called exemplar data or the training set. In the
above example, the system might be shown a training set containing several examples of
each letter to learn an ‘understanding’ (we call this ‘learning a model’) of each category.
These problems are called supervised classification problems. By contrast, unsupervised
classification problems take a set of data and automatically learn a set of categories for
classification without training. We will only look at supervised classification problems here.
On this course we have time only to introduce the main concepts of classification (feature
spaces and distance metrics), and to discuss two simple classification algorithms (nearest
mean classifiers and Eigenmodel based classifiers). The latter example is where we find our
application of PCA.

5.4.1 A Simple Colour based Classifier

Suppose we have an image, such as Figure 5.2 and wish to identify the sky region in the
image. This is a classification problem; we wish to classify each pixel in the image as being
in the ‘sky’ category, or not. There are many ways we could approach this problem. Here
we will assume that sky pixels are of a distinctive colour, and that we can make a decision
independently for each pixel based solely on its colour. For this example, we will deal with a
greyscale image — so for now, by colour we mean pixel intensity.

We could create a training set of sky pixels by manually picking out regions of sky from
the image. We could then take a mean average of those pixels to create a model of the sky
category. In our case this would be a scalar value representing the average intensity (Isky) of
pixels in our training set (sky pixels).

63

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

Figure 5.2: Illustrating a simple intensity classification approach to detecting sky. Left:
Source greyscale image; pixels used to train model marked in green (mean intensity was 175).
Middle: Classification at T = 1 (white is sky, black is non-sky). Right: Poorer classification
at T = 10; more sky pixels have been categorised as non-sky. In both cases pixels on the
camera and man have been marked as sky. Clearly intensity is not an ideal discriminating
feature for detecting sky.

We could then test each pixel in the image, and measure how similar that test pixel’s intensity
(Itest) is to our model (Isky). A simple way to do this would be to take the absolute value of
their difference:

d(Itest, Isky) = |Itest − Isky| (5.21)

We call d(.) a distance metric; we use it to measure how far from a given category model
our test sample is.

We could state that all pixels with d(.) above a certain value T are too different from our
model to be in the sky category, otherwise they are similar enough to be sky. We call T a
threshold. Figure 5.2 shows the result of defining different threshold levels (assuming pixel
intensities range between 0 and 255). If we set T too low, then we incorrectly mark sky pixels
as non-sky. If we set T too high, then we incorrectly mark non-sky pixels as sky.

Caveats to this approach

We have produced a basic classifier capable of discriminating sky pixels from non-sky, al-
though not with great accuracy. In this example much of the data (pixels) we tested our
classifier on were same data (pixels) used to train the model. Usually this is inadvisable,
because:

1. we have already manually classified the training data (i.e. marked where the sky is).
There is little point in running a classifier over data we already know the classification
of!

2. running your classifier over its training data usually results in a better classification
performance than running it over new ‘unseen’ test data. You therefore gain a false
impression of the capabilities of your classifier.

A better impression of the classifier’s performance would be gained by training it on examples
of sky from several training images, and then testing it on a set of images distinct from that

64

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

Figure 5.3: Left: A 3D feature space used to classify pixels on their colour; here an enlarged
portion of that space is shown, each pixel in a photograph of sky (above) is plotted in the
feature space. Middle: Euclidean distance metric between two points; an ’ideal’ (averaged)
feature for sky (the model), and a pixel being tested for membership of the sky category.
Right: Diagrams of the L2 norm (Euclidean distance), and the L1 norm (“City Block” or
Manhattan distance). Here shown in a 2D feature space.

training set. We will not discuss methodologies for evaluating classifier performance on this
course. You may like to search Google for the term “Precision Recall” to get a feeling for
common approaches to this problem.

5.4.2 Feature Spaces

We now consider an RGB colour version of Figure 5.2 (left) and how we might go about
performing the same classification on a colour image. We wish to classify pixel as being sky
or non-sky on the basis of its RGB colour, which is now vector valued, i.e. [r, g, b]T rather
than a scalar.

In Pattern Recognition terms we say that the colour of the pixel is the feature that we are
measuring, in order to make a classification decision (i.e. whether the pixel is sky or non-
sky). Features are not always measurements of colour – they can be anything measurable
about the classification problem we are trying to solve that give us enough information to
discriminate between categories (see Section 5.4.4 for more examples). However in this case
the feature is a vector with 3 elements, representing Red, Green and Blue. In the previous
example (Section 5.4.1) the feature was a vector with 1 element (i.e. a scalar) representing
pixel intensity.

We can imagine the features forming a distribution of points in a n-dimensional space, each
point representing a different pixel (i.e. feature measurement). We call this the feature
space. In our case the feature space is 3−dimensional, in fact it is an RGB colour cube
identical to that discussed in Chapter 2. Figure 5.3 (left) gives an example of an image,
and corresponding features in our feature space. Pixels of similar colour will occupy similar
regions of the space.

We train our system as before, by manually identifying sky pixels to form a training set.
Features from the training pixels form a distribution in the feature space. We produce a
model for sky by computing an average feature (vector) from all points in this distribution
(Figure 5.3, left).

65

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

Now, given a test pixel we wish to use this model to decide whether that pixel is sky or not.
We first compute our feature vector from the test pixel, which we write Q = [Qr, Qg, Qb]

T .
We then measure the proximity of Q to the model, using a distance metric. Writing the

model as M = [Mr, Mg, Mb]
T , the distance d(Q, M) is simply the magnitude of the vector

between those two points in the feature space.

d(Q, M) =
∣

∣Q − M
∣

∣

=
√

(Qr − Mr)2 + (Qg − Mg)2 + (Qb − Mb)2 (5.22)

We are then able to threshold distance d(.) to decide whether the test pixel is sky or not.
We can imagine a sphere in the feature space, centered at M , of radius T , within which lie
all features corresponding to sky pixels (Figure 5.3, middle). Features outside of the sphere
are those arising from non-sky pixels. The perimeter of this sphere is said to describe the
decision boundary of the classifier.

5.4.3 Distance Metrics

We have seen that classification of sky in intensity and colour images was achieved in a similar
manner. We just need to choose (1) an appropriate feature space (we might have chosen any
of the colour models from Chapter 2), and (2) an appropriate distance metric.

The distance metric used in eq.(5.22) is called the Euclidean distance. It is sometimes
called an L2 (or order 2) norm. An order α norm is defined as:

Lα =

(

n
∑

i=1

|pi − qi|α
)

1

α

(5.23)

where pi and qi are the ith elements of two n-dimensional element vectors being compared.
Sometimes you will encounter the L1 norm – sometimes called the City Block or Manhattan
distance. This is the sum of the absolute difference between corresponding elements of the
vector. Given 2D points (0, 0)T and (1, 1)T , the L2 norm is (

√
2) but the L1 norm is 2 (see

Figure 5.3, right). The distance used in our first example eq.(5.21) was written as an L1

norm – although in 1D the L1 and L2 norms are equivalent.

There are many other definitions of distance metric. Choosing an appropriate feature space,
and an appropriate distance metric are the key issues to address when solving a classifica-

tion problem.

5.4.4 Nearest-Mean Classification

So far we have explored single category classification problems. We trained up a model of a
category (e.g. sky) and computed the similarity of our test data to that model. We created
a decision boundary to decide that, within a certain level of similarity, test data is in the
category (sky) otherwise it is in the null category (non-sky).

In this subsection we will explore the more interesting problem of multiple categories. Our
opening example (Section 5.4) of recognising the characters on a vehicle licence plate was
a multiple category problem. The simplest approach is to model each of your categories as

66

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

points in a feature space. Then, given a datum to classify, you work out its point in the
feature space and see which category point it is nearest to. This is called Nearest Mean
classification. We will look at two examples: a movie recommender system, and a weather
classification system.

Movie Recommender System

Consider an online DVD movie store with a facility to recommend movies to customers. Let’s
assume that when customers buy a movie, they rate it on a scale from 0 (bad) to 1 (good).
Consider a customer, X. Based on the ratings collected from the store’s customers, we would
like to recommend a movie to X. One solution is to look for customers who have bought
the same movies as X. If we compare their ratings with X’s we should be able to find the
customer with the closest ratings to X. Then perhaps some of the other movies that ‘closest’
customer purchased, and liked, will be suitable recommendations for X.

Let’s suppose X has purchased “The Terminator” and “The Sound of Music”, giving them
scores of 0.8 and 0.2 respectively. We query the customer database of our store, obtaining
a list of customers who also bought “The Terminator” and “The Sound of Music”. We find
that 4 other users A-D with those films in common, and plot their ratings in a 2D feature
space with the movie ratings as the axes (Figure 5.4, left). Each user becomes a point in
the feature space; their ratings for the movies are the feature vectors.

If we measure the Euclidean distance (i.e. compute a distance metric) between X and all
other users, we obtain a measure of similarity in movies tastes between X and those users.
We can see that C has the most similar tastes to X, having near identical ratings of “The
Terminator” and “The Sound of Music”. We can now look at C’s purchasing history and
recommend items in it to X.

This is an example of a multiple category classifier. We have used the feature space to work
out which of the categories (in this case users A-D) a query point (X) is nearest to. No
distance threshold is used this time because we are interested in choosing the category near-
est to X. There is no “null category” because there will always be a “nearest” category to
X. We might want to modify the problem so that users greater than a threshold distance T
from X have tastes that are too dissimilar, and so no recommendations will be made. This
effectively introduces a “null category”; we say that X has similar tastes to one of A, B, C,
D, or none of the above.

In our description, we used a 2D feature space because X had 2 films in common with
users A-D. However in general the space would be n-dimensional if the users had n films in
common. Feature spaces often have more than 2 or 3 dimensions. Figure 5.4 (left) illustrates
this, although of course we cannot easily visualize spaces with > 3 dimensions.

Weather Classification System

Suppose we are given some measurements of ice-cream sales, and humidity, taken over 100
days. 50 of those days were sunny, and 50 were rainy. We would like to train a classifier
over that data, so that if we are given data for ice-cream sales and humidity for a previously
unseen day, we can determine if it is a sunny or rainy day. This is an example of a two

67

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

Figure 5.4: Two examples of multi-category classification problems. Left: We wish to cate-
gorise X’s tastes as being closest to either A, B, C or D. The feature space represents movie
tastes, each axis a rating for a movie that users have in common. The decision boundary
here is quite complex, resembling a Voronoi diagram. Right: A further example in which we
wish to categorise a day as being ‘sunny’ or ‘rainy’. The point (0.8, 0.2) is closer to the sunny
model, and so the day is classified as sunny. This type of classifier (two categories, no null
category) is called a dichotomiser.

category classification problem. We need to train a classifier to tell us if a given sample is in
one category (sunny) or another (rainy). There is no null category.

First we identify our feature space. The features we are measuring are level of ice-cream sales
and humidity, so we have a 2D feature space with those measurements as the axes. We can
then plot our training data sets (the 50 sunny, and 50 rainy days) on the axes (Figure 5.4,
right).

Now we build our model. We need one model per category. As before we will just take an
average to obtain points in the space that describe ‘sunny’ or ‘rainy’ days. We average the

sunny and rainy samples independently. This results in two points, modelling the sunny and
rainy day training data respectively.

Now, given some data (a feature, e.g. ice cream sales of 0.8, humidity of 0.2) of a previously
unseen day, we measure the distance from that feature to each of the models. We could use
any distance metric for this but we will use Euclidean Distance. We see that the “sunny”
model is the closest. As before, we have the concept of a decision boundary based on distance
from the models (Figure 5.4, right). We can therefore state that the day was sunny. We could
even take a ratio of the distances between the point and the sunny and rainy model to give
us an estimate of confidence in our decision.

This approach extends trivially to any number of categories (e.g. add in a snow day category).
We just compute more models for more independent training sets, and include them in our
distance comparison. The decision boundary becomes more complex; in this case it becomes
a Voronoi diagram with regions seeded at each model’s point in the feature space.

68

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

5.4.5 Eigenmodel Classification

So far all of our classification examples have used a mean average to compute the model over
a training set. This approach is unsatisfactory in general, because the mean alone captures
no information about the distribution of the training data in the feature space.

In Figure 5.4 (right), the sunny day training data formed an elongated distribution in the
space – shaped rather like a Rugby ball. As we are working in a 2D feature space, the locus
of features equidistant from the distribution’s mean can be described by a circle. It is trivial
to construct a circle where some points on the circumference fall significantly outside the
distribution, yet others fall inside the distribution. This tells us that the combination of the
model as a mean average, and the distance metric as “Euclidean distance from the mean” is
insufficient to determine membership of a category when the training set is not uniformly
distributed.

Most real data is not uniformly distributed. Thus we would like to use a more sophisticated
model and distance metric that takes into account not only the mean, but also shape of the
training set’s distribution about the mean. One way to do this is to construct an Eigenmodel
as our model, and use a new distance metric – the Mahalanobis distance – which measures
the distance of a feature from an Eigenmodel.

Constructing an Eigenmodel from a Training Set

An Eigenmodel is derived from the mean and covariance of a point distribution (i.e. features
in a training set). You will be familiar with the concepts of mean and variance, as defined
for 1D features (scalars). The mean generalises easily to n-dimensional vectors; you simply
take the mean average across each dimension of the vector independently. Covariance is the
generalisation of variance to n-dimensional vectors; it is represented as an n × n symmetric
matrix. Each element ci,j describes the variance of values in the ith dimension with respect
to the jth dimension of the vector space.

Writing our training set as a collection of n features p = [p1, p2, p3, ..., pn] within an d-

dimensional feature space, we compute the mean µ as:

µ =
1

n

n
∑

i=1

pi (5.24)

We are then able to compute the covariance as:

C =
1

n
(p − µ)(p − µ)T (5.25)

An Eigenmodel consists of the mean µ, and a eigenvalue decomposition (EVD) of the covari-
ance matrix C into two matrices containing the eigenvectors (U) and eigenvalues V of C,
satisfying:

C = UV UT (5.26)

The process of forming the Eigenmodel from the set of points p is called ‘Principal Component

Analysis’ (PCA). We will return to PCA in more detail in Section 5.3.2.

69

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

Figure 5.5: A 2D distribution of 100 points, and the corresponding Eigenmodel. The mean
and eigenvectors are indicated. Note how the principal eigenvector lies across the direction
of greatest variance. A contour has been drawn at a constant 2 standard deviations from the
mean.

Interpreting the Eigenmodel

The three components of the Eigenmodel {µ, U, V } define a reference frame with respect to
the training data; Figure 5.5 illustrates.

The mean µ describes the origin of the reference frame.

The basis vectors are described by the columns in the d × d matrix (U); each column is
an eigenvector specifying a direction through the d-dimensional feature space. Recall from
Section 5.1.1 that there are as many eigenvectors as there are dimensions in the space. So
the 2D example of Figure 5.5 (d = 2) we have U = [u1 u2]. U is orthonormal; that is, the
eigenvectors are mutually orthogonal and have unit length (magnitude).

V is a diagonal matrix containing the eigenvalues; each eigenvalue is associated with an
eigenvector:

V =

[

σ2
1 0
0 σ2

2

]

(5.27)

Here, i is the ith eigenvalue, and is associated with the ith eigenvector ui. Most eigen-
decomposition routines sort U and V such that σ2

1 ≥ σ2
2 ≥ ...σ2

d.

The eigenvalues represent the variance (σ2) of data along the corresponding eigenvectors.
So the first eigenvector (u1) is the direction along which there is the most variation (we call
this the principal eigenvector), the second eigenvector has the second greatest variation,

70

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

and so on. Figure 5.5 illustrates.

Thus we see that the Eigenmodel not only represents the average of the training data, but
also the principal directions in which it varies and how much variation there is along each of
those directions. This is far more descriptive than the mean alone.

Classifying with the Mahalanobis Distance

The Mahalanobis distance is another distance metric for use in classification. Given a
point x in the feature space, the Mahalanobis distance computes the distance between x and
a model, in units of standard deviation from the model. Figure 5.5 illustrates why
standard deviation is a better unit of distance than Euclidean distance for non-uniform dis-
tributions. It overcomes the problem discussed at the start of this subsection.

We compute Mahalanobis distance using the 3 components of an Eigenmodel fitted to the
training data; i.e. we must have first modelled our training set using an Eigenmodel (obtained
via PCA) in order to use the Mahalanobis distance.

To compute the Mahalanobis distance between x and an Eigenmodel {µ, U, V } we must
represent x in the reference frame defined by that Eigenmodel. We do this by subtracting
the mean from x to align the origin of the space, and then multiply by the inverse of U to
get the coordinates of x in terms of the basis set U . You may find it useful to refer back to
Chapter 3 and our discussion of basis sets to see why this is so.

x′ = UT (x − µ) (5.28)

Note we have written UT rather than U−1; the two are equivalent because U is orthonormal.

Point x′ is now defined in terms of distance along each of the eigenvectors. Computing |x′|
at this point would simply give us the Euclidean distance from the mean. Instead we apply
a scaling transformation, to warp the space such that the effective distance along each eigen-
vector is reduced in proportion to the variation of the data set along that eigenvector. Recall
that this variation is encoded by the eigenvalues, and since these are already conveniently in
a diagonalised (i.e. scaling) matrix V , we can multiply by V −1. If you are unsure why this
scales the space refer back to Chapter 3 and our discussion of geometric transformations and
the scaling matrix.

x′′ = V −1UT (x − µ) (5.29)

Now |x′′| is the distance of x from µ in units of variance. Thus the Mahalanobis distance
M(.) is |x′′|. We often write this in the convenient form:

M(x; {µ, U, V })2 = (x − µ)T UV −1UT (x − µ) (5.30)

In some texts you will see this written as:

M(x; {µ, U, V })2 = (x − µ)T C−1(x − µ) (5.31)

Because the inverse of the covariance matrix C is:

C−1 = UV −1UT (5.32)

71

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

Refer back to subsection 5.3.1 to see why this is the inverse (arising from the diagonalisation
of C−1). In fact if we use this formulation of M(.) we do not need to perform PCA to compute
the Mahalanobis distance at all; we need only the mean and (inverse of) the covariance of
the point distribution.

Use of Eigenmodels in Classification

When classifying, instead of computing Euclidean (absolute) distance from the mean of a
training set, we can compute Mahalanobis (number of standard deviations) from the mean
of a training set. The Mahalanobis distance takes into account the shape of the training set
distribution, and so generally gives more accurate results. See, for example Figure 5.5which
plots a contour at a constant number of standard deviations (2) from the mean. Computing
the Mahalanobis distance requires that we model our training data using an Eigenmodel
instead of just a mean. The rest of the classification process remains as previously discussed;
we have simply redefined our distance metric and the way in which we model the classification
categories.

5.5 Principle Component Analysis (PCA)

We have just seen that PCA can be applied to a set of points (e.g. features in a feature space)
to produce a reference frame local to those points. The reference frame has equal dimension
to the source points, and each of the basis vectors in the frame are mutually orthogonal and
of unit length1. However the reference frame need not be oriented so as to be aligned with
the principal axes of the space; indeed it usually is not. Furthermore the reference frame need
not share the origin of the space; its origin is located at the mean of the point distribution.

However PCA is not limited to use in classification problems. We can apply PCA to any
distribution of data points in any n-dimensional space, to gain an Eigenmodel (i.e. a reference
frame that is a function of the data).

Consider, for example, a collision detection problem. Say we have modelled an object in 3D
using many surface patches (defined by many vertices i.e. points in 3D). We want to know
how far a test point t is from the model — say, how far a player’s position is from an object in
a computer game. One very (computationally) expensive way to compute this is to measure
the Euclidean distance between t and every vertex in the model. This is certainly impractical
for any real-time system with moderately detailed objects. One better, but approximate,
approach would be to compute the mean position of the vertices and measure Euclidean
distance between t and the mean. This would work well if the object was roughly spherical.

However a better estimate would be yielded by performing PCA on the vertices (3D points)
and obtaining a data dependent reference frame (Eigenmodel) for the points. We then mea-
sure the Mahalanobis distance from t to the Eigenmodel. Although this is still an approx-
imate solution, it is more accurate that a simple mean, and is also statistically grounded.
After all, we are measuring how many standard deviations away from the Eigenmodel our

1Recall that PCA also gives us an eigenvalue (variance) along each basis vector, telling us how broadly
the data is scattered in that direction through the space. However the eigenvalue is not a component of the
reference frame which is simply the mean (origin)and eigenvalues (basis vectors)

72

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

point t is. The mathematics of PCA assume that points are Gaussian distributed2. From
the normal distribution we can say, for example, that a point ≤ 3 standard deviations from
the model is 97% probable to be a member of that distribution.

5.5.1 Recap: Computing PCA

To recap, and make explicit the separation of PCA from applications such as classification,
we now restate the mathematics necessary to compute PCA of points p = [p1 p2 ... pn] in a

d-dimensional space.

First we compute the mean of p i.e.:

µ =
1

n

n
∑

i=1

pi (5.33)

Then we subtract µ from each point in p and compute a symmetric matrix as follows:

G = (p − µ)(p − µ)T (5.34)

This d× d matrix G is known as a Grammian matrix; each element gij is the dot product

of the ith row of (p − µ) and the jth row of (p − µ)T i.e. the ith dimension of the points

with the jth dimension. We can think (informally) of this dot product as a projection of
the variance within one dimension of the space onto another. Thus this gives rise to the
covariance matrix C when divided by a normalising factor (the number of points):

C =
1

n
G

C =
1

n
(p − µ)(p − µ)T (5.35)

We then apply EVD to C to yield two d × d eigenvectors U and eigenvalues V . These d
eigenvector/values and the mean µ form the Eigenmodel, that is the data dependent reference
frame defined by point distribution p.

5.5.2 PCA for Visualisation

Often in Computer Graphics, or Computer Vision, we work with data in so called “high
dimensional spaces” i.e. a n-dimensional space where n > 3. Consider our classification
examples; it would be trivial to conceive of a real-world problem requiring measurement of
more than 3 features i.e. a high dimensional feature space. The main problem with working
in a high dimensional space is that we cannot plot (visualise) our data points very easily.

Usually when we plot data points we wish to visually inspect how those points are distributed
i.e. how they vary from one another. We can apply PCA to a high dimensional point dis-
tribution to obtain a data dependent reference frame for those points, and also a measure of

2A Gaussian is a normal distribution with any mean and standard deviation (normal distribution has zero
mean and standard deviation one)

73

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

Figure 5.6: Visualisation of joint angles in a motion capture sequence of a human walking.
The arrows indicate the flow of time. Note the cyclic nature of the trajectory in the pose
space. The original dimensionality of the space was 36 — the data was projected down to 2D
and 3D for visualization purposes. The projection was performed via the method outlined in
Section 5.3.2.

variance of the data along each basis vector in that reference frame. We can then pick 2 or 3
basis vectors that exhibit high variance (i.e. eigenvectors that have the largest eigenvalues)
and project all of our n-dimensional data points onto that lower dimensional basis set. We
can then plot the resulting projected points in 2D or 3D — the resulting plot shows the
modes of greatest variation in the data.

Another way to think of this is to imagine an object in 3D modeled by a set of points (ver-
tices). Imagine we could not plot in 3D, but could only conceive of and interpret objects
in 2D. We could use the perspective projection (Chapter 3) to project the “inconceivable”
3D object onto the 2D image plane, and thus get an impression of the distribution of those
points. The PCA operation can be thought of translating and rotating the 3D points to the
angle in which we could observe the greatest distribution of the points (i.e. the points are
spread out as wide as possible in the image). The process outlined in the previous paragraph
is doing just that, but projecting > 3D points (which we cannot imagine/conceive an image
of) to 2D or 3D.

As an example, consider an articulated body e.g. a walking human. If the human’s joints
are parameterised solely by angles, then we can describe a particular position of the human
using only a list of angles. If we treated each angle as a dimension in a high dimensional
space, then we could describe the pose of the human as a point in that space. As the human
moved its limbs, so the point representing the human’s pose would move around the high
dimensional space. In fact in periodic motion (e.g. walking) we might imagine the points to
trace out a cyclic trajectory in the high-dimensional space.

Such a model might contain a great many joints, resulting in points within a high dimensional
space that we cannot plot. Yet, by performing PCA on the points (gathered over all time
instants) we can identify the directions through the space in which most variation occurs,
and project the points into that subspace. Figure 5.6 illustrates.

Such a projection is trivial to perform once we have the Eigenmodel from PCA. Suppose

74

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

we have a 20 dimensional space; we perform PCA on 20-dimensional points p and obtain a

mean µ and 20× 20 matrices U and V (eigenvectors and eigenvalues). We identify that, say,
eigenvalues 14, 18 and 20 are the largest. We then form a 20 × 3 matrix U ′ = [u14 u18 u20].
This defines the 3D basis set we wish to project into (the subspace in which there was most
variation). We can then subtract the mean µ from our points p (shifting their origin to the

mean) and multiply by the inverse of U ′ to project the mean subtracted points into the 3D
space:

p′ = U ′T (p − µ) (5.36)

The resulting 3D points p′ can now be plotted. Note that we inverted matrix U ′ by simply

taking its transpose; this is possible because U ′ is an orthonormal matrix i.e. eigenvectors are
always mutually orthogonal and of unit length. This is convenient since U ′ was not square
and traditional matrix inversion techniques would therefore not be applicable.

5.5.3 Decomposing non-square matrices (SVD)

EVD operates only on square matrices, and will yield real eigenvalues only in the case of
symmetric matrices. Although the covariance matrix will always satisfy this constraint (and
so we can always perform PCA using EVD), there are many situations in which we may
wish to compute eigenvectors and eigenvalues for non-square i.e. rectangular matrices
or non-symmetric matrices. For this, there is a generalised form of EVD called singular
value decomposition (SVD). SVD decomposes a matrix M into three matrices U, S, V
such that:

M = USV T (5.37)

If M is an m×n matrix, then U is n×n, S is n×m and V is m×m. The matrix S is diagonal
and contains the eigenvalues, and the matrix V is square and contains the eigenvectors. We
will not discuss SVD in any detail on this course; you may refer to Press et al.’s “Numerical
Recipes in C” for a good introductory explanation and also C source code. Note that SVD
works with square matrices also, and so can be used for most applications that require EVD.
Thus if you wanted to perform EVD in your own programs, you might wish to make use
of this code (readily available on the internet). The Intel OpenCV (Open Source Computer
Vision) library also has a couple of SVD algorithms implemented.

One useful application of SVD is the pseudo-inverse (Moore-Penrose inverse) of any
matrix M , including rectangular matrices. This is a generalised matrix inverse enabling us
to derive a matrix A such that MA = I where I is the identity; i.e. A is the inverse of M .
This is given by:

A = V S+UT (5.38)

where S+ refers to the diagonal matrix S with its diagonal entries replaced with their recip-
rocal values.

Finally (for this course), we can also use SVD to solve homogeneous linear systems. That is,
to find a non-trivial (i.e. non-zero) vector x to satisfy Mx = 0. We saw the need to solve
such a system in Chapter 3, when deriving an expression for the homography. In this case

75

EVD: GRAPHICS APPLICATIONS (CM20219) J. P. Collomosse

the eigenvectors (columns in V) give us potential solutions i.e. x whilst the corresponding
eigenvalues give us a measure of error in the solution. If we consider the defining equation
for eigenvectors/values:

Mx = λx (5.39)

A perfect solution would have no error i.e. λ = 0, and that is is the x that annihilates Mx.
A deeper justification for this and a proof are beyond this course’s scope; here we note SVD
only for optional further reading (e.g. Press et al.) and for its useful applications in both
Computer Graphics and Computer Vision.

76

Chapter 6

Geometric Modelling

This Chapter is about geometric modelling. By “modelling” we mean “forming a mathe-
matical representation of the world”. The output of the process might be a representation
(model) of anything from an object’s shape, to the trajectory of an object through space.
In Chapter 3 we learnt how to manipulate points in space using matrix transformations.
Points are important because they form the basic building blocks for representing models
in Computer Graphics. We can connect points with lines, or curves, to form 2D shapes or
trajectories. Or we can connect 3D points with lines, curves or even surfaces in 3D.

6.1 Lines and Curves

We start our discussion of modelling by looking at space curves. Space curves are nothing
more than trajectories through space; e.g. in 2D or 3D. A line is also a space curve, but a
special case of one that happens to be straight. For avoidance of doubt, when we talk about
curves in this Chapter we are referring to space curves in general, which include straight
lines.

6.1.1 Explicit, Implicit and Parametric forms

We are all familiar with the equation y = mx + c for specifying a 2D straight line with
gradient m and y-axis intersection at y = c. However there is a major problem with using
this equation to represent lines in general; vertical lines cannot be represented.

In general we can represent a 2D space curve using y = f(x), i.e. a function that returns a
value of y for any given value of x. We saw f(x) = mx + c was a concrete example of this
abstract definition; a straight line. However we are unable to represent all space curves in
the form y = f(x). Specifically, we cannot represent curves that cross a line x = a, where a
is a constant, more than once. Figure 6.1.1 (left) gives an example of a curve we could not
model using the y = f(x) form. This is the more general explanation behind our observation
that straight lines cannot be represented by y = f(x).

We call the form y = f(x) the explicit form of representation for space curves. It provides
coordinate in one dimension (here, y) in terms of the others (here, x). It is clearly limited in
the variety of curves it can represent, but it does have some advantages which we discuss later.

77

GEOMETRIC MODELLING J. P. Collomosse

Figure 6.1: The explicit, parametric and implicit forms of a line.

So suppose we want to model a line, any line, in our Computer Graphics system. An alter-
native way to do this is to using the parametric form:

p(s) = x0 + sx1 (6.1)

Here vector x0 indicates the start point of the line, and x1 a vector in the positive direction
of the line. We have introduced the dummy parameter s as a mechanism for iterating alone
the line; given an s we obtain a point p(s) some distance along the line. When s = 0 we
are at the start of the line; positive values of s move us forward along the line and negative
values of s move us backward (Figure 6.1, middle).

By convention we use p(0) to denote the start of a space curve, and p(1) to denote the end
point of the curve. That is, we increase s from 0 to 1 to move along the entire, finite length
of the curve.

We can generalise this concept to produce curved trajectories. Consider p(s) as a the position
of a particle flying through space, and s as analogous to time. Then x0 is the start position
of the particle, and x1 is the velocity of the particle. We can add a term x2 for acceleration
as follows:

p(s) = x0 + sx1 + s2x2 (6.2)

to yield a quadratic curve. We can continue adding terms to any order n:

p(s) =
n
∑

i=1

sixi (6.3)

although in practice it is unusual in Computer Graphics to use anything above n = 3 (cubic
curves), for reasons we later explain (Section 6.1.2). For completeness, we note that other
parametric forms of curve are of course available. For example a more convenient parame-
terisation of a circle might be:

p(θ) =

(

r cos θ
r sin θ

)

(6.4)

The final representation of space curve that we will look at is the implicit form. In implicit
form we express the equation of a curve as a function of all of its coordinates equal to a

78

GEOMETRIC MODELLING J. P. Collomosse

constant (often zero), e.g. in 2D we have f(x, y) = 0. We can reach the implicit form for
a 2D line easily from the parametric form, by writing out the x and y components of the
equation. Here we write x0 = [x0 y0]

T and x1 = [u v]T :

x = x0 + su

y = y + 0 + sv (6.5)

Rearranging for s we get:

x − x0

u
= s =

y − y0

v
(6.6)

(x − x0)v = (y − y0)u (6.7)

(x − x0)v − (y − y0)u = 0 (6.8)

where x0, y0, u, and v are constants defining the line. We insert values for a given point (x, y)
and if the equation is satisfied (i.e. the left hand side is zero) we are at a point on the line.
Furthermore the term on the left hand side is positive if we are off the line but on one side
of it, and negative if we are on the other side. This is because the left hand side evaluates
the signed distance from the point (x, y) to the nearest point on the line (Figure 6.1, right).

The explicit, parametric and implicit forms of a space curve have now been described
with the concrete example of a straight line given for each form.

Which form to use?

Each of the three forms have particular advantages over the others; the decision of which to
use depends on your application. The implicit form is very useful when we need to know if
a given point (x, y) is on a line, or we need to know how far or on which side of a line that
point lies. This is useful in Computer Games applications e.g. “clipping” when we need to
determine whether a player is on one side of a wall or another, or if they have walked into
a wall (collision detection). The other forms can not be used to easily determine this. The
parametric form allows us to easily iterate along the path of a space curve; this is useful in
a very wide range of applications e.g. ray tracing or modelling of object trajectories. Again,
it is hard to iterate along space curves using the other two forms. Finally, the explicit form
is useful when we need to know one coordinate of a curve in terms of the others. This is
less commonly useful, but one example is Bresenham’s algorithm; an integer-only algorithm
for plotting straight lines on raster displays. You can look this up in most raster Computer
Graphics textbooks (discussion is beyond the scope of this course).

6.1.2 Parametric Space Curves

Parametric space curves are by far the most common form of curve in Computer Graphics.
This is because: (a) they generalise to any dimension; the xi can be vectors in 2D, 3D, etc.;
and (b) we usually need to iterate along shape boundaries or trajectories modelled by such
curves. It is also trivial to differentiate curves in this form with respect to s, and so obtain
tangents to the curve or even higher order derivatives (see discussion of the Frenet Frame in
Section 6.3.1).

79

GEOMETRIC MODELLING J. P. Collomosse

Let us suppose that we want to model the outline of a teapot in 2D. We could attempt to do
so using a parametric cubic curve, but the curve would need to turn several times to produce
the complex outline of the teapot, implying a very high order curve. Such a curve perhaps
be of order n = 20 or more, requiring the same number of xi vectors to control its shape
(representing position, velocity, acceleration, rate of change of acceleration, rate of change of
rate of change of acceleration, and so on). Clearly such a curve is very difficult to control (fit)
to the required shape, and in practice using such curves in manageable; we tend to over-fit
the curve. The result is usually that the curve approximates the correct shape, but undulates
(wobbles) along that path. There are an infinite set of curve trajectories passing through
a pre-defined set of points, and finding acceptable fits (usually the fits in which the curve
smoothly passes through all points without undulation) becomes harder as the number of
points on the path (and so order of the polynomial) increases.

Therefore we usually model the complex shape by breaking it up into simpler curves and
fitting each of these in turn. It is common practice in Computer Graphics to use cubic
curves, to give a compromise between ease of control and expressiveness of shape:

p(s) = x0 + sx1 + s2x2 + s3x3 (6.9)

More commonly we write cubic curves as inner products of the form:

p(s) =
[

x3 x2 x1 x0

]

s3

s2

s
1

p(s) = CQ(s) (6.10)

where C is a matrix containing the xi vectors that control the shape of the curve, and Q(s)

contains the parameterisation that moves us along the curve.

Consideration of Continuity

When modelling a shape in piecewise fashion, i.e. as a collection of joined-together (concate-
nated) curves, we need to consider the nature of the join. We might like to join the curves
together in a “smooth” way so that no kinks are visually evident; after all, the appearance of
the shape to the user should ideally be independent of the technique we have used to model
it. The question arises then, what do we mean by a “smooth” join? In computer graphics
we use Cn and Gn notation to talk about the smoothness or continuity of the join between
piecewise curves.

If two curves join so that the end point of the first curve (p1(1)) is the starting point of the
second curve (p2(0)), we say that the curves have zero-th order or C0 continuity.

If the two curves have C0 continuity and the tangent at the end of the first curve p1
′(0)

matches the tangent at the start of the second curve p2
′(1), then we say the curves have first

order or C1 continuity. This is because both their zero-th differentials (i.e. position) and
first order differentials (i.e. tangents) match at the join. Another way to think about this
returns to the idea of a particle moving along the first curve, across the join and then along
the second curve. If the curves meet, and the particle’s velocity does not change across the

80

GEOMETRIC MODELLING J. P. Collomosse

join, then the curves have C 1 continuity.

The idea extends trivially to higher orders of continuity although in practice greater than
C2 continuity is rarely useful. Gn refers to “geometric continuity”. In brief a curve is G1

continuous if the tangent vectors have the same direction (but they need not have the same
magnitude). Thus Cn implies Gn but not vice versa; Gn is a weaker definition of continuity.
Clearly certain applications require us to define piecewise curves with particular orders of
continuity. If we were using piecewise cubic curves to model the trajectory of a roller-coaster
in an animation, we would want at least C1 continuity to preserve velocity over the joins
in the model. We would not want the roller-coaster to alter its velocity arbitrarily at join
points as this would disrupt the quality of the animation. Ideally the decision to model a
curve piecewise, and the method chosen to do so, should not affect the application i.e. be
transparent to the user.

6.2 Families of Curve

Eq. (6.10) defined a curve using p(s) = CQ(s), where c comprises fours vectors that determine

the shape of the curve. Recall that using the physical analogy of a particle p moving along
a trajectory as s increases, these vectors represent initial position, velocity, acceleration, and
rate of change of acceleration. However it is very hard to control the shape of a curve by ma-
nipulating these vector quantities. It is also difficult to choose appropriate values to ensure a
particular order of continuity between curve joins when modelling curves in piecewise fashion.

To make curves easier to control, we separate C into two matrices G and M as follows:

p(s) = GMQ(s) (6.11)

We call M the blending matrix and G the geometry matrix. By introducing a particular
4 × 4 matrix M we can change the meaning of the vectors in G, making curve control more
intuitive, as we shall see in a moment. Note that when M is the identity, then the vectors in
G have the same function as in our CQ(s) formulation. Informally, we say that M defines

the family of curves we are working with. We will now look at four curve families, each of
which uses a different M .

6.2.1 Hermite Curves

The Hermite curve has the form (relate this to eq. 6.11):

p(s) =
[

p(0) p(1) p′(0) p′(1)
]

2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0

s3

s2

s
1

(6.12)

Here we can see M has been set to a constant 4 × 4 matrix that indicates we are working
with the Hermite family of curves. This changes the meaning of the vectors comprising the
geometry matrix G. The vectors are now (from left to right), the start point of the curve, the
end point of the curve, the start tangent of the curve, the end tangent of the curve (Figure 6.2).

81

GEOMETRIC MODELLING J. P. Collomosse

Figure 6.2: Example of two Hermite curves (red, blue) joined with C1 continuity; tangents
indicated with green arrows. A plot of the blending functions (MQ(s)) for the Hermite curve.

It is now trivial to model complex trajectories in piecewise fashion with either C0 or C1

continuity. We simply ensure that the curves start and end with the same positions (C0) and
tangents (C1). Note that every Hermite curve has the same, constant, M as specified above.
We change only G to create curves of different shapes. As before, matrix Q(s) controls where

we are along the curve’s trajectory; i.e. we substitute in a particular value s between 0 and
1 to evaluate our position along the curve p(s).

Derivation of M for Hermite curves

We have yet to explain the values of the 16 scalar constants comprising M . We will now
derive these, but first make the observation that we can easily compute the tangent at any
point on a curve by differentiating eq. (6.11) with respect to s. Only matrix Q(s) has terms

dependent on s, and so is the only matrix that changes:

p(s) = GM

3s2

2s
1
0

(6.13)

We also make the observation that we can compute the coordinates/tangent of more than
point on the curve by adding extra columns to Q(s) e.g.:

[

p(s) p′(s)
]

= GM

s3 3s2

s2 2s
s 1
1 0

(6.14)

Now, to derive M for the Hermite curve we setup an arbitrary G and evaluate the coordinates
and tangents of the curve at the start/end respectively. Since those are exactly the vectors
used to define G in a Hermite curve, the matrix G and the left-hand side of the equation are
identical:

82

GEOMETRIC MODELLING J. P. Collomosse

Figure 6.3: Diagram of two Bézier curves (red, blue) joined with C1 continuity (control
polygons also indicated). Note the two interpolated and two approximated points on each
curve, and the co-linearity of points at the join to generate the C1 continuity. A plot of the
blending functions (MQ(s)) for the Bézier curve.

[

p(0) p(1) p′(0) p′(1)
]

=
[

p(0) p(1) p′(0) p′(1)
]

M

s3 s3 3s2 3s2

s2 s2 2s 2s
s s 1 1
1 1 0 0

[

p(0) p(1) p′(0) p′(1)
]

=
[

p(0) p(1) p′(0) p′(1)
]

M

0 1 0 3
0 1 0 2
0 1 1 1
1 1 0 0

(6.15)

Cancelling the left-hand side and G, then rearranging yields our M :

I = M

0 1 0 3
0 1 0 2
0 1 1 1
1 1 0 0

(6.16)

M =

0 1 0 3
0 1 0 2
0 1 1 1
1 1 0 0

−1

(6.17)

Which when evaluated produces the 4 × 4 matrix M used in eq. (6.12).

The Hermite curve is an example of an interpolating curve, because it passes through all
of the points used to specify it (in G).

6.2.2 Bézier Curve

The Bézier curve is an example of an approximating curve. It is specified using coordi-
nates of four points (known as knots or, more commonly, as control points). The curves

83

GEOMETRIC MODELLING J. P. Collomosse

passes through (interpolates) two of these points, and in general approximates (passes close
to) the two other points.

Specifying a curve using spatial positions (rather than derivatives) makes the Bézier curve
a very intuitive modelling technique. In fact the curve models the physical techniques used
in manufacturing to shape thin strips of metal, called splines (Pierre Bézier was working
for engineering firm Renault when he developed the curve in the 1960s). The metal spline is
nailed e.g. to a workbench at each end, and masses suspended beneath it. The nailed points
are analogous to the interpolated points, and the masses analogous to the approximated
points. For this reason the term spline is also used in Computer Graphics to describe any
curve we can shape to our needs by specifying spatial control points; however the term is
used particularly frequently in piecewise modelling. The formulation of the Bézier curve is:

p(s) =
[

p(0) a0 a1 p(1)
]

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

s3

s2

s
1

(6.18)

Points p(0) and p(1) are the start and end points of the curve respectively. Points a0 and a1

are the approximated points (Figure 6.3). The convex hull (i.e. convex polygon) formed by
those four points are guaranteed to enclose the complete trajectory of the curve. The special
case of a straight line (when all four points are co-linear) is the only case is which a0 and a1

are interpolated.

It is therefore trivial to achieve C0 continuity for Bézier curves; as with the Hermite curve we
ensure that the end and start points of the two respective curves are identical. Less obvious
is that we can easily enforce C1 continuity with Bézier curves. We do this by ensuring a1 on
the first curve, and a0 on the second curve are co-linear and equidistant from the join point
p(1) / p(0) (Figure 6.3).

The Blending matrix M for Bézier curves

Although we have outlined only cubic Bézier curves here, the Bézier curve can be of any degree
n and the matrix formulation of eq. 6.18 is a rearrangement of the Bernstein polynomials:

p(s) =
n
∑

i=0

xi

n!

i!(n − 1)!
si(1 − s)n−i (6.19)

where, in our cubic curve, n = 3 and x1..4 are the four vectors comprising the G matrix.
Further discussion of the polynomials is beyond the scope of this course. However we will
now discuss how they operate to determine the behaviour of the curve.

Recall that we refer to M as the blending matrix. We can see that, during matrix multipli-
cation, the values in the matrix weights (i.e. blends) the contribution of each control point

84

GEOMETRIC MODELLING J. P. Collomosse

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Catmull−Rom

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

B−spline

Figure 6.4: Eight points used to define the geometry of a Catmull-Rom piecewise spline (left)
and a piecewise B-spline (right). Note that the Catmull-Rom spline interpolates all points,
whereas the B-spline approximates all points.

in G to the summation producing p(s) i.e.:

MQ(s) =

−s3 + 3s2 − 3s + 1
3s3 − 6s2 + 3s
−3s2 + 3s2

s3

(6.20)

p(s) = GMQ(s) =
[

p(0) a0 a1 p(1)
]

−s3 + 3s2 − 3s + 1
3s3 − 6s2 + 3s
−3s2 + 3s2

s3

(6.21)

Figure 6.3 (right) plots the blending function in each of the 4 rows of MQ(s) as s increases

from 0 to 1. We see that when s = 0, the weighting is entirely towards point p(0). As s
increases, the weighting towards that point decreases whilst the weight towards a0 increases
(although this term never completely dominates the contribution to p(s)). As s increases
further still, greater weighting is attributed to a1, and finally all weighting is towards p(1).

6.2.3 Catmull-Rom spline

The Catmull-Rom spline allows us to specify piecewise trajectories with C1 continuity
that interpolate (pass through) all curve control points. This is particularly convenient when
we wish to model a smooth curve (or surface) by simply specifying points it should pass
through rather than approximate.

The Catmull Rom spline is specified through the framework of eq. (6.11) as follows:

p(s) =
[

a p(0) p(1) b
] 1

2

−1 2 −1 0
3 −5 0 2
−3 4 1 0
1 −1 0 0

s3

s2

s
1

(6.22)

85

GEOMETRIC MODELLING J. P. Collomosse

Figure 6.5: A cubic curve p(s) = GMQ(s). Increasing s in constant increments does not move

us a constant distance along the curve at each point. The distance we move is a function
of the curve’s geometry; ideally we would like the distance moved to be independent of the
geometry.

where a, p(0), p(1), b are points we wish the curve to pass through.

In fact by evaluating eq.(6.22) from s = 0 to s = 1 we will obtain points only for the section of
curve between the second and third vectors in G i.e. the points indicated p(0) and p(1). The
points a and b only help to shape the path of the curve. We must use several Catmull-Rom
curves to trace out a piecewise trajectory in full.

An an example, consider six points we wish to interpolate with a piecewise Catmull-Rom
cubic curve. We write these points pi where i = [1, 6]. We can find the path of a curve
through all the points by evaluating several p(s) = GjMQ(s) equations with the following

Gj where j = [1, 5]:

G1 =
[

p1 p1 p2 p3

]

G2 =
[

p1 p2 p3 p4

]

G3 =
[

p2 p3 p4 p5

]

G4 =
[

p3 p4 p5 p6

]

G5 =
[

p4 p5 p6 p6

]

(6.23)

So if we plot the p(s) generated geometry matrix Gj plugged into eq.(6.22) we will interpolate

between points pj and pj+1. Note how points are allocated to Gj in a “rolling” manner, and

also duplicated at the beginning and end of the piecewise curve. Figure 6.4 illustrates.

86

GEOMETRIC MODELLING J. P. Collomosse

6.2.4 β-spline

The β-spline (or B-spline) is very similar in function to the Catmull-Rom spline. It is also
specified using a “rolling” form of matrix Gj but instead of interpolating all four points with

C1 continuity, it approximates all four with C1 continuity. The piecewise curve is simply
formed with an alternative form of blending matrix:

p(s) =
[

a p(0) p(1) b
] 1

6

−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0

s3

s2

s
1

(6.24)

This can be useful when fitting a curve to noisy data, for example.

Unlike the Hermite and Bézier curves, we will not explain the functionality of the Catmull-
Rom and B-spline blending matrices on this course, but interested readers may referred to
“Computer Graphics” (Foley et al.) for further details on these and other types of spline.

6.3 Curve Parameterisation

So far we have discussed iteration along a parametric curve by varying continuous parameter
s, but have not discussed the nature of this parameter (other than, by convention, s varies
between 0 and 1).

In many applications we would like s to be a measure of distance (arc length) along the
curve. That is, increasing s in constant increments will take us a constant distance along
the curve. Unfortunately the ‘natural’ i.e. algebraic parameterisation of p(s) = GMQ(s)

does not behave this way in general, i.e. not for orders of curve greater than 1 (straight
lines). Figure 6.5 illustrates; increasing s by equal increments causes the resulting points
p(s) to bunch together in high curvature regions of the trajectory.

Therefore for many applications we must re-parameterise the curve to be in terms of arc-
length (an arc-length parameterisation). We do this by writing p(c(s)) where we define
c(s) as a transfer function accepting an arc-length parameter as input, and outputting an
algebraic parameterisation that takes us to the correct position on the curve. For example,
s = 0.5 should take us halfway along the curve, but the algebraic parameter we actually need
to feed into GMQ(.) may be something different – obtained via c(0.5). Unfortunately we

cannot write down an equation (analytic solution) for c(s) for a cubic curve; it is impossible
to solve this arc-length re-parameterisation task in closed form for orders of curve greater
than 1 (this order of ‘curve’ is arc-length parameterised anyway). Instead we resort to a
numerical approximation using the following algorithm.

Arc-length re-parameterisation via piecewise linear approximation

We construct function c(s) by creating a lookup table mapping between s (which is now the
input arc-length parameter) and c(s) which is the algebraic parameter. A simple algorithm
for creating such a lookup table follows:

87

GEOMETRIC MODELLING J. P. Collomosse

1. Let alg=0. Let arclen=0.

2. Let d be some very small length, e.g. 0.1% of estimated total curve length.

3. Loop while (algiter < 1):

a Add entry to lookup table mapping c(s)=arclen to s=alg.

b Let algiter = alg.

c Increase algiter by d while ||p(algiter) − p(alg)| − d| < 0.

d Set arclen=arclen + |p(algiter) − p(alg)|
e Set alg=algiter

4. Normalise the s column in the lookup table so it ranges 0 to 1 (i.e. divide by the largest
value in the column).

Other more complicated algorithms based on recursive subdivision exist. The result is a
normalised arc-length parameter s = [0, 1] mapped to a normalised algebraic parameter
c(s) = [0, 1]. Since the values in the lookup table are a function of the curve’s shape, if we
change G in eq.(6.11) we must re-run the algorithm.

In summary, we approximate the curve by a series of very small lines of approximate length
d (a user selectable value, but usually chosen as a compromise between visual smoothness of
approximation and speed).

At each iteration we incremented the algebraic parameter of the curve by very small amounts
until we travelled distance d. We keep a count of how far we have travelled so far in arclen.
Thus after moving along the curve d distance we have a pair mapping algebraic distance
to arc-length distance, which we write into the lookup table. Clearly this lookup table can
now be used to translate arc-length parameterisation to algebraic parameterisation; i.e. to
implement c(s). If a value for an arc-length parameterisation is not present in the table, then
we interpolate it from surround values. Since we approximated the curve with small lines, it
is valid to use linear interpolation. E.g. if a table contains two values s1 and s2, then for a
value s where s1 < s < s2 we compute:

α = (s − s1)/(s2 − s1)

c(s) = c(s1) + α(c(s2) − c(s1)) (6.25)

6.3.1 Frenet Frame

We have already seen that the parametric cubic space curve is a very useful modelling tool,
allowing us to define trajectories and iterate (move) along them to obtain a position vector
p(s) = GMQ(s). We have also already seen that it is possible to obtain more than simply a

position at each point; we can obtain a tangent vector p(s) by differentiating GMQ(s) once

with respect to s.
It transpires that the tangent is just one vector component of the Frenet Frame; a natural
reference frame commonly used with 3D parametric space curves. The components of the
Frenet Frame are summarised in Figure 6.6. On this course we do not concern ourselves with
how the Frenet Frame is derived; simply how its various components are computed and what

88

GEOMETRIC MODELLING J. P. Collomosse

−10
−5

0
5

10

−10

−5

0

5

10
0

5

10

15

20

Frenet Frame

Figure 6.6: Left: The development of the Frenet frame – a natural reference frame for any
parametric curve providing all derivatives defined in the frame exist. Right: Visualisation of
the Frenet frame computed over a parametric 3D space curve; a spiral. Tangent in green,
normal in purple (recall this and the tangent define the bending plane; note the direction of
bending), and bi-normal in cyan.

their applications are.

To recap, the tangent to the space curve is:

p′(s) =
δp(s)

δs
(6.26)

i.e. the unit tangent ˆp′(2) points along the instantaneous direction of the curve. This unit
tangent is the first component of the Frenet Frame.

The normal to the curve is another vector component of the Frenet Frame. It is orthogonal
to the tangent, and so at 90◦ to the tangent (and so, the curve). However this statement
alone is insufficient to define the normal; we could imagine many possible normal vectors
pointing away from the curve orthogonal to the tangent at any point. We need to fix its
direction. To do so we consider that, given an infinitesimally small increment of s, the curve
bends (i.e. the tangent changes) only in one plane (the blending plane). The amount of
‘bend’ is exactly the rate at which the unit tangent changes direction i.e.

p′′(s) =
δp′(s)

δs
(6.27)

This second derivative thus yields the normal, fixed in a consistent direction, and is the sec-
ond component of the Frenet Frame. The magnitude ρ = |p(s)| is the curvature of the space
curve at s. At that point, the curve can be considered to bend around the arc of a circle
radius 1/ρ.

The third and final component of the Frenet Frame is the bi-normal. The bi-normal is
simply the cross product of the unit tangent and unit normal; i.e. it is orthogonal to both.

b(s) = p′(s) × p′′(s) (6.28)

89

GEOMETRIC MODELLING J. P. Collomosse

The three vector components of the Frenet Frame can be connected in another way:

δp′′(s)

δs
= −ρp′(s) + τb(s) (6.29)

i.e. the rate of change of the normal (i.e. the change in curvature) is due to two components:
twisting about the bi-normal (the curvature) and twisting about the tangent (called the tor-
sion), which is what we might intuitively expect.

As an application of the Frenet Frame, consider a roller-coaster moving along the trajectory
of a parametric space curve. We wish to mount a camera on the front of the roller-coaster
looking forward. This requires us to define a stable reference frame on the front of the roller-
coaster; the Frenet Frame gives us this. We might point the camera along the tangent, with
an image plane aligned such that the y-axis of the image plane points along the normal, and
the x-axis of the plane points along the bi-normal.

Example of Frenet Frame calculation

Consider a parametric space curve that traces out a spiral in 3D space. Such a curve might
be generated by a 2D parametric equation for a circle (p(θ) = [− sin θ cos θ]T), as the x-axis
and y-axis coordinates, with the addition of θ as a distance along the z-axis:

p(θ) =

− cos θ
− sin θ

θ

 (6.30)

We can easily compute the first two components of the Frenet frame (tangent and normal)
by computing the first two derivatives of the curve:

p′(θ) =

sin θ
− cos θ

0

 (6.31)

p′′(θ) =

− cos θ
− sin θ

0

 (6.32)

And the bi-normal is the cross product of the tangent and normal: p′(θ) × p′′(θ). Figure 6.6
(right) plots the curve and the three Frenet Frame vectors at a given value of θ.

6.4 Surfaces

In Section 6.1.1 we saw how space curves can be modelled in explicit, implicit, and parametric
forms. This concept generalises to mathematical descriptions of surfaces, which are very
commonly used in Computer Graphics to represent objects – again, usually in a piecewise
fashion.

90

GEOMETRIC MODELLING J. P. Collomosse

Figure 6.7: Illustrating the parametric and implicit forms of a plane.

6.4.1 Planar Surfaces

We can generalise our parametric equation for a line to obtain an equation for an infinite
plane. We simply add another term; the product of a new parameter and a new vector:

p(s, r) = x0 + su + rv (6.33)

Figure 6.7 illustrates this; we have a 2D parameter space (s, r) that enable us to iterate over
a 3D surface. The origin of that parameter space is at x0. Vectors u and v orient the plane;
they effectively define a set of basis vectors that specify a reference frame with respect to the
geometry of the surface. We can bound this infinite plane by bounding acceptable values of
s and r. Later we will return to the parametric equation for a plane when we discuss texture
mapping.

Infinite planes can be defined in implicit form too; using only an origin (a point c on the
plane) and a vector normal to the plane (n̂). The vector between c and any point on the
plane must (by definition) be orthogonal to n̂ and so have:

(p − c) ◦ n̂ = 0 (6.34)

Here we have written the normal as unit length (normalised) but this needn’t be the case
generally (it is the convention to do so however). If we write c = [cx cy cz]

T , n̂ = [nx ny nz]
T ,

and p = [x y z]T then:

nx(x − cx) + ny(y − cy) + nz(z − cz) = 0 (6.35)

i.e. we have our familiar implicit form of model f(x, y, z) = 0; a function evaluating all
coordinates in the space, equal to 0 on the model. We can use the left-hand side of equa-
tion to determine if a point is above or below the plane by checking its sign for a given (x, y, z).

For completeness we note that infinite planes may also be defined in an explicit form:

z = ax + bx + c (6.36)

91

GEOMETRIC MODELLING J. P. Collomosse

Figure 6.8: Illustrating the Ray Tracing of a model constructed piecewise using triangular
planar patches, and a sphere. A camera is modelled in 3D using a focal point and a plane
(identical to the perspective construction in Chapter 3). However instead of computing
perspective projection of points in the model, we model the interaction of light with the
surface “in reverse”. We shoot rays out through each of the pixels in the image plane,
and test for intersection with the surface; if the ray intersects, we shade the pixel with the
appropriate colour.

i.e. one coordinate in terms of the others: z = f(x, y). Although the explicit form is rarely
used to represent planes in Computer Graphics, we used it regularly to represent images
when performing image processing operations in Computer Vision. There, the height of the
the image at (x, y) is analogous to its intensity I(x, y).

6.4.2 Ray Tracing with Implicit Planes

Ray tracing (sometimes referred to as ray casting1) is a commonly used technique to produce
3D Computer Graphics images. As discussed in Chapter 2, we see objects because light re-
flects off their exterior surfaces and into our eye. Ray tracing models this process in reverse.
We trace the path of light from our eye/camera back to the surfaces from which it would
reflect. Figure 6.8 illustrates the process; we model the camera’s imaging plane as a planar
surface in the same 3D space as the 3D object we wish to visualise. We shoot a ray from
the camera’s focal point (also modelled in 3D) through each pixel modelled in the plane.
We then test to see whether the ray intersects with the model of the object or not. If it
does, we shade the pixel with an appropriate colour — this is determined as a function of the
colour of the surface (refer to earlier discussions of the Phong Illumination Model in OpenGL).

We commonly model objects in a piecewise fashion using small triangular (i.e. planar) surface
patches. Typically these are represented using the implicit form of a plane. This is because
it is easy to intersect the light ray (modelled as a parametric line) with an implicit plane.
Consider a ray modelled using p(s) = x0 + sx1 . The plane is modelled with (p − c) ◦ n̂ = 0.
We can find the intersection of the light ray and planar surface patch by observing that at
the point of intersection:

((x0 + sx1) − c) ◦ n̂ = 0 (6.37)

1There is a difference between ray casting and ray tracing (ray tracers trace reflected rays off objects), but
at the level of detail described in this course there is no distinction.

92

GEOMETRIC MODELLING J. P. Collomosse

which, observing that the dot product distributes, we can rearrange for s:

s =
(c − x0) ◦ n̂

x1 ◦ n̂
(6.38)

which we evaluate, and then substitute for s into p(s) = x0 + sx1 yielding the point of inter-
section. Note that if the plane is aligned exactly side-on to the ray direction x1 then x1◦n̂ = 0
and the point of intersection is undefined.

Finally, observe that we have intersected the ray with an infinite plane; when really we are
only interested if we have intersected with the finite, triangular region of the plane used to
model the patch of the object. We need to perform a containment test, to see if the point on
the plane lies within the triangular region.

If we write the 3 corners of the triangular patch as 3D points P1, P2, P3 then we can derive
vectors between those points: V1 = P2 − P1, V2 = P3 − P2, V3 = P1 − P3. If our point of
intersection with the surface is q then that point will be inside the triangle if the following
equation holds:

q − P1

|q − P1|
× V1

|V1|
=

q − P2

|q − P2|
× V2

|V2|
=

q − P3

|q − P3|
× V3

|V3|
(6.39)

This works up to Pi for any i-sided convex polygon.

Texture mapping

During our discussion of OpenGL we explored texture mapping, and how planes may be
textured with images by defining a 2D coordinate system (parameterisation) over the plane.

We can set up a 2D parameterisation (u, v) over the patch surface (perhaps using two basis
vectors V1 and V2 defined by the triangle’s sides, as above). By projecting our point of
intersecting into this basis, we obtain 2D coordinates of the point of intersection which can
be used to reference pixels in an image (i.e. a frame-buffer). When we colour the pixel on the
image plane during ray tracing, we can use the colour in the image at pixel (u, v). This gives
the impression of the image being affixed to the 3D surface we are ray tracing. Full details
are beyond the scope of this course, but this demonstrates both the implicit and parametric
forms of plane being applied to different aspects of the ray tracing process.

Ray tracing/casting vs. Perspective matrix

In Chapter 3 we saw that 3D shapes could be visualised by modelling a set of 3D points.
Those 3D points could be manipulated in space and projected to 2D via matrix transforma-
tions. Associated points (e.g. vertices of a cube) could then be joined with 2D lines to create
a “wire-frame” visualisation. In Chapter 4, and accompanying lecture slides, we saw how
OpenGL implements this approach to create graphics.

In this Chapter we have seen an alternative way of producing visualisations of seemingly
’solid’ 3D objects. Objects are modelled using 3D implicit descriptions of surfaces (the
locations of which may still be manipulated via matrix transformations on the points that
define them). These surfaces are intersected with simulated rays of light in a “ray tracing”

93

GEOMETRIC MODELLING J. P. Collomosse

Figure 6.9: Rearranging the implicit form of a sphere into an explicit form prevents modelling
of the entire spherical surface; the positive root for z2 = x2 + y2 produces a half-sphere in
z > 0.

process. There is no perspective matrix transformation involved. However we can see the
geometry of perspective projection at work through the modelling of a camera using a focal
point and plane in 3D – and the intersection of light rays with objects.

6.4.3 Curved surfaces

As you might suspect, many curved surfaces can also be modelled in explicit, parametric and
implicit forms. The simplest curved surface is arguably a sphere. An implicit equation for a
sphere is x2 + y2 + z2 = r2. Or, to be consistent with the form f(x, y, z) = 0:

x2 + y2 + z2 − r2 = 0 (6.40)

Additionally, the left-hand side of the equation is positive if a point is outside the sphere, and
negative if it is inside the shell of the sphere’s perimeter. Introducing an (inconsequential)
sign change x2 +y2−z2− r2 = 0 we might suspect that a sphere could be modelled explicitly
as z = f(x, y) via:

z =
√

x2 + y2 − r2 (6.41)

However this would give us only half a sphere; again we see the weakness of the explicit
form as being unable to represent multi-valued functions i.e. z = f(x, y). In this case, by
convention, we take the positive root and so model a half-sphere in the positive z domain
(Figure 6.9).

We can also form a parametric representation of a sphere. We commonly use such a rep-
resentation everyday e.g. in GPS navigation when we talk of longitude (east-west, θ) and

94

GEOMETRIC MODELLING J. P. Collomosse

latitude (north-south, φ) on the Earth. We specify a 3D point on a unit sphere’s surface via
the 2D coordinate space (θ, φ):

x(θ, φ) = cos θ cos φ

y(θ, φ) = sin θ cos φ

z(θ, φ) = sinφ (6.42)

If we were able to ray trace such a sphere, we could use such a coordinate system to texture
map a 2D image (say a spherical projection of a World map) onto a sphere using a similar
approach to planar texture mapping (where the plane was parameterised by (u, v) we are
instead parameterised in 2D via θ, φ).

Intersecting a ray with a sphere

Finding the intersection of a ray with a sphere is slightly more complex than an infinite plane.
As before we need to find the s at which we hit the surface. As the sphere is finite in extent,
there may be no solutions. If we do intersect it then there we would typically two solutions
as the ray enters and exits the sphere; although it is possible that the ray just grazes the
sphere producing one solution. Given the previous implicit equation for a sphere (eq.6.40)
clearly we are solving a quadratic with up to 2 real solutions.

First we define the sphere using an implicit representation; points on the sphere are described
by |c+q|−r = 0 where c is the centre of the sphere, c+q is any point on the sphere’s surface,
and r is the radius of the sphere. As before we define the light ray as p(s) = x0 + sx1; here
ensuring that x1 is a unit vector (this does not affect the derivation but simplifies it very
slightly). Figure 6.8 (right) illustrates this geometry. At the point of intersection:

c + q = x0 + sx1 (6.43)

which we rearrange to:

q = (x0 + c) + sx1 (6.44)

and take the dot product of each side with itself (noting that |q| = r, and that x1 ◦ x1 = 1):

r2 = (x0 − c) ◦ (x0 − c) + 2sx1 ◦ (x0 − c) + s2 (6.45)

So we can solve the following quadratic for s in the standard way; any real roots are inter-
sections with the sphere:

s2 + s(2x1 ◦ (x0 + c)) + (x0 − c) ◦ (x0 − c) − r2 = 0 (6.46)

6.4.4 Bi-cubic surface patches

In subsection 6.1.2 we saw how cubic curves can be used to model shapes in piecewise fash-
ion. The idea generalises to model small pieces of surface referred to as bi-cubic surface
patches. We can model complex objects by joining together such patches, rather like a three
dimensional jigsaw puzzle. Recall that a curve can be specified using:

p(s) =
[

g1 g2 g3 g4

]

MQ(s) (6.47)

95

GEOMETRIC MODELLING J. P. Collomosse

Figure 6.10: Illustration of a Bézier bi-cubic surface patch. The 16 control points hi,j of the
surface are indicated in black and determine the geometry of the surface.

where g1..4 are the geometry vectors that define the shape of the curve. But now consider
that each of those four vectors could itself be a point on four independent parametric cubic
curves respectively. That is, for i = [1, 4]:

gi(r) = HiMQ(r) (6.48)

where Hi = [hi,1 hi,2 hi,3 hi,4] — introducing the notation hi,j to denote the jth control point

on the ith curve. So the control points for eq.(6.47) are defined by four independent curves,
commonly parameterised by r. A position on the surface is thus defined in 2D parameter
space (s, r); hence the term bi-cubic surface patch. Recall that these parameters are typ-
ically defined in range s, r = [0, 1].

We can combine eq.(6.47) and eq.(6.48) to express the surface in a single equation. We first
rewrite the equation as:

gi(r)
T = QT MT

[

hi,1 hi,2 hi,3 hi,4

]T

(6.49)

And then with some minor abuse of notation (to avoid introducing tensor notation) we can
write:

p(s, r) = Q(r)T MT

h1,1 h2,1 h3,1 h4,1

h1,2 h2,2 h3,2 h4,2

h1,3 h2,3 h3,3 h4,3

h1,4 h2,4 h3,4 h4,4

MQ(s) (6.50)

where each element of the 4×4 matrix hi,j is the jth geometry vector of gi from eq.(6.48). If M
was the blending matrix for the Bézier curve family then each hi,j would be a point in space.
The volume bounded by the convex hull of those points would contain the bi-cubic surface
patch (Figure 6.10). This hull can be used to quickly check for potential ray intersections
with the patch when ray tracing (although more detailed intersection through solution of a
cubic is necessary to find the exact point of intersection; in practice a numerical rather than
a closed form approach is used for this).

96

GEOMETRIC MODELLING J. P. Collomosse

Consideration of continuity

We can join patches together with Cn continuity, much as with curves. For example we can
define adjacent Bézier bi-cubic patches to share control points, to enforce C0 or C1 continuity.
We can even use the 2D parameterisation over the surface (s, r) to perform texture mapping,
as we discussed with planar surfaces. However we would need to take care in reparameteris-
ing the surface appropriately beforehand (consider the discussion of arc-length vs. algebraic
parameterisation in subsection 6.3; what implications might this have for a texture mapped
bi-cubic surface?)

It is possible to use the Hermite blending matrix to define Hermite bi-cubic surface patches;
however it is usually impractical to control surfaces in this way. There is little benefit over
Bézier patches, through which it is already possible to ensure C0 and C1 continuity over
surfaces.

It transpires that C1 continuity is very important when modelling objects. The lighting
calculations used to determine the colour of a surface when ray tracing (subsection 6.4.2) is a
function of the surface’s normal. If the normal changes suddenly at the surface interface (e.g.
due to non-conformance to C1 continuity) then the colour of the surface will also change.
This effect is exacerbated by the human eye’s sensitivity to sudden intensity change (recall
the Mach Banding effect discussed during OpenGL lectures) to create highly noticeable
and undesirable edge artifacts. This effect can be also observed when modelling objects with
triangular patches (planes) that are too large.

97

Index

active interpretation, 26, 27
additive primaries, 13
affine transformations, 29
algebraic parameterisation, 87
anti-parallel, 5
Application Programmers Interface, 50
approximating curve, 83
arc length, 87
arc-length parameterisation, 87
associative, 7

B-spline, 87
backward mapping, 47
basis set, 5
basis vectors, 5
bi-cubic surface patch, 96
bi-normal, 89
bits, 9
Black, 13
blending matrix, 81
blending plane, 89
brightness, 16

Cartesian Coordinates, 1
Cartesian form, 6
category, 63
Catmull-Rom spline, 85
characteristic polynomial, 59
chromaticity coordinates, 18
classification problems, 63
CLUT, 12
Colour Lookup Table, 12
colour saturation, 16
colour space, 15
column vectors, 1, 8
compound matrix transformations, 30
computing the homography, 44
cone, 13
continuity, 80
control points, 83

convex hull, 84
covariance, 69
covariance matrix, 73
cross product, 3, 4
curvature, 89

decision boundary, 66
decomposing, 58
design matrix, 45
determinant, 8
diagonalised matrix, 58
dichotomiser, 68
digital image warping, 46
distance metric, 64, 66
dot product, 3
double-angle formulae, 25

Eigenmodel, 69
eigenvalue decomposition (EVD), 58
eigenvalues, 58
eigenvectors, 58
Euclidean distance, 66
Euler angles, 35
exemplar data, 63
explicit, 79

feature, 65
feature space, 65–67
field of view, 42
focal length, 42
focal point, 42
forward mapping, 47
frame buffer, 10

gamut, 12
Gaussian distributed, 73
geometry matrix, 81
gimbal, 38
gimbal lock, 38
GLUT library, 50

98

INDEX / POINTS OF DEFINITION (CM20219) J. P. Collomosse

Grammian matrix, 73

homogeneous coordinates, 29
homography, 44
Hue, Saturation, Luminance (HSL), 20
Hue, Saturation, Value (HSV), 19

ideal primaries, 18
identity matrix, 7
image representation, 9
implicit, 79
intensity, 12
interpolating curve, 83
inverse of a matrix, 8

knots, 83

leading diagonal, 7
linear transformations, 28, 29
luminosity, 16

Mach Banding effect, 97
magnitude, 2
Mahalanobis distance, 69, 71
Manhattan distance, 66
matrix diagonalisation, 61
matrix square root, 62
mega-pixel, 10
model, 63, 77
modelling, 77

Nearest Mean classification, 67
non-commutative, 7
norm, 66
normal, 4, 89
normalised chromaticity coordinates, 18
normalised vector, 3
null category, 63

OpenGL library, 50
orthographic projection, 40, 43
orthonormal, 8

palette, 12
parametric, 79
passive interpretation, 26, 27
Pattern Recognition, 63
pattern recognition, 63
perspective projection, 40
pin-hole camera, 42

pitch, 35
pixel, 9
pixel interpolation, 47
principal axes, 6
principal component analysis (PCA), 62
principal eigenvector, 70
projection, 40
projective transformations, 29
pseudo-colour frame buffer, 11
pseudo-inverse (Moore-Penrose inverse), 75

quaternion, 38

radial-polar form, 6
raster, 9
rectangular matrices, 75
reference frame, 5
resolution, 10
retina, 13
RGB colour cube, 15
rigid body transformations, 23, 28
rod, 13
roll, 35
root reference frame, 5
row vectors, 1

sampling, 9
saturation, 20
scalar, 1
scale factor, 24
scaling matrix, 24
scan-line, 11
secondary colours, 13
shearing matrix, 24
signed distance, 79
Silicon Graphics (SGI), 50
singular value decomposition (SVD), 75
space curves, 77
spline, 84
splines, 84
stride, 12
subtractive primaries, 14
supervised classification, 63
SVD (Singular Value Decomposition), 45

telephoto lens, 42
test data, 64
threshold, 64
torsion, 90

INDEX / POINTS OF DEFINITION (CM20219) J. P. Collomosse

training, 63
training set, 63
transfer function, 87
translation, 28
tri-stimulus experiment, 18

uniformly distributed, 69
unit length, 3

value, 20
vanishing point, 40
variance, 70
vector, 1
vector product, 4
video modes, 11

White, 13
wide-angle lens, 42

xyzzy, 4

yaw, 35

