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a b s t r a c t

We present a class of Hill’s equations possessing explicit solutions through elementary
functions. In addition we provide some applications by using some of the paradigmatic
systems of classical dynamics, such as the pendulum with variable length.
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1. Introduction

Autonomous dynamical systems with one degree of freedom are (essentially) well understood. When the system is non-
autonomous, in general the dynamics become unpredictable and the solutions are no longer expressible in ‘‘closed form’’;
for instance in the Hamiltonian case the system ceases to be integrable. However there are some exceptions to the above
picture of dynamics. For instance there are very interesting dynamical systems, even with an infinite number of degrees of
freedom, which are integrable; a well known example is the class of evolution equations having soliton solutions [1,2].

The aim of this paper is to present and investigate a class of equations having explicit solutions, which can be given
in closed form in terms of elementary functions, such as polynomials and trigonometric functions. Our class of equations
includes a set of Hill’s equations [3], which notoriously have solutions not in explicit form, but rather as time series; a very
famous example is Mathieu’s equation.

First let us recall a brief summary of the results contained in [4] (see also [5]), which are used to define and study the class
of ordinary differential equations with variable coefficients possessing explicit solutions. We shall consider a class of non-
conservative systems which naturally extend the classical formula for a conservative system with one degree of freedom,
namely Newton’s formula

ẋ(t) = y(t), ẏ(t) = −ω2F(x(t)), (1)

where ω > 0 is a constant, F(x) is a C1 function of the variable x and the dot denotes derivative with respect to time. If one
writes (1) as

d
dt


ẋ(t)
ω


+ ω x(t) = 0, (2)

the ω constant case carries over when ω = ω(t), that is

d
dt


ẋ(t)
ω(t)


+ ω(t)F(x(t)) = 0. (3)
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Indeed the system (3), with ω(t) a positive differentiable function, has a first integral given by

H(x(t), ẋ(t), t) :=
1
2


ẋ(t)
ω(t)

2

+ U(x(t)) = E = constant, (4)

where U(x) is a primitive of F(x). For instance, for F(x) = x, (3) becomes

d
dt


ẋ(t)
ω(t)


+ ω(t) x(t) = 0, (5)

whose general solution has the form

x(t) = α cos


ω(t) dt


. (6)

Remark 1. Note that (5) can be written in the equivalent form

ẍ(t) −
ω̇(t)
ω(t)

ẋ(t) + ω2(t) x(t) = 0; (7)

this form of the equation will be used below.

More generally, multiplying (4) by ω2(t) and doing some rearrangement one obtains
dx

√
E − U(x)

= ±
√
2


dt ω(t). (8)

Formula (8) clearly shows that when ω(t) is of one sign, then it is effectively a time-reparametrization of the time-
independent case. However ω(t) in general can change sign and still the ratio ẋ(t)/ω(t) is well defined as one can clearly
see by looking at formula (6) in the linear case. Thus (6) and (8) naturally extend the case ω = constant to the case when
ω = ω(t) is a differential function of time. For more details and applications see [4].

Let us now study the connection between the linear equation (5) and its corresponding ‘‘Hamiltonian’’ form, namely
ÿ(t) + Q (t) y(t) = 0, (9)

where Q (t) is an appropriate function of time. The transformation that takes (7) into (9) is quite general and it can be found
(for example) in the book of Magnus and Winkler [3]: the differential equation

ẍ(t) + a(t) ẋ(t) + b(t) x(t) = 0, (10)
with a(t) and b(t) differentiable functions of t , can be transformed into (9), with

Q (t) = −
1
2
ȧ(t) −

1
4
a2(t) + b(t) and y(t) =


e

1
2

a(t) dt


x(t). (11)

In the case (7) one has

a(t) = −
ω̇(t)
ω(t)

, b(t) = ω2(t), (12)

so that

Q (t) =
1
2

ω̈(t)
ω(t)

−
3
4


ω̇(t)
ω(t)

2

+ ω2(t) and y(t) =
x(t)

√
ω(t)

. (13)

It is apparent that in (12) and (13) the function ω(t) needs to be of one sign without zeros, and if one wants real solutions
then of course ω(t) > 0.

2. Some equation having explicit solutions

We now provide some illustrations and applications of the results presented above.

2.1. (Generalized) Bessel’s equation

Let us consider the linear second order ordinary differential equation

ẍ(t) +
γ

t
ẋ(t) +

t2 − ν2

t2
x(t) = 0, ν ≥ 0; (14)

this equation reduces to the Bessel equation for γ = 1 [6]. We wish to find explicit solutions of (14) for various values of γ
and ν including the Bessel value γ = 1 (with ν = 1/2). First, for the corresponding transformed Eq. (9) we have

Q (t) =
4t2 − 4ν2

− γ 2
+ 2γ

4t2
. (15)
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A solution of (9) is then obtained by putting Q (t) ≡ 1, thereby providing the general solution y(t) = α cos t + β sin t .
Solving (15) with Q (t) ≡ 1 one finds 4ν2

= 2γ − γ 2, with 0 ≤ γ ≤ 2; hence we find the general solution of (14) in the
form

x(t) = t−
γ
2 (α cos(t) + β sin(t)) . (16)

One recovers the classical solution of the Bessel equation for γ = 1, requiring the value ν2
= 1/4. Note that for γ < 0 and

γ > 2 one can solve Eq. (14) with the plus sign in front of ν2; in this case one obtains the solution having the same structure
as (16) provided one takes γ < 0 or γ > 2 and 4ν2

= γ 2
− 2γ .

2.2. Transformed solutions

Once the solution to an equation of the form (10) has been found, we can generate a set of equations of which solutions
can be found by transformation. For instance, take the two equations

ẍ1(t) + a1(t) ẋ1(t) + b1(t) x1(t) = 0,
ẍ2(t) + a2(t) ẋ2(t) + b2(t) x2(t) = 0,

(17)

and assume a1(t), b1(t) chosen such that the solution x1(t) can be found. If a2(t) and b2(t) satisfy

−
1
2
ȧ1(t) −

1
4
a21(t) + b1(t) = −

1
2
ȧ2(t) −

1
4
a22(t) + b2(t), (18)

that is Q1(t) ≡ Q2(t), the corresponding solution x2(t) is

x2(t) = x1(t) e
1
2

(a1(t)−a2(t)) dt . (19)

As an example with non-constant coefficients, let us take a1(t) = α t−1 and b1(t) = βt−2, hence picking the Cauchy–Euler
equation. In this instance (18) becomes

2α − α2
+ 4β

t2
= −2ȧ2 − a22(t) + 4b2(t).

Let us take a2(t) = δtm. Hence we require

b2(t) =
δ2t2m+2

+ 2mδtm+1
− α2

+ 2α + 4β
4t2

,

giving the equation

ẍ2(t) + δtmẋ2(t) +
δ2t2m+2

+ 2mδtm+1
− α2

+ 2α + 4β
4t2

x2(t) = 0,

which admits the solution

x2(t) = tγ e
1
2

(αt−1

−δtm)dt , with γ =
1
2


α − 1 ±


(α − 1)2 − 4β


.

2.3. Pendulum with variable length

Let us consider the linearized system for a pendulum with periodically varying length ℓ = ℓ(t) described by,

θ̈ (t) + 2
ℓ̇(t)
ℓ(t)

θ̇(t) +
g

ℓ(t)
θ(t) = 0, (20)

where g is the gravity acceleration, and take ℓ = ℓ0 + ℓ1ϕ(ωt), where ℓ0 > ℓ1 > 0 and ϕ is a 2π-periodic function of time
τ = ωt with mean value zero and ∥ϕ∥∞ = 1. Hence ω is the frequency at which the pendulum length varies; for simplicity
we shall set g = 1. Transforming into the corresponding ‘‘Hamiltonian’’ form we still obtain (9), where

Q (t) =
1 − ℓ̈(t)

ℓ(t)
.

If we take the particular case where Q (t) = ω2
= constant, then we obtain the solution y(t) = γ cos(ωt) + δ sin(ωt),

provided

ℓ(t) = α cos(ωt) + β sin(ωt) +
1
ω2

, with ℓ1 =


α2 + β2 <

1
ω2

= ℓ0.

Then transforming back to θ we have a solution to (20) as follows:

θ(t) =
γ cos(ωt) + δ sin(ωt)

α cos(ωt) + β sin(ωt) + ω−2
. (21)

Remark 2. The choice Q = ω2
= constant effectively sets the mean length of the pendulum ℓ0 = 1/ω2. In fact the

choice of Q equal to any positive constant results in a relation between the class of pendulum systems with periodically
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varying length around ℓ0 with frequency ω = 1/
√

ℓ0 and the classical pendulum with length ℓ0. One way to interpret
the result is as follows. Consider the pendulum with variable length ℓ(t) = ℓ0 + ℓ1ϕ(ωt), with fixed frequency ω, in the
approximation of small oscillations. The system displays a very complicated behavior for general values of the parameter
ℓ0; see for instance [7]. However, if one sets ℓ0 = 1/ω2, then the equations of motion can be explicitly solved.

Some other applications to the pendulum with variable length can be found in [4].

2.4. Synchronization of the pendulum with variable length and oscillating support

We may also consider the linearized system for a pendulum with periodically varying length ℓ = ℓ(t) and oscillating
support, so that the motion of the pendulum is described by

d
dt


ℓ2(t)θ̇(t)


+ ℓ(t)


g − λ̈(t)


θ(t) = 0 (22)

where θ(t), ℓ(t) and g are as in the pendulumwith periodically varying length in 2.3 above and the supportmoves vertically
following a given function λ(t) of time. For a given function λ(t) one can synchronize the time-variable length so that they
satisfy the constraint

ℓ(t) =


1

g − λ̈(t)

 1
3

. (23)

Then Eq. (22) is of the form (5) and has the solution

θ(t) = α cos


ℓ(t)

g − λ̈(t)


dt + β


, (24)

for arbitrary constants α, β . As one example we can consider the physically interesting case λ(t) = a cos(ωt) which gives
g − λ̈(t) = g + aω2 cos(ωt) with a constant such that g > |a|ω2; the corresponding solution is given by

θ(t) = α cos

 
g + aω2 cos(ωt)

 2
3
dt + β


. (25)

Note that θ(t) is in general a quasi-periodic function of time.

2.5. A class of Hill’s equations

If Q (t) is a periodic function with respect to time then Eq. (9) is known as Hill’s equation. One case where Eq. (10) can be
solved for time dependent coefficients is when it can be written as Eq. (7) for some function ω(t). One can see that if this is
true, b(t) can be expressed in terms of a(t) and hence Q (t) becomes a function of a(t) only. In this form for the solution y(t)
of (9) to be periodic, a(t) must be a periodic function of time with zero mean value. Rewriting equations (10) and y(t) in
terms of a(t) and recalling that solutions to (10) where a(t) = −ω̇(t)/ω(t) are finite and periodic, we see that all solutions
found for the corresponding Hill’s equation are in turn bounded and hence stable; so we have

ẍ(t) + a(t) ẋ(t) +


e−2


a(t) dt


x = 0,

Q (t) = −
1
2
ȧ(t) −

1
4
a2(t) + e−2


a(t) dt , (26)

y(t) =


e

1
2

a(t) dt


cos

 
e−


a(t) dt


dt


.

Since ω(t) = e−

a(t) dt the latter solution can be written in the form

y(t) =
1

√
ω(t)

cos (ω̄t + Ω(t)) , (27)

where ω̄ is the average of the function ω(t) and Ω(t) is a primitive of the zero-average function ω(t) − ω̄. Note that in
general y(t) is a quasi-periodic function, with two frequencies ω̄ and ω0, with ω0 being the frequency of ω(t), and reduces
to a purely periodic function only if ω̄ is commensurate with ω0.

For instance, if one considers Hill’s equation

ÿ(t) + Q (t)y(t) = 0, Q (t) = λ +


e−2 sin2 t

− sin2 t − sin4 t


,

for general values of the parameter λ the equation cannot be explicitly solved. In particular, by varying λ on the real axis,
one passes repeatedly from instability to stability regions [3]. However, for the special value λ = 1, the solution can be
explicitly worked out and it is of the form (27) with ω(t) = e− sin2 t .



1030 M. Bartuccelli et al. / Applied Mathematics Letters 26 (2013) 1026–1030

More generally one can consider the case in which ω(t) is quasi-periodic with frequencies ω1, . . . , ωn. Then the solu-
tion y(t) has still the form (26), but with Ω(t) now a quasi-periodic function with the same frequencies as its derivative
ω(t). Therefore the quasi-periodic Hill’s equation (9), with Q (t) as in (13) and ω(t) quasi-periodic, provides an example
where the solution can be completely constructed. This is a remarkable property, since in general the study of the quasi-
periodic Hill’s equation, especially when the function Q (t) is not close to a constant, requires a very delicate analysis; see
for instance [8–11].
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