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Abstract
This contribution introduces a two-step, novel neural rendering framework to learn the transformation from a 2D human sil-
houette mask to the corresponding cast shadows on background scene geometries. In the first step, the proposed neural renderer
learns a binary shadow texture (canonical shadow) from the 2D foreground subject, for each point light source, independent
of the background scene geometry. Next, the generated binary shadows are texture-mapped to transparent virtual shadow map
planes which are seamlessly used in a traditional rendering pipeline to project hard or soft shadows for arbitrary scenes and
light sources of different sizes. The neural renderer is trained with shadow images rendered from a fast, scalable, synthetic data
generation framework. We introduce the 3D Virtual Human Shadow (3DVHshadow) dataset as a public benchmark for training
and evaluation of human shadow generation. Evaluation on the 3DVHshadow test set and real 2D silhouette images of people
demonstrates the proposed framework achieves comparable performance to traditional geometry-based renderers without any
requirement for knowledge or computationally intensive, explicit estimation of the 3D human shape. We also show the benefit of
learning intermediate canonical shadow textures, compared to learning to generate shadows directly in camera image space.
Further experiments are provided to evaluate the effect of having multiple light sources in the scene, model performance with
regard to the relative camera-light 2D angular distance, potential aliasing artefacts related to output image resolution, and
effect of light sources’ dimensions on shadow softness.

CCS Concepts
• Computing methodologies → Computer graphics; Neural networks;

1. Introduction

Compositing techniques traditionally require, among other infor-
mation, 3D geometry of foreground objects to render plausible
shadows into the background plates of a target scene [Wri13]. In
this context, harmonising the appearance (shading and/or shadows)
of foreground objects without knowledge of geometry, or other
scene properties such as materials, lighting, or camera is desirable
and has recently received increased attention [SLZ∗22, ZLZ∗20,
LLZ∗20, SZB21, HNZ22].

A specific category of foreground objects with particular impor-
tance are human performers or presenters, extensively used with
compositing techniques in the VFX industry. However, reconstruct-
ing the non-rigid human bodies in real-time or tracking a respec-
tive pre-calculated 3D model can be computationally expensive, or
might simultaneously require multiple calibrated capturing devices.

In this paper, we specifically address the problem of hard shadow
generation for standing human postures cast on arbitrary scene ge-
ometries, given the segmentation mask of the body from a single
viewpoint of a calibrated camera. The proposed approach therefore
does not require the 3D geometrical model of the subject and is not

limited to certain shadowed scene geometry, e.g. a floor. However,
as both the camera pose, and light source position are given with
respect to the subject, our approach stands between the appearance
harmonisation techniques [ZLZ∗20, LLZ∗20] and traditional ren-
dering. Refer to Fig. 1 for an overview of our method.

A main assumption in the state-of-the-art neural appearance
harmonisation is an existing planar scene geometry for shadows
e.g. a floor in the background image (backplate) – either explicit
[SZB21, LLZ∗20], or implicit, by the nature of employed train-
ing/test datasets [ZLZ∗20,HNZ22]. Although, given enough infor-
mation about the scene, planar shadows generated in camera image
space can be re-cast to a different background geometry, we pro-
pose and justify a two-step approach to shadow casting. In the first
step, a binary shadow texture is generated for the foreground by
the proposed neural model, from the view point of light source,
similar to rendered depth maps in shadow mapping [Wil78], which
in the second step are projected/cast to scene geometry using con-
ventional rendering pipelines. In essence, both the rendering of a
depth map for the foreground object from light source perspec-
tive, and the consecutive depth test for background scene geometry
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Figure 1: Overview of our method for casting foreground subject’s shadows on the background geometry: the inputs to our method are
the normalised, canonical segmentation mask using the camera calibration (intrinsics), and a synthesised environment light based on the
relative position (extrinsics) of camera and light to the subject. The output is the projective shadow texture (canonical shadow) which is cast
on given, arbitrary background geometry using the estimated subject height, and the light position

are learned in a binary projective shadow texture, which for conve-
nience, we call canonical shadow hereafter.

Recently, Sheng et al. [SLZ∗22] propose to learn an intermedi-
ate 2.5D Pixel Height representation from 2D foreground object
mask, which later can be used with ray tracing to cast hard shad-
ows in the image space. The generated hard shadows are then soft-
ened by a separately trained soft shadow generator (SSG [SLZ∗22],
SSG++ [SZP∗23]) neural model. In contrast to soft shadow net-
work (SSN) [SZB21], which learns the complex mapping from en-
vironment light maps and object silhouettes to soft shadows, SSG
aims to soften the hard shadows by a softness factor. However,
to support general shadow receivers of different geometries, one
needs to have knowledge of, and integrate Pixel Height maps of the
shadow receiving geometry in a traditional pipeline, which limits
the applicability of the approach. Our proposed canonical shadows
can seamlessly be used in a traditional rasterisation, or global illu-
mination rendering pipeline, using the conventional representations
of the background geometry such as triangular meshes.

The most important information for estimating cast shadows of
an object is the 2D occluding contour from the light source perspec-
tive [Wil78]. In this paper, without 3D geometry and given only
the subject’s 2D occluding contour from the viewpoint of a cali-
brated camera, we learn its canonical shadow for an arbitrary light
source location. Here the effects of 3D human shape on the canon-
ical shadow are learnt implicitly from the training data. To render
canonical shadows, in ray tracing algorithms, the binary textures
are mapped to virtual, transparent (canonical) planes which are de-
fined by the normal vector light source-subject position. These oc-
cluders are added to the scene to naturally generate hard or soft
shadow effects on the background scene geometry. In rasterisation
pipelines, the canonical shadows are mapped to existing scene ge-
ometry via projective texture mapping [SKVW∗92] from the light
source viewpoint. Note that separately generated shadows caused
by individual light sources can be combined to model complex
scene illumination.

A deep convolutional neural network (CNN) [GBC16] model is
introduced and trained on a novel synthetic dataset generated on
311 human models of a wide variety of body and clothing charac-

teristics which will be released publicly as 3DVHshadow. We show
that the trained model has the generalisation capability to regress
the shape of cast shadows on a test set of 107 models, and human
silhouettes from real images. This generalisation is due to the ge-
ometrical aspects of the light transport that can be reproduced by
synthetic data, in contrast to the learning and reproduction of the
global illumination effects for relighting problems.

We further investigate how the proposed canonical shadows im-
prove the details of the generated shadows, quantitatively and quali-
tatively, compared to both (a) directly generating the shadows in the
camera image space on a planar background scene geometry, and
(b) the shadows generated from the deep learning-based monocular
3D human geometry estimation method PIFu [SHN∗19]. We ablate
our model with regard to resolution to show it can maintain qual-
ity for larger output images, and therefore avoid unwanted aliasing
effects. Additionally, we analyse the effect of 2D angular distance
between light source and the camera in the quality of the generated
shadows. This experiment shows the benefit our approach in im-
plicitly learning the 3D geometry of the subject, for more demand-
ing scenarios where light source and camera are perpendicular.

Finally, we show the generalisation of our method to images of
real people by comparing the generated shadows by the proposed
model to the shadows rendered using classic multiple-view 3D ge-
ometry reconstruction. The experiments show the suitability of the
proposed model in regressing the shape of the shadows from the
2D silhouette only, without having 3D human geometry.

Our main contributions are as follows:

• An intermediate, projective hard shadow texture representation
(canonical shadow) with seamless integration in conventional
rendering pipelines;
• A corresponding neural rendering model for generation of such

representation from 2D silhouette masks without 3D shape;
• A novel dataset 3DVHshadow for training and evaluation of

human shadow generation, including a wide variety of people,
clothing and poses;
• Plausible shadow generation and compositing for images of real

people using traditional rendering pipelines.
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Table 1: Overview of related work for neural rendering of shadows. ‘I’ denotes no explicit assumption, but existing shadows on planar
geometry predominantly occurring in the dataset

Shading Shadow Object
Training
Dataset Lighting

Existing
Shadows

Arbitary
S. Geom.

Wang et al. [WWL19] X X 2 Objects Synthetic Point × ×
ShadowGAN [ZLW19] × X 22 Categories Synthetic Point X ×
Zhan et al. [ZLZ∗20] X X Car, Human Real Directional I I
ARShadowGAN [LLZ∗20] × X 13 Categories Mixed Point/Sun X ×
SSN [SZB21] × X(Soft) 43 Humans, 59 O. Synthetic Env. Map × ×
Hong et al. [HNZ22] × X General Real Directional I I
SSG (Hard Sh. Phase) [SLZ∗22] × X Humans Mixed Point × X
Ours × X Diverse Humans Synthetic Point × X

2. Related Work

Various aspects of illumination estimation and relighting have been
studied in the literature. For a comprehensive review of approaches
using neural models, refer to the recent survey by Einabadi et al.
[EGH21]. Also, for an overview of the recent advances on neural
rendering refer to Tewari et al. [TTM∗22]. In this section, we re-
view recent work which is most closely related to the problem of
neural rendering of shadows.

Explicit Lighting Estimation. In this scenario, the scene lighting
is explicitly estimated to insert additional objects for which the ge-
ometry and the reflection models are known beforehand. In this
case, the shading and shadows of the inserted objects are read-
ily available and their quality is dependent on the accuracy of
the estimated parameters of the respective lighting model. Deep
neural models have shown promising results for estimating the
lighting of indoor [GHS∗19,SF19], outdoor [HGAL19,ZSHG∗19]
or general [LMF∗19, CSC∗18] scenes as well as specific ob-
ject(s) [PPeYW20], human faces [CLG∗18], hands [MCV18], etc.
The same is also valid in neural inverse rendering for estimating
the scene elements, including the lighting parameters [SGK∗19,
LSR∗20, YME∗20]. It is however noteworthy to mention that even
with realistic lighting and reflection models of a scene, it remains a
challenge to simulate global illumination effects, sub-surface scat-
tering, etc. with the current state-of-the-art physically-based ren-
derers in a reasonable amount of time [PJH16].

Foreground-Background Harmonisation. A more challenging
problem formulation is to harmonise the shading and shadows of
a foreground object to a target scene, without necessarily having
the respective geometry and the material models. Table 1 provides
an overview of the related contribution characteristics.

A common approach is to generate the shadow(s) directly in the
background image with the assumption of existing planar scene ge-
ometry. In case of Zhan et al. [ZLZ∗20] and Hong et al. [HNZ22],
there is no explicit assumption in the methodology, but the train-
ing/test datasets predominantly contain cast shadows on planar sur-
faces. However, more often in compositing tasks, the backplate has
complex geometry and the shadow might not cast on a planar sur-
face. Our contribution utilises the camera calibration to regress the
canonical shadows which can then be cast to arbitrary known back-
ground geometry.

Zhan et al. [ZLZ∗20] and SSN [SZB21], similar to our method,

provide control over target lighting whereas other work [WWL19,
ZLW19, LLZ∗20, HNZ22] are dependent on and therefore limited
to the existing cues in the backplate – e.g. visible occluders and
their respective shadows – to generate shadows for the inserted
foreground objects. This can prove challenging; e.g. ARShadow-
GAN [LLZ∗20] reports that the proposed model fails to generate
correct shadows where there exist large dark areas in the backplate.
Also, Hong et al. [HNZ22] report larger shadows when there are no
existing shadow cues in the backplate.

Zhan et al. [ZLZ∗20], SSN [SZB21] and Hong et al. [HNZ22]
address shadow generation for non-rigid human postures but their
datasets are not diverse. Other work focus on rigid-body ob-
ject categories or even instances [WWL19]. Our work proposes
3DVHshadow dataset containing variety of people, clothing and
postures.

In contrast to other contributions, SSN [SZB21] generates only
soft shadows. In this work, we however address the problem of ren-
dering the shadow shape detail corresponding to the human subject,
giving a realistic hard shadow mask for point light sources. We
show that, by using canonical shadows, soft shadows can still be
rendered and cast on arbitrary non-planar geometry for the scenes
where light sources have physical geometry. The canonical shad-
ows therefore enable rendering both detailed, and soft shadows for
typical scene illuminations.

Shadow Casting by Intermediate Representations. Shadow
mapping [SWP11, Wil78] is a successful, intermediate depth
(buffer) representation rendered from the light source perspective
which is thoroughly studied in computer graphics literature for
casting shadows in arbitrary scenes using a depth test. Inspired by
this straightforward technique, our proposal aims to learn this depth
test for a certain foreground subject as a binary texture (canonical
shadow) on a canonical virtual plane.

Recently, Griffiths et al. [GRP22] (OutCast) proposed to learn a
non-binary shadow image for source, and target lighting directions
to relight outdoor scenes with cast shadows. The proposed repre-
sentation is the binary shadow mask of the scene multiplied by the
cosine term, i.e., the “clamped dot product of the light direction
and the approximate normal image,” the latter to support self shad-
owing. This contribution demonstrates that the proposed represen-
tation is learnable from a coarsely estimated depth map obtained
from a single input colour image.
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SSG by Sheng et al. [SLZ∗22] proposes to estimate an interme-
diate 2.5D Pixel Height representation from 2D foreground sub-
ject masks in the first step, and ray trace the shadows in the im-
age space in the second step given the point light position. Our
approach follows a two-step manner, too, but our proposed, inter-
mediate canonical representation is readily integrable in existing
traditional pipeline in a sense that conventional mesh geometry of
the background scene is used, as opposed to calculating, and inte-
grating Pixel Height maps in the rendering process.

SSG++ [SZP∗23] claims “soft shadow integration [of Sheng
et al. [SLZ∗22] ] in classical rendering algorithms is slow”, how-
ever, it aims to mitigate this issue by multiple, pre-calculated in-
put buffers containing Pixel Height maps of background, and fore-
ground from multiple samples on the light source to generate soft
shadows and other lighting effects. Pre-calculating such maps is
an additional computational load in real-time rendering applica-
tions [SLZ∗22].

Monocular/Multi-view 3D Human Geometry Estimation. In
principle, 3D mesh geometries of foreground subjects can be esti-
mated from input foreground cut-out (not mask) using deep neural
models [SHN∗19, SSSJ20, CLZL22], to be used in a conventional
rendering algorithm. Such approaches show generally lower qual-
ity estimation for feet contact points [SLZ∗22]. Another main issue
is their high computational complexity. Our approach is a few or-
ders of magnitude faster to estimate canonical shadows compared
to monocular 3D mesh estimators.

From classic, non-neural methods, the 3D geometry of human
subjects can be estimated using multiple-view optimisation tech-
niques [BHKH13, SH07]. However, the camera setup is costly and
not applicable to real-world scenarios where only monocular views
are available.

3. Neural Rendering of Shadows from 2D Human Silhouettes

The proposed human shadow generation model is a CNN trained on
synthetic data with high geometric variety which is able to leverage
the canonical shadow representation to maximise modelling qual-
ity. In this section, we first describe the proposed canonical shadow
representation inspired by shadow mapping [Wil78], and the cor-
responding rendering pipeline. Then our neural model, including
the training and implementation details are presented. Finally the
synthetic data generation framework is presented in detail. Fig. 1
presents an overview of the approach.

3.1. Canonical Shadow Representation: Projective Binary
Hard Shadow Textures

In rendering, shadows of an object are generated by checking if
the rays emitted from a light source to the scene geometry are oc-
cluded by the object. The proposed canonical shadow is a binary
texture on a metric virtual (canonical) plane and represents this oc-
clusion check for a certain object, given the relative light source
position. The canonical shadow plane is defined partially by its
normal, the vector from the light source to the subject position.
The exact 3D position of the canonical plane on its normal is com-
pensated for by the metric size of the canonical texture. In other
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Figure 2: A sample scene with the proposed canonical shadow and
segmentation planes, respectively oriented towards the light source
and the camera. The foreground subject is composited on the top
layer after rendering the scene/shadow. The top view depicts the
2D angular distance between the camera and the light source, θ,
with respect to subject position O. The normal of canonical seg-
mentation plane is the vector connecting O to camera position as
shown in the side view

words, the canonical shadow is effectively the predicted silhouette
of the object as seen from the light source position projected on the
canonical plane.

This representation is motivated from and simplifies the shadow
mapping [Wil78] process for our specific shadow casting task; The
binary texture of canonical shadow is analogous to the outcome of
depth test against the depth map rendered from the light source per-
spective, assuming the scene has only two layers: the foreground
(with no cast shadows on), and the background which receives the
cast shadow from the former. Fig. 2 depicts the geometry of canon-
ical planes for a sample scene.

By choosing to learn canonical shadows, we ensure the existing
benefits of traditional shadow mapping process in conjunction with
our proposed neural rendering approach, compared to the shadows
generated directly in the camera image space:

• It facilitates the learning of the shadow transformation process,
i.e., the quality and details of the generated shadows are im-
proved. This is due to the fact that shadow texture rendered from
the light source perspective provide a compact proxy represen-
tation, independent of scene geometry, whereas for image space
representation, i.e. on the ground plane, there are large variations
in shadow scale and direction (Fig. 3).
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  (a) Canonical Space (b) Image Space

Figure 3: (a) The metric canonical shadows for three different light
source heights compared to (b) the corresponding shadows in im-
age space on a ground plane. The changes in the former are mini-
mal. Overlays provided for comparison

Canonical Space Image Space

Figure 4: Input normalisation: canonical format (left) for various
camera image segmentation masks (right)

• It substitutes the network’s fixed-size image space output shadow
in pixels with a metric shadow texture of estimated dimension.
The canonical representation is independent of the scene config-
uration, background geometry, and the camera location, and, in
contrast to image space representation, can always accommodate
the whole shadow.

Similarly, we define the canonical segmentation plane with its
normal, the vector connecting the camera to the subject position
(Fig. 2). The benefit of such representation is when the segmenta-
tion mask is projected to the canonical plane and is size-normalised,
its shape is agnostic to camera intrinsic parameters such as focal
length, pixel size, etc., as well as the subject’s position in the image.
This transform is a planar homography where the camera position
is the centre of projection as described below. Fig. 4 shows such
input normalisation for a few segmentation masks.

3.2. Rendering Canonical Shadows

Rendering scenes with canonical shadows requires two phases:
(a) rendering the background scene and the cast shadow(s), and
(b) compositing the foreground subject cut-out given the provided
segmentation mask. The latter is a straightforward compositing
technique and is normally achieved by alpha blending operators.
The first phase, however, can be performed either in rasterisation
pipelines, or with ray tracing methods.

For rasterisation, rendering canonical shadows is equivalent to
projective mapping of the 2D canonical shadow texture on the ex-
isting scene geometry from the corresponding light source view-
point – first introduced by Segal et al. [SKVW∗92] for rendering
fast hard shadows using graphics hardware. To render real-time soft
shadow effects, multiple techniques have been proposed in the lit-
erature [HLHS03]. For example, the simplest image-based method,
introduced by Heckbert and Herf [HH97], is to render soft shadow

Table 2: The proposed CNN architecture for shadow generation

Module Layer Kernel Resample Output
Conv 3× 3 - 512× 512× 4

Encoder DSL×5 3× 3 AvgPool 2× 2 32× 32× 64
Shadow Trans. ShL×4 15× 15 - 32× 32× 64
Decoder USL×4 3× 3 Upsample ×2 512× 512× 8

Conv 1× 1 - 512× 512× 1
tanh - - 512× 512× 1

effects by sampling the geometry of light source at multiple posi-
tions to create binary occlusion maps (based on the given canonical
shadow texture) and combine them in a soft shadow texture to be
projected on the shadow receiving geometry.

On the other hand, for ray tracing algorithms, the 2D canonical
shadow is mapped to a corresponding canonical plane and added to
the scene as an occluder, to be rendered with existing background
scene geometry. In photography or theatrical lighting, this shadow
generation technique is usually referred to as placing gobos in front
of a light source. For example, in path tracing [PJH16], both hard
or soft shadows effects are naturally achieved based on the light
source geometry, and other scene configurations. The only consid-
eration is to make the occluder invisible to the camera rays to hide
it in rendered images.

To render soft shadows cast from geometrical light sources,
canonical shadows are generated corresponding to a representa-
tive point on the light source geometry, e.g., the centre for spher-
ical lights. This is an acceptable approximation for the estimated
shadow masks so long as the light source dimensions over dis-
tance are negligible compared to the subject size – otherwise, the
light source must be sampled by multiple point light sources, cor-
responding to multiple occluder canonical shadows.

If there are multiple light sources present in the scene, render-
ing canonical shadows in phase (a), is achieved in a layered man-
ner: Each rendering layer has one light source, and the respective
canonical plane/shadow. The rest of the scene is shared between
all layers. All layers are rendered separately, and then added to-
gether to form the final image. This is based on rules of superpo-
sition [NSD95], i.e., “the linearity of the rendering operator with
respect to illumination for a fixed scene and camera geometry”.

In our implementations, we use Blender’s path tracing engine
Cycles [Ble] for rendering single or multiple, hard or soft canonical
shadows. Appendix A describes the rendering process in detail.

3.3. Shadow Generation Model

The encoder-decoder architecture of the proposed CNN model is
inspired by the related work [HNZ22, ZLW19] and is presented in
detail in Table 2. Each downsampling (DSL), upsampling (USL),
or Shadow Transformation (ShL) layer consists of a convolu-
tion, ReLU non-linearity, and instance normalisation. The Shadow
Transformation module in the latent space benefits from larger re-
ceptive field convolutions to take into account the global nature of
the shadow generation transformation. The tanh in the last layer
limits the output range of each pixel so that the shadow image can
be obtained by a range normalisation. The model has 3.8 million
parameters. Appendix B provides a detailed description of the in-
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Table 3: Quantitative metrics calculated on the synthetic generalisation dataset for the baselines and the proposed canonical method. The
shadow output of the neural renderer is thresholded by the specified pixel percentage values for IoU and Dice metrics

< 95% < 99%
RMSE ↓ IoU ↑ Dice ↑ IoU ↑ Dice ↑

Method avg std avg std avg std avg std avg std
Baseline (a) Shadows by Planar Homography 0.159 0.057 0.617 0.208 0.739 0.192 0.625 0.209 0.745 0.192
Baseline (b) Image Space Shadows 0.153 0.032 0.683 0.096 0.807 0.074 0.696 0.093 0.817 0.070
Baseline (c) Shadows from PIFu Geometry 0.221 0.062 0.551 0.148 0.698 0.135 0.565 0.147 0.710 0.132
Canonical Shadows 0.097 0.028 0.827 0.059 0.904 0.037 0.835 0.056 0.909 0.035

  (a) (b) (c) (d)

Figure 5: An example entry of 3DVHshadow: (a) dataset’s di-
verse human models, (b) a textured human with (c) its segmentation
mask, and (d) the corresponding shadow mask on a planar surface

put channels (the segmentation mask, and illumination), as well as
the implementation details.

Loss Function. The loss criteria used in the back-propagation
training algorithm is an L1 reconstruction loss, calculated on the
network’s output pixel values, Î, and the corresponding supervision
label, I, as Lrec = ∑trainingset |Î− I|.

3.4. Synthetic Data Generation Framework

To train and evaluate the proposed neural rendering model, a di-
verse, synthetic dataset is generated based on a set of 3D human
models of 3DVH virtual human dataset [CMIH21] performing var-
ious walking styles such as while answering a call, happy walking,
etc. This extension to 3DVH will be released as 3DVHshadow to
facilitate future research on this topic.

Each dataset entry includes a rendering of the subject from the
camera view point, its binary segmentation mask, and a binary
shadow mask on the floor where the subject stands – in total 3
images (Fig. 5). The respective rendering metadata such as point
light source position, camera pose, etc. is also provided alongside
the images. In total, the dataset contains about 24400 training and
8400 test entries, each rendered with random postures, and cam-
era and light source positions. Appendix C provides further details
on the employed 3D models and rigging, scene content, rendering
algorithm and its settings, and the factors of variations.

4. Experiments

In the following, we evaluate the generalisation of the trained
model in the proposed canonical shadow space for unseen combi-

nations of body shape, posture, camera pose and point light source
positions, on synthetic and real images.

4.1. Synthetic Data

In this experiment, we use the introduced synthetic training dataset
to train the proposed model. For evaluation, we use the correspond-
ing synthetic generalisation set.

We also use the same dataset to train the same encoder-decoder
model to generate shadows in the camera image space on a pre-
defined geometry (here a floor) and examine the quality of the gen-
erated image space shadows versus the proposed canonical repre-
sentation.

Baselines Methods. We consider three baseline methods for com-
parisons: shadows generated on a planar surface by (a) a naive
planar homography transformation applied to segmentation masks,
assuming that the subject is planar, i.e. has no depth; (b) our pro-
posed model, but trained in the camera image space (not canonical)
for segmentation, and shadow masks; (c) based on the estimated
subject’s 3D geometry from PIFu [SHN∗19]. In all three cases the
generated shadows are then converted into the canonical form for
comparison. Evaluation in canonical shadow space is agnostic to
scene geometry.

The baseline method (a) is based on the property that the image
of a planar object and the image of its shadow are related through a
homography. Camera calibration and light position are employed to
estimated this projective transformation by obtaining the required
4-point correspondences on the planar shadow receiver for the cor-
ners of the 2D bounding box of the segmentation mask.

For baseline (c), for fairness, we trained the PIFu model based on
our synthetic dataset using the official code [SHN∗19]. Appendix D
covers the PIFu’s training parameters and test details, as well as the
details of the input height normalisation step for baseline (b).

Metrics and Quantitative Results. We calculate Root Mean
Square Error (RMSE), Intersection over Union (IoU), and Dice (F1
Score) [SM83] metrics for the generated shadows by each method,
comparing them to the shadow labels of the test dataset which are
based on ground truth 3D geometry. As the output of the neural
renderer is real-valued pixels in the range of [0,1], the IoU and
Dice metrics are calculated on thresholded, binary shadows. Table 3
shows the results for the proposed method trained in the canonical
space, compared to the aforementioned baselines. Our method out-
performs the baselines for all RMSE, IoU, and Dice metrics and
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Figure 6: Dice metric calculated on 18 10-degree bins of 2D
camera-light angular distance (θ in Fig. 2). Standard deviation
bars are linearly scaled (25%) for clear visualisation

has the lowest standard deviation. The standard deviation is consis-
tently the highest for baseline (a) for all metrics.

Fig. 6 depicts the Dice metric calculated on 18 bins (10 degrees
each) of 2D camera-light angular distance which is referred to as θ

in Fig. 2. When the angle θ is near 0, all methods perform almost
their best due to the fact that the expected shadow is very similar
to the input segmentation mask, and therefore there exists little to
none 3D extrapolation. Baseline (a) fails when θ is about 90 degrees
(rows 2 and 6 of Fig. 7). This is due to the simplification that the
shadows are generated for the planar (flat) subjects. Also, almost
correct shadows are expected when angular distance is negligible
(rows 3 and 7 of Fig. 7). This leads to higher standard deviation for
baseline (a) for the metrics in Table 3. Our method performs mostly
consistently when θ changes from 0 to 180 degrees.

Qualitative Results. Fig. 7 shows the results of the experiment for
a number of samples randomly drawn from the generalisation set.
The shadows from baseline methods are transferred to the canoni-
cal space to assist visual comparison. The results show more shape
details for the generated canonical shadows compared to the cor-
responding baseline methods in image space. Baseline (c) demon-
strates artefacts resulting from depth ambiguities in the monocular
3D mesh inference process in row 2, as opposed to rows 3 and 7
where its extrapolation performance is not challenged/visible due
to specific camera and light perspectives. Also, baseline (c) is the
only approach with detached shadow artefacts from the body. Base-
line (b) suffers from lack of details, e.g. the missing limbs, in the
generated shadows. However, the subject’s height and overall shape
are estimated.

Ablation to Output Resolution. Similar to shadow mapping tech-
niques, projective shadow casting is prone to aliasing issues. One
specific case is caused by upsampling smaller shadow textures
for larger target rendering sizes. We ablate our proposed model
with the same dataset but with higher resolution segmentation and
shadow masks. Table 4 shows the metrics calculated for higher res-
olutions. The results demonstrate that increasing the convolution
layers’ kernel sizes according to the input/output resolution im-
proves the shadow generation quality for higher resolutions com-
pared to using the original kernel sizes of 3. This ablation is of par-

Illum.
Map

Can.
Mask

GT
Shadow

Baseline
(a)

Baseline
(b)

Baseline
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Our
Shadow

Figure 7: Generated shadows for representative samples from
the synthetic dataset. All shadows and the segmentation mask
are shown on the canonical planes to assist comparison. Ground
truth (GT) and baseline (c) shadows are rendered using traditional
graphics pipeline and then transferred to canonical planes

ticular importance while the input/output resolution can vary con-
siderably in compositing tasks.

Moving Light Source. Additional material contains videos of sub-
jects lit with moving (rotating) light source(s) with their shadows
rendered using the generated canonical shadows compared to the
ground truth. A reference object (Stanford Bunny [Sta]) is added
for comparison purposes. The results demonstrate our approach
does not suffer from artefacts related to temporal changes in the
light source position.

Other Remarks. The same canonical shadow representation, given
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Table 4: Quantitative metrics calculated for learning canonical shadows using the same architecture as Table 2 but with higher input/output
resolutions. Convolution layers’ kernels are enlarged proportionally to the resolution

< 95% < 99%
RMSE ↓ IoU ↑ Dice ↑ IoU ↑ Dice ↑

Resolution Kernel Size avg std avg std avg std avg std avg std
512×512 3 0.097 0.028 0.827 0.059 0.904 0.037 0.835 0.056 0.909 0.035
1024×1024 7 0.109 0.029 0.816 0.063 0.897 0.039 0.822 0.061 0.901 0.038
1024×1024 3 0.112 0.030 0.809 0.063 0.893 0.040 0.815 0.062 0.897 0.039
2048×2048 15 0.123 0.032 0.786 0.070 0.879 0.045 0.792 0.069 0.882 0.044
2048×2048 3 0.126 0.033 0.780 0.073 0.875 0.047 0.785 0.072 0.877 0.046
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Figure 8: Compositing canonical shadows of real silhouettes on the background scene (rows 4, 5) compared to the ground truth shadows
from estimated 3D geometry (row 2, 3). Feet contact point shadows are zoomed in for better comparison. First row shows the pipeline data.
Experiment performed on the frames of the Dan dataset [CVS]

training data, can be used to learn shadow generation for other ob-
ject categories, as the assumptions are not dependent on the human
category.

The fast inference of canonical shadows (less than 5 ms for a
mini-batch of size 8 for the resolutions in Table 4) makes the pro-
posed approach suitable for compositing tools e.g. when a trained
artist needs to interactively approximate the target scene lighting by
trial and error based on the generated shadows. This is in contrast to
Baseline (c) where estimating geometry from subject’s cut-out re-
quires about 5 seconds which is in principle 3 orders of magnitude
slower.

It is also noteworthy that our main contribution is learning pro-

jective shadow textures (canonical shadows) for foreground sub-
jects and comparing its benefits to the shadow generation in image
space, or based on a monocular 3D geometry estimation method.
These benefits include better quality and details, and the guaran-
teed whole shadows for the challenging non-rigid human object
category (see Section 3.1). However, considering the general prob-
lem of neural rendering of shadows in the camera backplates, one
in principle could compare the results to the related work, by train-
ing their models with our dataset, should they have the same in-
puts and outputs in the problem formulation. Based on Table 1,
methods of Wang et al. [WWL19] and Zhan et al. [ZLZ∗20] re-
quire the shading information of the backplate for the training and
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generating shadows, while our formulation of the problem is mask-
based and uses controllable lighting. ShadowGAN [ZLW19], AR-
ShadowGAN [LLZ∗20], and method of Hong et al. [HNZ22] re-
quire existing shadow-casting objects in the backplate. Hong et al.
[HNZ22] use backplate shading information when there are no such
existing objects. SSN [SZB21] and SSG [SLZ∗22] are, similar to
our method, mask-based and benefits from controllable lighting,
but SSN by nature generates only soft shadows which are not com-
parable to our method’s. SSG renders hard shadows in the first
phase from the estimated Pixel Height maps, but the implemen-
tation details are not shared, and so the results are not reproducible
at this stage.

4.2. Real Data

We compare the quality of the shadows generated by our neu-
ral model (second row, Table 4) to those generated by having the
3D mesh model of an actor in a studio, obtained from a baseline
multiple-view 3D geometry reconstruction algorithm. More specif-
ically, the selected Dan, Character1, and J.P. datasets [CVS] con-
sist of multiple-view recordings of some basic human actions such
as walking, moving a box, etc. from 8 calibrated cameras. The
dataset entries are accompanied by the respective subject’s posi-
tion, segmentation mask, and the reconstructed geometry with the
algorithms of Starck and Hilton [SH07], Budd et al. [BHKH13].

In this experiment, we render a synthetic scene from the point of
view of the calibrated real camera and use the multi-layer render-
ing technique described in Section 3.2 to render canonical shadows
and composite the foreground subject. The synthetic scene contains
the subject’s canonical shadow, an additional test object (Stanford
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Figure 9: Shadows in a scene with multiple point light sources.
Ground truth shadows are generated using estimated 3D geometry.
Experiment performed on the frames of Character1 from [CVS]
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Figure 10: Soft shadows generated for the scene in Fig. 9 given the
geometry of physical light sources

Bunny [Sta]), floor, wall, and a randomly positioned point light
source. The scene is rendered with Blender’s Cycles engine [Ble]
using the default settings.

Fig. 8 shows the shadows generated by our proposed neural ren-
dering approach. The direction, shape details and the scale of the
shadows are plausible compared to the shadows rendered based on
3D geometry. Furthermore, this experiment shows the flexibility
of the canonical shadows to be projected on arbitrary background
scene geometries.

Scenes with Multiple Light Sources. Although, the proposed neu-
ral model assumes a single point light source as input, shadows
from complex illuminations can be produced, e.g., by sampling
multiple, discrete point light sources [Deb08] and generating and
compositing the shadows. Note that this is different from sam-
pling the emitting surfaces of light sources for rendering soft shad-
ows [HLHS03].

Using our model, a canonical shadow is generated for each point
light source separately. These canonical shadows are then rendered
in a multi-layer 3D scene and composited using a conventional
graphics pipeline (refer to Section 3.2) to obtain a scene with mul-
tiple shadows. Fig. 9 shows a scene rendered with three point light
sources with various intensities.

Soft Shadows and Non-point Light Sources. Fig. 10 depicts the
cast soft shadows for physical light sources with geometry, given
the canonical shadows corresponding to the centre of the light
sources. The rendering pipeline is discussed in Section 3.2, with the
only difference that the scene light sources are modelled as emitting
geometries rather than points. The results show that our approach
renders visually plausible soft shadows on arbitrary scene geometry
based on the estimated canonical shadows. Ground truth shadows
using subject’s 3D geometry are provided for visual comparison.

Note that the quality of the soft shadows are dependent on the
quality of the estimated canonical shadows which is investigated
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Naive Composite ARShadowGAN Ours

Figure 11: ARShadowGAN [LLZ∗20] shadows generated based on
the naive composite vs. our canonical shadows. Experiment per-
formed on the frames of J.P. from [CVS]

in Section 4.1. The rendering algorithm and its settings can be
changed for empirical reasons, e.g., time and quality constraints,
etc. We use the path tracing algorithm of the Cycles engine [Ble]
with the default settings according to the process described in Ap-
pendix A. This is in contrast to SSN [SZB21], which learns the soft
shadow generation on only planar surfaces in one step.

Comparison with ARShadowGAN [LLZ∗20]. ARShadow-
GAN [LLZ∗20] uses existing shadow cues in the backplate to gen-
erate shadows for the inserted subject. Despite the fact that our pro-
posed approach is based on controllable lighting, we aim to com-
pare the methods by using the shadow cues of a background object
– here the Stanford Bunny [Sta].

Fig. 11 shows our approach is capable of rendering detailed cast
shadows on the background scene geometry and generates plau-
sible shadows for humans. Comparisons demonstrate ARShadow-
GAN [LLZ∗20] renders artefacts around subject’s face and arms
areas and on the scene geometry. Also, shadows are not plausible.
The latter could fairly be associated with the lack of diverse human
postures in the training dataset.

Compared to ARShadowGAN [LLZ∗20], our approach uses ex-
tra camera calibration, subject’s pose, background scene geometry,
and light source position in a traditional rendering pipeline to (a)
cast shadows on non-planar geometries, and (b) cast multiple shad-
ows for multiple light sources. Liu et al. [LLZ∗20] claim that “ex-
tending the Shadow-AR dataset is a possible way to solve [these]
limitations.” Also, our approach does not impose limitations on cast
shadows intersecting the shadows of other existing geometries.

4.3. Limitations and Failure Cases

Fig. 12 shows the entries with the highest test error in the synthetic
generalisation set as well as a failure case in the real dataset. For
the synthetic ones, the worst cases’ shadows are still plausible but
they lack details.

The shadow generation model does not generalise to new hu-
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Figure 12: Cases with the highest error value in the synthetic gen-
eralisation set (rows one to four) and a failure case on the real set
(row five)

man postures which are distinct from the poses seen in the train-
ing dataset such as the bending posture in Fig. 12 (bottom row).
To overcome this limitation, the training dataset could be extended
to include a wider range of human postures covering the full pose
range.

5. Conclusion

In this paper, we proposed a two-step method using canonical
shadow representation for neural rendering of human shadows on
arbitrary background scene geometries, given the subject and light
positions, subject’s 2D silhouette mask, camera calibration, and
without any knowledge of subject’s 3D shape. The proposed model
is trained with the synthetically generated dataset 3DVHshadow.
The introduced dataset contains images, segmentation masks and
shadows of subjects of various body characteristics and postures,
lit and rendered under randomly sampled point light source and
camera positions. The experiments show the benefits of training the
neural renderer in the canonical, projective space, compared to di-
rectly in camera images, for generating higher quality cast shadows
for synthetic, random scenes. The method is furthermore evaluated
for generation of shadows for unseen images of real people and
demonstrated to produce plausible shadows.

Future research directions include extending the range of human
postures through extension of the training set, evaluating the role of
different (visually inspired) loss functions, further analysis of alias-
ing through learning canonical shadows in normalized device coor-
dinate space (perspective space), and evaluating temporal coher-
ence of the generated shadow masks of moving subjects in video.
Currently the proposed approach generates shadows for each im-
age independently, which may result in flicker for video sequences.
One approach is to explore contrastive loss with siamese networks
to enforce temporal coherency in video, i.e., similar shadows for

c© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

72



Einabadi et al. / Learning Projective Shadow Textures for Neural Rendering of Human Cast Shadows from Silhouettes

neighbouring frames. This has the potential for a practical tool for
artist driven shadow generation in media production.
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Appendices

Appendix A: Rendering Canonical Shadows with Cycles

Fig. 13 depicts the process of rendering a subject’s shadow, given
the canonical shadow and the corresponding point light source po-
sition, on a scene geometry, using Blender’s path tracing engine
Cycles [Ble].

  

+

+

+

+

Light
Source

Figure 13: Projecting a canonical shadow on the scene geome-
try. The yellow marks are the intersection points corresponding to
the light rays passing through the canonical shadow bounding box
corners. Note how the shadow is cast on the Stanford Bunny [Sta]

In Cycles, this process is natively supported by assigning a trans-
parent material to the canonical shadow plane (Fig. 13, smaller grey

square) and having the canonical shadow as its texture. The canoni-
cal plane is set not visible to camera rays (hidden), but visible to the
corresponding light source. This occluder is added to the existing
scene and rendered with the rest of the scene elements.

Fig. 14 shows the rendering and compositing pipeline for multi-
ple canonical shadows in Blender, based on the multi-layer render-
ing technique described in Section 3.2. In the last step, the subject is
composited over the rendered image using the segmentation mask.
This is a well established rendering process and can be automated,
e.g., via Blender’s Python scripting.

> Layer Light Source 1

> Layer Light Source 2

> Layer Light Source N
> Add

> Add

> Invert

> Alpha Over

> FG Image

> Seg Mask

> Denoise > Composite

> Set Alpha

Figure 14: Rendering and compositing pipeline for multiple
canonical shadows in Blender

Appendix B: Input Channels and Implementation Details

Table 2 presents the proposed model architecture. The network has
two input channels: the binary, canonical segmentation mask of
the subject, and the desired illumination under which the canoni-
cal shadow mask (the output) is generated (Fig. 1).

The Illumination Channel. It is modelled as a full spherical binary
map scaled to have the same aspect ratio as the segmentation mask.
The point light source is rendered as a homogeneous white blob on
the map with a radius inversely proportional to its distance from
the subject, multiplied by a size constant. This spherical map is
then rotated around its axis according to the planar angular distance
between the light source and the camera. Fig. 2 (top view) shows
the required rotation as θ. Both segmentation and shadow masks
are represented with black colour on a white background.

The Segmentation Mask Channel. Camera calibration is used
to project the segmentation mask to the corresponding canonical
plane, using the planar projective transformation described in Sec-
tion 3.2. The subject on this metric plane is then cropped, and
mapped to the network’s input channel size (in pixels), using the
estimated subject height. The generated output canonical shadow
is then scaled back by the same height (see Fig. 1). We pad the
masks proportional to the subject height to allow the canonical rep-
resentation have full limbs in input and shadows.

More specifically, the inputs to the pre-processing are: fore-
ground segmentation mask, and camera calibration i.e. intrinsic pa-
rameters, and pose w.r.t. the subject’s contact point on the floor. The
outputs are: subject’s height, and canonical segmentation mask.

Note that if camera pose is not known w.r.t. the subject, but some
other origin, given e.g. the camera height from the floor, the sub-
ject feet-floor intersection point can be easily calculated. This is
achieved by intersecting the corresponding camera ray with the
floor plane.

Implementation Details. The model is implemented in Python us-
ing the PyTorch library. The Adam optimiser is employed in the
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training phase with the learning rate of 0.0001. The training takes
advantage of early stopping where the patience is set to 5 epochs,
with no improvements to the best validation error for more than 1
percent. The ratio of the validation set size to the available train-
ing data is set to 10%. The model is trained with 19 epochs on the
training set (see Section 3.4) and takes about 6 hours on a GeForce
RTX 3090. An inference pass in our setup requires on average less
than 5 ms using the same setup.

Appendix C: Synthetic Data Generation Details

The 3DVHshadow generation details are provided in the following.

3D Models and Rigging. To synthesise shadows of people we use
the 3DVH virtual human dataset [CMIH21] which contains 418 3D
parametric models of people. These models are generated based on
14 male and 11 female bodies – with 8 to 48 modifications per
body in shape and pose parameters, hair and clothing. 3DVH mod-
els are animated using the skeletal motion capture sequences from
the Adobe Mixamo [Adob] database; in total, 50 different walk-
ing sequences are applied randomly to the parametric models. The
clothing of people in 3DVH are from Adobe Fuse [Adoa]. In this
work, we split the models into two sets of sizes 311 and 107 re-
spectively for the training and evaluation.

Scene Contents. A scene contains a walking subject on a floor at
a certain instant in time. A camera is placed at a random position
looking at the subject’s contact point on the floor. An isotropic point
light source is positioned randomly in the scene.

Rendering Algorithm Settings. The Eevee rendering engine of
Blender 3.0 [Ble] is employed to render the scene contents with the
default settings, the Standard colour management transform mode
and the target size of 512×512 resolution. The camera focal length
is set to 20 mm and the sensor width to 36 mm. The soft shadow
size of the point light source is set to 0 to produce hard shadows for
training, and its shadow buffer bias and the clip start respectively to
0, and 0.25 metre. The shadow buffer settings are adjusted in order
to render correct shadows at the contact points on the floor.

Factors of Variation. Each subject is assigned with a random pos-
ture and is rendered under 80 combinations of random point light
and camera poses. Both the camera and light positions are sampled
uniformly to have a radius of 2-5 metre to the subject (the hip po-
sition), and a height of 1.75-3.5 metre from the floor. This uniform
sampling is repeated until there is even distribution of the shadow
directions on circular sectors of the floor. In total, the dataset con-
tains about 24400 training and 8400 test entries, leading to about
98K images. A random combination is discarded before rendering
if it is known to produce a partial shadow on the ground plane in the
image space. This is to avoid incomplete ground truth information.

Appendix D: Baseline Methods’ Details

Baseline (b) Input Normalisation. To train the network, assuming
that the subject is centred in the camera image, the subject’s height
is scaled to the height of the network input segmentation channel.
The same scale is also applied to the corresponding camera image
shadows. The inverse transforms are then applied on the network’s
output shadow. If the height-normalised shadows on the floor go

outside the boundaries of the camera image, for fairness, they are
ignored in our evaluation for all methods. The remaining 22686
training, and 7752 test entries in 3DVHshadow are therefore used
in this experiment.

It is also worth noting that in the test images outside
3DVHshadow where the subject is not otherwise centred, this can
be achieved by applying a homography transformation with a fixed
centre of projection. This transformation has three degrees of free-
dom and can be calculated by having the subject’s feet-floor con-
tact point, and only the camera intrinsics. In a simplified case, the
homography is KRK−1 where K is the camera intrinsics matrix
and R the centring 3D rotation represented with Euler angles as
RZ(γ)RY (β)RX (α). Assuming equal focal length in both directions,
no sheer compensation, no sensor shift, and no camera roll (γ = 0),
one can solve for α and β in a closed from manner (or by search) if
focal length and the feet contact point are known or estimated.

PIFu’s Training and Test. Training images are re-generated using
PIFu’s renderer with a weak-perspective camera model [HDL97]
but according to the 2D camera angles and the source 3D objects
of 3DVHshadow training set. To create the ground-truth occupancy
function, we first centre all the 3D models to the origin and we
sampled and labelled points on the surfaces following PIFu with
N (0,σ = 0.05m). We use RMSProp for the surface reconstruc-
tion following Newell et al. [NYD16], batch size of 4, learning rate
0.001. The learning rate of RMSProp is decayed by the factor of 0.1
at 10th epoch. For the test phase, we employed 3DVHshadow test
set directly, by cropping and aligning subjects to the image center
and resizing the images to 512× 512 as required by PIFu training
specification. To calculate the metrics, the output estimated geom-
etry is height normalised using the subject height and rotated to
register to ground truth 3D mesh – both possible given the cam-
era calibration and segmentation mask. The inference time for one
input is about 5 seconds using an NVIDIA GeForce RTX 2070.
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