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Figure 1. ALADIN enables style-based visual search, by learning a fine-grained embedding for artistic style similarity. Left:
Three queries (blue) and their results i.e. nearest neighbours in the ALADIN search embedding. Each result set exhibits
fine-grained style coherence; a consistent style of sketching. Right (red box): a search in a prior style search embedding [6]
returns results with only coarse-grained style coherence; all are different variants of watercolor style.

Abstract

We present ALADIN (All Layer AdaIN); a novel archi-
tecture for searching images based on the similarity of their
artistic style. Representation learning is critical to visual
search, where distance in the learned search embedding re-
flects image similarity. Learning an embedding that dis-
criminates fine-grained variations in style is hard, due to
the difficulty of defining and labelling style. ALADIN takes
a weakly supervised approach to learning a representation
for fine-grained style similarity of digital artworks, leverag-
ing BAM-FG, a novel large-scale dataset of user generated
content groupings gathered from the web. ALADIN sets a
new state of the art accuracy for style-based visual search
over both coarse labelled style data (BAM) and BAM-FG;
a new 2.62 million image dataset of 310,000 fine-grained
style groupings also contributed by this work.

1. Introduction
Digital artwork spans a broad range of content depicted

in diverse visual styles. Learning a representation suit-
able for searching artwork based on visual style is an open
challenge, particularly when discriminating between subtle,
fine-grained [39, 37, 25] variations in style. This is due to
the difficulties of both (i) defining a suitable fine-grained
ontology to label styles and (ii) the expert annotation task.
Research to date has therefore focused upon coarse-grain

discrimination of a limited number of styles [17, 6].
Artistic style is the distinctive appearance of an artwork;

i.e. how an artist has depicted their subject matter [8]. Style
may be characterized, non-exhaustively, by visual attributes
such as the texture, strokes, media, shading, or layout of an
artwork; the challenge of identifying a complete list of at-
tributes is long-standing and unsolved [7]. Our core contri-
bution is to learn fine-grained artistic style similarity (Fig.
1) and do so via a weakly supervised approach that does
not rely upon explicit labelling of style or style attributes in
images. Our technical contributions are three-fold:

1. ALADIN Fine-grained Style Embedding. We pro-
pose ALADIN; a novel architecture to learn a search em-
bedding for image style. ALADIN is an encoder-decoder
(E-D) network, that pools Adaptive Instance Normalization
(AdaIN) statistics across its style encoder layers to learn a
discriminative search embedding capable of both discrimi-
nating subtle fine-grained of style (e.g. variations in sketch-
ing style) as well as coarse-grained styles (e.g. sketch, wa-
tercolor, etc.). Image stylization networks [14, 10, 15] have
previously used AdaIN for style transfer, but these perform
poorly for measuring similarlity (c.f. subsec 5.2). For
the first time, ALADIN explicitly disentangles content and
style within an E-D network to show how AdaIN may be
harnessed for fine-grained style search.

2. Behance Artistic Media Fine-Grained (BAM-FG)
dataset. We contribute a new 2.62 million image dataset
of artwork within 310K fine-grained style groupings, gath-



ered from a creative portfolio website (Behance.net). Dig-
ital artists publish to Behance.net in micro-collections
(‘projects’) comprising images of a related visual theme.
On the assumption that image co-occurrence within these
groups implies a weak cue for style similarity, we sample
millions of such co-occurrences. Further, we partition and
clean this noisy co-occurrence data via a large-scale crowd
annotation task in which distinct style-coherent sub-groups
of images within projects are identified with high consensus
(yielding 1.62 million images and 135K groups).

3. Weakly supervised learning of fine-grained style.
We present the first study into representation learning for
fine-grained artistic style similarity, taking a weakly super-
vised approach. Prior style-based visual search learns only
coarse-grain style discrimination directly from explicitly la-
belled data (e.g. via proxy classification tasks [17] or deep
metric learning [6]). We train ALADIN using supervised
contrastive learning [4, 19] to achieve a state of the art per-
formance at both coarse and fine-grained style search with-
out requiring any explicit coarse of fine-grained categoriza-
tion of image style.

Note that we distinguish between noisy and weak super-
vision. The supervision is weak because there is no fine-
grained style ontology to label images explicitly; instead,
a weak proxy via implicit project groupings is the basis
for learning. These groupings may be noisy or be cleaned
up via crowd annotation, but supervision remains weak, as
the data is not explicitly labelled to fine-grained styles. We
show via objective and subjective user trials that raw project
groupings are sufficient to train a state of the art model for
fine-grained style similarity. Our cleaned data is used both
for evaluating and enhancing fine-grained style discrimina-
tion of ALADIN.

2. Related Work
Visual style has been researched primarily from the per-

spectives of synthesis (e.g. style transfer) and classifica-
tion. Early style transfer work learned visual analogies from
photo-artwork pairs [13, 20]. More recently, deep repre-
sentations enabled stylization from unpaired data [9]. No-
tably, Gatys et al. computed the Grammian across layers
of a pre-trained model (e.g. VGG-19 [31]) to abstract con-
tent from style in diverse imagery; a representation that has
been exploited for texture description [22], style-coherent
in-painting [11], and fast neural style transfer (NST) via
style-specific encoder-decoder networks [33, 16]. Exten-
sions to multi-scale [36] and video [28] NST were later
presented. Variants of this representation (e.g. cosine-of-
Grammian) have been explored to represent style [5], and
the concepts of image analogy and NST combined for style
transfer [21, 35]. Instance normalization was proposed to
enhance the quality of style transfer [34], and building upon
this, mean-variance statistics (AdaIN) between content and
style features [14, 10]. Recently unsupervised style transfer
was enabled via MUNIT [15], which disentangled content
and style via AdaIN [14]; learning a latent code for style

without labelled data within an encoder-decoder (E-D) ar-
chitecture. A similar architecture was later used to swap
style between images [26]. These approaches can be con-
sidered to embed the notion of style within architectural de-
sign choices. We explore the complementary problem of
learned search representations via E-D models.

By contrast, trained representations for style learn dis-
entangled embeddings for content and style explicitly via
deep metric learning, supervised using triplets [6]. Their
work leverages an extensive public dataset of coarsely la-
belled digital artwork (Behance Artistic Media – BAM
[38]). Smaller collections of labelled data have been used
to supervise the classification of style [41, 17], or product
designs [2] and even painters [3] and artistic genres [29].
All these approaches use direct supervision of coarse-grain
class labels on style, e.g. of fine-art [32]. A related field
models image aesthetics using votes on social media [23],
and recently the link between style and emotion is explored
[1, 24]. Generative adversarial networks (GAN) such as
cycle-consistent GAN [40] have been trained to map images
from one domain to another, including between styles, and
require labelled sets of (unpaired) images. Recently Style-
GAN [18] explored the injection of a learned style-code at
multiple stages in a convolutional encoder. Our work tack-
les style representation learning with weak labels without
requiring explicit class supervision while focusing (being
able to) discriminate fine-grained styles (Fig. 1).

3. Learning Fine-Grained Style Similarity
Our goal is to learn a fine-grained representation of style

from a weak proxy (group co-membership) rather than di-
rect supervision under labels from a style ontology.

3.1. ALADIN Architecture
We propose ALADIN; All-Layer ADaptive Instance

Normalization designed for content and style disentangle-
ment using adaptive instance normalization (AdaIN eq. 1)
[14, 10] in an encoder-decoder (E-D) network (Fig. 2).
AdaIN has been applied to neural style transfer (NST),
where content is disentangled from style to enable modifica-
tion of the style code [15, 26] before recombination of the
two. However, style codes for these models perform very
poorly when used as a search embedding (c.f. subsec. 5.2).
ALADIN implements a disentangled E-D network design
but extracts the mean and variation (as per AdaIN) values
of activations from several style encoder layers in the latent
code (‘style embedding’). By training both for high recon-
struction fidelity and with a contrastive approach to encour-
age metric properties in this latent space, we show ALADIN
can learn a search embedding suitable for fine-grained style
search.

ALADIN comprises dual encoder branches: (i) content
encoder; (ii) style encoder. The content encoder uses 4 con-
volutional layers to downsample image features into a series
of semantically-focused feature maps; instance normaliza-
tion is applied to each layer. The style encoder branch com-



Figure 2. Proposed ALADIN architecture for learning a fine-grained style embedding. ALADIN uses a multiple stage encoder where
AdaIN values are aggregated from each encoder layer and passed to the corresponding decoder stages. A concatenation of AdaIN features
from encoder layers on the style branch is trained via a dual reconstruction (Lrec) and constrastive loss (Lcon) under weak supervision
from project group co-membership. The style encode/decoder backbone may take the form of several convolutional layers (ALADIN-S)
or VGG-16 backbone (ALADIN-L).

prises three convolutional layers, comprising of 64, 128,
256 filters, respectively. We extract the style information
using the AdaIN mean and variance statistics of the feature
maps, rather than a fully connected (FC) layer, as this en-
coder is used only for style extraction. The style code is
composed of twice as many values as filters in the encoder,
with a mean and variance of each output feature map. Fig.
2 shows the ALADIN backbone built to include adaptive
instance normalization (AdaIN) on the style encoder stages
and the aggregation of activations (‘style codes’) from mul-
tiple encoder stages via concatenation to produce an 896-D
search embedding.

The decoder mirrors the encoder shape, such that the
style code can be split back into the same sized segments
and applied to decoder filters. Both this mirroring and the
multi-layer encoding of AdaIN differ from stylization E-
D networks (e.g. MUNIT [15]) and enable a more effec-
tive search embedding to be learned from the resulting style
codes. In the decoder stylization stage, pairs of [mean µ(.)
, variance σ2(.)] values from style encoder layer activations
(e.g. x) are applied to activations from a mirrored layer in
the ALADIN decoder (e.g. y), following eq. 1.

AdaIN(x, y) = σ2(y)

(
x− µ(x)

σ2(x)

)
+ µ(y) (1)

For both ALADIN-S and ALADIN-L variants we apply
a multi-layer perceptron (MLP) with a hidden layer of size
512 and L2 normalized output vector 128-D to the encoded
embedding feature f(.). We refer to this as projection net-
work as h(f(.)) and later explore the efficacy of computing
the loss on this projection embedding rather than the learned
style embedding (c.f. Tbl. 2).

3.2. Training with Implicit Project Groups
We train ALADIN using a variant of supervised con-

trastive learning adapted with logit accumulation (sec.
3.2.1) to enable larger batch sizes. Training is weakly su-
pervised, eschewing explicit style labels for the similarity
in style implied by the co-presence of images in projects
(groups) sampled from Behance.net creative portfolios (c.f.
subsec 4).

Classic approaches to deep metric learning for search
exploit pair-wise comparison (e.g. via triplet loss) to en-
courage correlation between visual similarity and embed-
ding proximity. For a given training set T , a project group
G ⊂ T is selected at random, and an image a picked at
random from within G as the ‘anchor’. The remaining
images within that group form positive examples G+ =
G \ {a}, and an equal number of negative samples are
selected from other project groups G− ⊂ T \ G+. For
a given minibatch B triplets (a, p, n) are formed where
p ∈ G+ and n ∈ G−, and backpropagation applied to min-
imize

∑
(a,p,n)∈B [ϵ+ |f(a)− f(p)|2 − |f(n)− f(p)|2]+,

where |.|2 denotes the L2 loss and ϵ a small margin.
Recently, contrastive learning has shown improved per-

formance using larger batch sizes. We form a minibatch B
by sampling pairs of images {a, p} ∈ Gi for i = [1, N ]
groups (we use N = 1024 groups). Thus a batch com-
prises 2N images, B = {b1, b2, ..., b2N}, where b2i and
b2i−1 come from the same group. For a given image bi we
therefore have a positive group G+

i = {bp} and a negative
group G−

i = B \ {bi bp} for which the loss is:

Lcon(B) =

2N∑
i=1

L(i) ,where

L(i) = − log
∑
p∈G+

i

exp(f(i) · f(p)/τ)∑
n∈G−

i
exp (f(i) · f(n)/τ)

(2)



where τ > 0 is a temperature parameter as in the self-
supervised SimCLR [4].

ALADIN is an encoder-decoder network, so we employ
a dual loss comprising also a reconstruction loss term Lrec:

Lrec(B) =
∑
b∈B

|f(b)− b| . (3)

Ltotal(B) = Lcon(B) + λLrec(B), (4)

where |.| denotes the L1 loss and we weight the reconstruc-
tion loss λ = 10−2.

3.2.1 Logit Accumulation

Training ALADIN with large batches |B| = 1024 is im-
practical on contemporary GPUs (without resorting to fed-
erated or distributed compute) due to the extensive VRAM
requirements. To combat this issue, we propose a logit ac-
cumulation strategy. The large batch size is first split into
several smaller chunks (gradient batch size) for which the
model in inference mode generates logits. Once the target
batch size of 1024 is reached, these are concatenated and
used for computing the contrastive loss. Backpropagation
is carried out to compute gradients, stopping and retaining
them at the logits level. The original chunks are next passed
through the model again one by one, storing gradients in
the model. The logit gradients corresponding to samples in
a given chunk are backpropagated through the model be-
fore finally applying the gradients to the weights. When
all chunks have been re-forwarded through the model the
batch ends (see sup-mat. for visualizations of this process).
With this technique, a single GPU with 12GB VRAM can
fit the required batch size of 1024. Multiple GPUs could,
in theory, handle larger batches as the bottle-beck becomes
storing the MLP head gradients in VRAM, which may be
parallelized across GPUs.

4. BAM-FG: Behance Artistic Media Fine-
Grained dataset

We propose BAM-FG, a novel dataset of 2.62 million
digital artworks in 310K project groups sampled from Be-
hance.net – a creative portfolio website. We assume that im-
age co-occurrence within these groups implies a weak cue
for style similarity, and it is this signal we harness to train
our model. We split BAM-FG into two distinct partitions:

BAM-FG-Raw. The raw, ’noisy’ data where images are
grouped as on Behance; we refer to this dataset as BAM-
FG-Raw comprising 1M images in 175K projects. We train
our model with this data.

BAM-FG-CN . Data that has been ‘cleaned’ via a large-
scale crowd-sourcing exercise so that image groups are
known (rather than assumed) to be style consistent. This
dataset initially comprises 1.62M images and 135K groups.
We derive image groupings from this data to varying lev-
els of confidence (participant consensus), written as CN =

Figure 3. Top: BAM-FG-CN dataset statistics, cleaned at each
worker consensus level CN = [1, 5]. Bottom: Three sub-
groupings within a single raw project group, identified at consen-
sus level CN = 3

1, ..., 5. Fig. 3 (top) describes the number of images (sam-
ples) in BAM-FG at each consensus level, where CN = 5
returns the highest data quality but lowest data volume. This
data is used to evaluate ALADIN and fine-tune its perfor-
mance (train/test split details are in subsec. 5.1).

4.1. Cleaning Style Groups (BAM-FG-CN )
We constructed BAM-FG-CN by manually curating the

135K project groups into sub-groups of coherent style. An-
notation was crowd-sourced via Amazon Mechanical Turk
(AMT) using 1073 workers. Workers were presented with
images from a project and invited to tag any number of im-
ages (including zero) sharing the same visual style (creat-
ing a group). If there were multiple styles present, they
picked the largest group. We sent each annotation task to
5 workers. The consensus was determined using a graph-
based vote pooling method in which edges coded by an
affinity matrix Ai,j reflecting the number of times both im-
ages {i, j} were simultaneously selected within an anno-
tated cluster/moodboard. Edge counts are incremented each
time an image pair is co-indicated. Thresholding Ai,j at
a given consensus level CN = [1, 5] partitions the group
into sub-groups This yields groups of images at different
strengths of style similarity, measured by the number of
workers who grouped them together. Fig. 3 (bottom) shows
an example of three sub-groups formed at CN = 3 from
a single raw group. The supplementary material contains
a task example and a visualization of the graph-vote algo-
rithm.

5. Experiments and Discussion
We evaluate the performance of ALADIN for both

coarse and fine-grained retrieval tasks. We use a learning
rate of 10−4 with decay 0.9 and the ADAM optimizer on a



Coarse grained Fine grained
BAM BAM-X BAM-FG

Model Top-1 Top-3 mAP Top-1 Top-3 mAP IR T-1 IR T-5 IR T-10
Karayev [17] 29.95 36.44 0.34 21.62 23.06 0.18 3.28 5.43 6.59
NST [9] 36.56 39.43 0.38 31.01 32.03 0.28 6.31 7.82 9.86
NST-CGM [5] 34.74 42.96 0.36 32.85 36.84 0.31 3.54 8.32 10.89
DML-BAM [6] 93.16 99.32 0.61 67.12 88.69 0.50 3.57 6.87 9.95
DML-BAMX [6] 98.16 99.95 0.49 79.97 92.68 0.69 3.04 6.18 8.70
ResNet50 [12] 73.59 96.01 0.162 51.05 78.01 0.163 1.97 5.18 8.41
MUNIT-Unsup [15] 33.79 45.05 0.44 45.76 74.41 0.22 4.12 6.92 9.45
MUNIT-Triplet [15] 43.29 46.47 0.589 66.28 88.66 0.271 17.68 25.89 31.67
MUNIT-Listwise [15] 42.63 46.45 0.404 70.98 91.85 0.226 18.04 24.91 29.62
MUNIT-Contrastive [15] 53.80 86.36 0.284 27.87 58.49 0.137 6.43 10.02 12.96

ALADIN-Unsup. 93.86 99.79 0.394 83.13 96.66 0.308 11.48 16.38 19.84

ALADIN-Triplet 96.59 99.90 0.638 78.60 95.28 0.336 26.70 35.08 40.47
ALADIN-Listwise 95.59 99.90 0.550 76.16 94.12 0.316 37.90 47.88 53.83
ALADIN-Contrastive 99.48 99.95 0.737 85.28 98.07 0.479 56.89 66.80 71.94

Table 1. Coarse (BAM/BAM-X) and Fine grained (BAM-FG) style discrimination for the ALADIN model compared to baselines on coarse
and fine-grained retrieval (BAM-FG). The larger ALADIN-L model is used.

single NVidia Titan-X 12GB GPU for all experiments. We
trained all models to convergence with early stopping.

5.1. Datasets and Partitions
BAM-FG/-Raw/-CN . We train all our models from scratch
using 1M images with noisy grouping (BAM-FG-Raw). We
split the 1.62M clean images in BAM-FG-CN into train-
ing (115K groups) and test (20K groups) partitions. BAM-
FG-CN is crowd-annotated to form sub-groups as described
in Section 4. The data is thresholded at different consen-
sus levels CN = [1, 5] (groupings referred to as BAM-FG-
C1..5). Fine-grained retrieval is evaluated over the 78K im-
ages test of BAM − FG − C3; we use C3 as the majority
consensus level with the highest data volume.
BAM/-X. Behance Artistic Media (BAM) is a public
dataset of 2M contemporary artworks gathered from Be-
hance.net and annotated using a large-scale active learn-
ing pipeline [38]. We sample a 70k subset of this dataset,
the annotations for which include seven coarse style labels
for non-photographic media (3D renderings, comics, pen-
cil/graphite sketches, pen ink, oil paintings, vector art, wa-
tercolor). To increase the coarse-scale category count on
BAM, we add a further 70K images gathered from web
photo collections focusing on photographic styles (luxury,
neon, minimalist photography, metallic, abstract shots, ge-
ometric forms, pastel shades), bringing the total to 14 coarse
style classes each of 10K images. This Extended BAM
(BAM-X) dataset of 140K images is used for coarse-grain
evaluation. None of these are included in BAM-FG.

5.2. Baseline Methods and Losses
1. Methods. We compare against several existing style

representations. Karayev et al. sample activations from a
late FC layer of CaffeNet [17]. Neural Style Transfer [9]
NST features using VGG-19 [30] pre-trained on ImageNet
[22] are compared with a variant taking cosine of Gram ma-

trices NST-CGM across layers [5]. A baseline discrimina-
tive network ResNet50 [12], extracting the style represen-
tation (embedding) from the penultimate FC layer (2048-
D) of a ResNet50 network. We compare also against the
coarse-grain style embedding of Collomosse et al. [6] ap-
plying Deep Metric Learning (DML) via triplet loss. Their
model DML-BAM was trained on BAM [38], and we re-
train it also on BAM-X DML-BAMX. We compare against
the style codes available from MUNIT [15] which explic-
itly trains a disentangled representation for stylization. We
evaluate MUNIT style codes for search, trained unsuper-
vised (MUNIT-Unsup [15]) and trained via our contrastive
scheme, per ALADIN (MUNIT-Contrastive). In Sec.
5.6 we further explore style code fusion of ALADIN and
ResNet.

2. Alternative losses. We also evaluate alternative train-
ing strategies for ALADIN, and the baselines. Both Triplet
loss and Listwise loss [27] are explored as smaller batch al-
ternatives to contrastive training e.g. MUNIT-Triplet, and
MUNIT-Listwise. For triplet training we train using ran-
dom negative mining, sampling G− from random projects,
and also hard-negative mining (HN) sampling images from
semantically similar projects. For HN, n ∈ G− are sam-
ples that satisfy a semantic threshold |S(n) < S(a) +∑

p ∈ G+S(p)| < T set empirically to encourage dis-
entanglement similar to deep metric learning (DML) over
BAM [6]. We use a pre-trained auxillary ResNet/ImageNet
embedding for S(.). The listwise loss [27] is a differentiable
approximation to mean Average Precision (mAP), recently
applied to deep metric learning for search embeddings. Us-
ing list-wise loss several style groups are chosen at random,
and all samples are added as query (anchor) images to the
batch B = {a1, ..., a32} ⊂ T . For each a we define G+ as
images co-present in the project, and G− = T \ G+. The
listwise loss rewards higher ranking of G+ versus G−.

3. Alternative supervisions. We baseline against self-



Coarse-grained Fine-grained

Loss Backbone Aug. MLP Sup. BAM
mAP

BAMX
mAP P@k=1 P@k=5 P@k=10

Triplet MUNIT [15] ✓ 0.589 0.271 17.68 25.89 31.67
Triplet MUNIT [15] HN 0.483 0.255 12.96 19.48 24.58
Triplet MUNIT [15] ✓ ✓ 0.482 0.252 7.39 12.70 17.16
Triplet MUNIT [15] ✓ 0.501 0.259 7.79 12.81 16.95
Listwise MUNIT [15] ✓ 0.447 0.244 20.15 27.40 32.27
Listwise MUNIT [15] ✓ ✓ 0.404 0.226 18.04 24.91 29.62
Listwise MUNIT [15] ✓ 0.410 0.211 16.03 22.61 27.23
Contrastive Resnet50 [12] ✓ ✓ 0.231 0.143 40.14 50.90 57.19
Contrastive Resnet50 [12] ✓ ✓ 0.209 0.104 28.51 36.72 41.96

Triplet ALADIN-S ✓ 0.558 0.297 25.60 33.71 38.93
Triplet ALADIN-L ✓ 0.638 0.336 26.70 35.08 40.47
Triplet ALADIN-L HN 0.609 0.312 23.75 31.87 37.10
Triplet ALADIN-L ✓ ✓ 0.614 0.335 22.12 31.55 37.60
Triplet ALADIN-L ✓ 0.417 0.214 21.07 28.20 32.81
Listwise ALADIN-L ✓ 0.463 0.247 25.14 33.44 38.80
Listwise ALADIN-S ✓ ✓ 0.523 0.284 30.03 38.42 43.67
Listwise ALADIN-L ✓ ✓ 0.550 0.316 37.90 47.88 53.83
Listwise ALADIN-L ✓ 0.453 0.244 21.22 27.98 32.36
Contrastive ALADIN-S ✓ ✓ 0.565 0.308 36.42 44.49 49.32
Contrastive ALADIN-L ✓ ✓ 0.737 0.479 56.89 66.80 71.94
Contrastive ALADIN-L ✓ ✓ 0.443 0.222 30.47 38.43 43.39

Table 2. Coarse and fine-grained style discrimination of differ-
ent architectures and training losses, exploiting data augmentation
(Aug.) and projection networks (MLP) under self or weak super-
vision (Sup.). HN indicates hard negative mining. Trained over
1M images in BAM-FG-Raw.

Figure 4. t-SNE visualization of BAM-FG test set within the AL-
ADIN and discriminative embeddings; qualitatively fewer seman-
tic clusters form in the ALADIN vs. Discriminative embedding.

supervised training of ALADIN using no project group su-
pervision i.e. Ltotal = Lrec with minibatches selected from
groups randomly. Whilst self-supervised, such loss does not
encourage metric learning. Therefore we also baseline our
dual loss eq. 4, where Lcon uses vanilla contrastive learning
(i.e. self-supervised SimCLR [4]), applying data augmenta-
tion to generate G+ from a using random cropping, hori-

Figure 5. t-SNE visualizations in style embeddings (Discrimina-
tive and ALADIN-L). Top: BAM-X coarse grain, color shows 14
test classes. Bottom: BAM-FG, color shows 20 test projects.

zontal flipping, and color jittering, and G− = B \ {a,G+}.
Finally, we demonstrate the benefit of contrastive learn-
ing for weakly supervised learning, by baselining perfor-
mance against softmax loss for an n−way classification us-
ing project group membership as labelled data. Thus we use
our weak supervision signal as explicit labels for strong su-
pervision, a 175K-way classification (one label per group).

5.3. Evaluating Coarse and Fine grained Retrieval

We evaluate retrieval performance of ALADIN, comput-
ing precision at k (P@k), an instance retrieval metric that
expresses the percentage of queries for which a relevant re-
sult (same project) occurs within the top k ranked results,
for ranks k = {1, 5, 10}. Tbl. 1 reports the performance
of several baselines at this task; whilst coarse-grain perfor-
mance is satisfactory on the BAM, and BAM-X datasets,
the fine-grained style discrimination (BAM-FG) and gener-
alization to new styles is poor for the baseline approaches,
which supports our motivation to develop a new model (AL-
ADIN) that is effective for fine grained style search. The
style code learned in MUNIT-UnSup [15] model is known
to be suitable for image stylization, and we explore it here
for style search. We observe that for coarse-grain style
discrimination, MUNIT performs similar (BAM P@k=1:
33.79) to the lower-performing prior work that does not
explicitly train for style (BAM P@k=1: 34.74) [5]. How-
ever MUNIT-UnSup performs poorly as a search embed-
ding for fine-grained style, in line with all prior models.
Our proposed approach, ALADIN-Contrastive (using the
ALADIN-L backbone), sets the new state of the art in fine
grained retrieval (BAM-FG P@k=1: 56.89).

Tbl 1 also presents the results for coarse and fine grain



Data ResNet50 [12] ALADIN-L
Data size P@k=1 P@k=5 P@k=10 P@k=1 P@k=5 P@k=10

BAM-FG-Raw 250K 20.72 28.72 34.30 40.08 49.62 55.27
BAM-FG-Raw 500K 33.80 43.74 49.71 44.26 54.20 59.75
BAM-FG-Raw 750K 38.73 49.11 55.09 47.78 57.89 63.53
BAM-FG-Raw 1M 40.14 50.90 57.19 56.89 66.80 71.94

BAM-FG-C3 114K 42.33 52.14 57.72 59.03 68.67 73.62
BAM-FG-C4 86K 43.85 53.86 59.37 59.31 68.80 73.92
BAM-FG-C5 38K 45.22 54.81 60.52 59.51 69.07 74.05

Table 3. The effect of data volume and consensus level on a fine-
tuned model, training with contrastive loss.

Data Model P@k=1 P@k=5 P@k=10
BAM DML [6] 3.57 6.87 9.95

BAM-FG-C5 Ours (ALADIN-L) 58.98 68.79 73.73
BAM-FG-C5 Ours (ResNet50 [12]) 45.22 54.81 60.52

BAM-FG-Raw Ours (Fused) 60.76 70.26 75.12
BAM-FG-C5 Ours (Fused) 62.18 71.50 76.33
Table 4. Performance of fused embeddings Discriminative and
ALADIN for noisy (BAM-FG-Raw) and cleaned (BAM-FG).

for our proposed ALADIN network trained unsupervised
(via reconstruction loss only; ALADIN-UnSup) on BAM-
FG Raw. The fine grained IR performance (BAM-FG
P@k=1: 26.70) of ALADIN-L exceeds all prior baseline
architectures even without supervision.

5.4. Evaluating weak supervision
Next, we evaluate different ways to weakly supervise

ALADIN training on BAM-FG-Raw noisy image group-
ings, comparing triplet, listwise and contrastive losses (Tbl.
2). The ALADIN model (the ALADIN-L model structure)
shows gains at both coarse-grain discrimination (+ 10-12%
mAP), and as shown in Tbl 1, fine-grained style discrimina-
tion (+ 10-15% IR Top-1 ). Our proposed dual loss (recon-
struction and contrastive learning) outperform others with
listwise loss gives superior performance to triplet — reflect-
ing observations that even human annotators find it harder
to assess style coherence in paired images versus groups
of images. A discriminative Resnet50 backbone was also
trained using a softmax loss, with a ∼175k-way classifier
for every project group in the 1M BAM-FG-Raw dataset.
However, it did not perform well for fine-grained discrimi-
nation. ALADIN achieves a state of the art performance on
fine-grained style discrimination, but interestingly outper-
forms existing models for coarse grain style. We achieve
this without using any of the coarse training labels, demon-
strating our model’s generalization capabilities.

5.5. Ablation Studies
Tbl 2 reports an ablation study for both coarse and fine

grained style discrimination, exploring contrastive learning,
data augmentation and use of a projection network (apply-
ing the loss to h(f(.)) versus f(.)), the latter yields perfor-
mance gain for both models. The pair-wise (triplet) losses
consistently underperform the list-wise loss. Performing
hard negative mining to encourage disentanglement be-
tween semantics and style is ineffective, perhaps due to the

disentanglement in the ALADIN architecture. ALADIN-
L (56.89%) outperforms baselines for fine-grained dis-
crimination, including a recent self-supervised baseline
(SimCLR [4]). In contrast, a discriminative model [12],
ResNet50, similarly trained, achieves 40.14%.

Tbl. 3 explores the impact of data volume on overall
performance for reductions of 25-75% of BAM-FG-Raw
data, for the best performing models ALADIN-L (P@k=1:
56.89%) and Discriminative (P@k=1: 40.14%). We also
explored fine-tuning these two models with the cleaned
BAM-FG training data at consensus levels CN = [3, 4, 5].
Despite lower training volumes at higher consensus levels,
we show the most significant gains are at these levels (up to
5% at C5).

5.6. Visualizing Disentanglement
We explore the complementary properties of ALADIN-

Contrastive and a similarly trained discriminative network
(ResNet50-Contrastive) that does not explicitly disentangle
style from content in its architecture. Fig. 6, shows search
results for both embeddings, offering a more significant cor-
relation between content and style under the Discriminative
model, which does not explicitly disentangle the two within
its architecture.

Visualizing a t-SNE distribution of all 78K images in
BAM-FG-C3 (Fig. 4) shows similar groupings. It reveals
ALADIN correlates more strongly on lower level features
such as color. Smaller-scale visualization of Fig. 5 shows
good discrimination between a random subset of 20 fine-
grained groups and on coarse-grain styles despite no direct
supervision on these classes; consistent with the quantita-
tive performance in Tbl. 1.
Fused. We explored simply concatenating both embed-
dings given their information appeared complementary. In-
terestingly, the incorporation of semantic cues gave a small
performance boost (around 4%) to ALADIN. Further small
gains can be made by further fine-tuning ALADIN on
cleaned annotated data from BAM-FG-CN . Tbl. 4 reports
our best performing fine-grained search embeddings are the
fused models on noisy data (60.76%) and cleaned data at
the highest consensus threshold (C5 at 62.18%).

5.7. User Evaluation of Style Similarity
We ran crowd-sourced user studies on image retrieval re-

sults to compare ALADIN with the fine-grained ResNet-
Contrastive model trained on the same data and a coarse-
grain baseline (DML [6]). 1000 queries were each pre-
sented independently to 5 workers. Each worker was asked
to flag images within the 25 results that were style incon-
sistent with the query. Consensus thresholding (Sec. 4) was
applied and Precision at rank k recorded for majority con-
sensus levels in Tab. 5. The fused embeddings consistently
achieve the highest accuracy, both where we explore the
complete results and when we consider only results where
the query style group is held out from the search corpus.

We further explore image retrieval using the models



Figure 6. Representative retrieval results for 4 queries; Coarse-grain style embedding baseline (DML) [6] versus our proposed fine-grained
embedding (ALADIN architecture under weak supervision) and for comparison, a similarly trained (discr)iminative network; ResNet.

Consensus ResNet50 [12] Ours (ALADIN) Ours (Fused) DML-BAMX [6]
CN P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

3 0.959 0.914 0.895 0.965 0.918 0.893 0.974 0.937 0.918 0.780 0.607 0.449
4 0.840 0.681 0.624 0.832 0.653 0.582 0.867 0.727 0.666 0.633 0.397 0.277
5 0.562 0.324 0.256 0.612 0.307 0.221 0.642 0.363 0.277 0.467 0.196 0.120

3 (c) 0.822 0.686 0.519 0.834 0.831 0.826 0.887 0.890 0.875 0.681 0.571 0.428
4 (c) 0.522 0.432 0.322 0.558 0.458 0.450 0.575 0.569 0.560 0.364 0.307 0.229
5 (c) 0.153 0.117 0.096 0.115 0.106 0.101 0.173 0.166 0.159 0.079 0.065 0.049

Table 5. Image retrieval accuracy via Amazon Mechanical Turk (AMT) study; Precision (P@k) at rank k=[1,5,10] over 1000 queries on
BAM-FG. (c) indicates ”held out” evaluation i.e. removing results in the same style group as the query. These show that when images
from the same group are removed, ALADIN (and fused) maintains style similar results for longer. Results at 3 majority consensus levels.

Figure 7. Multi-image query results; a query moodboard (top left)
and the top 25 ranked result images (bottom). Quantiative results
from MTurk user study at majority consensus levels (top right).

when multiple images are used together to form a query.
We use our annotated style groups from the test set as such
queries, mean-pooling the encoder features of all images to
create the query. We repeat our user study and ask groups of
5 workers to label 1000 retrieval results. The retrieval cor-
pus does not contain images from the same project as the
queries. Fig. 7 shows multi-image queries, and a represen-
tative result with high relevance scores for both ALADIN

and the fused variants, implying the mean well represents
the query group and suitable for use as a query.

6. Conclusion

We proposed an encoder-decoder (E-D) architecture;
‘ALADIN’, to learn a fine-grained representation for mea-
suring fine-grained artistic style similarity. ALADIN is in-
spired by the E-D models used to drive content stylization
[15] by explicitly disentangling content and style across
network branches. We present and use a weakly super-
vised approach to learn this representation using contrastive
training made practical using a logit accumulation strategy.
We sample 310K user-generated content groupings across
2.62M images which we release as the first fine-grained
artistic style dataset, BAM-FG. We exploit these group co-
occurrences as an implicit weak proxy for fine-grained style
similarity. ALADIN sets the state of the art performance
for fine-grained discrimination and improves further when
trained with cleaned grouping data and when fused. AL-
ADIN also sets a new state of the art in coarse grain style
discrimination, despite not being trained with explicit style
labels. Future work could explore the potential of ALADIN
as a unified embedding for both stylization and search.
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