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Abstract
3D reconstruction of general scenes remains an open challenge with current techniques often reliant on assumptions on the
scene’s surface reflectance, which restrict the range of objects that can be modelled. Helmholtz Stereopsis offers an appealing
framework to make the modelling process agnostic to surface reflectance. However, previous formulations have been almost
exclusively limited to 2.5D modelling. To address this gap, this paper introduces a family of reconstruction approaches that
exploit Helmholtz reciprocity to produce complete 3D models of objects with arbitrary unknown reflectance. This includes
an approach based on the fusion of (orthographic or perspective) view-dependent reconstructions, a volumetric approach
optimising surface location within a voxel grid, and a mesh-based formulation optimising vertices positions of a given mesh
topology. The contributed approaches are evaluated on synthetic and real datasets, including novel full 3D datasets publicly
released with this paper, with experimental comparison against a wide range of competing methods. Results demonstrate the
benefits of the different approaches and their abilities to achieve high quality full 3D reconstructions of complex objects.

Keywords Helmholtz stereopsis · 3D reconstruction · Complex surface reflectance · Markov Random Fields

1 Introduction

Major advances have been made in scene modelling over
the past decades through the development of both classical
and more recently deep learning approaches. These leverage
different cues and features, whether handcrafted or learnt,
to infer scene geometry, often with an impressive degree of
fidelity. However, existing techniques usually remain reliant
on assumptions on the scene properties (surface reflectance,
texture, geometry) or capture conditions (illumination, cam-
era placement) to produce reliable reconstructions. Surface
reflectance in particular is one of the main factors that cur-
rently prevents generalisation of modelling techniques to
arbitrary scenes as it is often assumed to either follow a par-
ticular model (e.g. Lambertian, or specific parametricmodel)
or be known a priori. This restricts the applicability of exist-
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ing techniques to specific classes of objects whichmeet those
requirements.

Recent developments in neural radiance fields (Mildenhall
et al., 2021; Wang et al., 2021; Yariv et al., 2021; Oechsle et
al., 2021) have relaxed the requirement to have a model of
the Bidirectional Reflectance Distribution Function (BRDF).
Another promising approach that makes the reconstruction
process agnostic to the scene’s reflectance is Helmholtz
Stereopsis (HS). The approach exploits Helmholtz reci-
procity (von Helmholtz, 1924) to derive a constraint that is
independent of the BRDF and can be used to retrieve both
scene depth and normal information. Whilst promising, its
formulations to date have been almost exclusively limited to
2.5D reconstruction, framing the problem in terms of esti-
mating the depth and normals at each pixel from a given
viewpoint (usually a virtual view) and thereby allowing only
a partial reconstruction. These approaches also ignore visi-
bility since all the cameras are confined to one side of the
object. Aside from our recent work which we extend here,
the few HS approaches that considered full 3D reconstruc-
tion were either based on local optimisation or refinement in
conjunction with another modality (structured light).

This paper aims to fill the gap in this area by propos-
ing a family of methods for full 3D modelling of scenes
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with arbitrary unknown reflectance based onHelmholtz reci-
procity. It explores different paradigms to extract a full 3D
model from a set of reciprocal image pairs each acquired
by swapping the positions of the camera and light source.
The first approach is based on fusing view-dependent recon-
structions, leveraging confidence metrics to optimise the full
3D surface recovery. Different formulations are investigated
depending on the geometry of the grid used to recover the
intermediate view-dependent representations (orthographic
or perspective). The second approach is basedon avolumetric
optimisation process which overcomes the need to compute
intermediate representations. The last approach uses a mesh-
based formulation to also allow direct optimisation of the full
3D surfacewhile at the same time reducing the computational
footprint compared to the volumetric formulation.

The paper makes the following contributions. Firstly, it
introduces three novel approaches to perform full 3D mod-
elling of scenes with complex reflectance. The formulations
share the use of Markov Random Fields (MRFs) to provide
a principled optimisation framework. A tailored visibility
handling approach is also introduced to overcome the short-
comings of previous 2.5D formulations. Secondly, the paper
contributes novel datasets for full 3D reconstruction using
HS. These include both synthetic scenes generated using
POV-Ray and real scenes acquired using a versatile cap-
ture setup built from consumer hardware (a pair of DSLR
cameras equipped with lens-mounted flashes). The datasets
are publicly released with this paper (see data access state-
ment at the end of the paper). These datasets alongside other
publicly available datasets are used to conduct an extensive
experimental validation of the proposed approaches includ-
ing a comparison against recent Multi-View Stereo (MVS),
MultiView Photometric Stereo (MVPS) and neural radiance
field-based methods.

The paper extends our previous work presented in Addari
and Guillemaut (2019a, b, 2020) in several ways. First, all
three paradigms are brought together into a common article
with full detail provided and a common evaluation proto-
col to facilitate their analysis and comparison. Second, the
fused view-dependent formulation is generalised to perspec-
tive cameras and confidence measures are introduced. The
former allows segmentation information to be leveraged dur-
ing themodelling processwhile the latter improves the fusion
process. Third, a substantially expanded experimental vali-
dation is conducted. This incorporates evaluation on a large
number of scenes as well as a thorough analysis using addi-
tional performance metrics, new results and for the first time
a comparison against the state of the art in MVS, MVPS and
neural radiance field-based methods to validate experimen-
tally the benefits of HS for reconstruction of surfaces with
complex reflectance.

The paper is structured as follows. Section2 reviews
the main 3D reconstruction approaches, highlighting their

dependency on the scene’s reflectance properties as well
as the state of the art in HS and its underpinning princi-
ples. Section3 describes the three proposed approaches to
full 3D modelling of complex scenes. Section4 conducts an
experimental evaluation of the different approaches on both
synthetic and real data. Finally, Sect. 5 concludes the paper
and discusses avenues for future work.

2 RelatedWork

2.1 3D Reconstruction Overview

This section provides an overview of the main categories
of 3D reconstruction techniques, with an emphasis on their
abilities to handle different types of surface reflectance prop-
erties.

Shape from Silhouettes (SfS) approaches are based on
intersecting the set of visual cones defined by backproject-
ing the object’s silhouette in each image (Baumgart, 1974)
to obtain its Visual Hull (VH) (Laurentini, 1994). Indepen-
dence from the surface properties is the main advantage
offered by this class of methods as long as good background
segmentation can be obtained. SfS methods can be further
divided into image-based (Matusik et al., 2000), volumetric
(Szeliski, 1993; Tarini et al., 2002; Liu et al., 2006), surface-
based (Cipolla & Blake, 1992; Forbes et al., 2004; Liang
& Wong, 2010) and hybrid approaches (Boyer & Franco,
2003). Further improvements have been introduced by using
Convolutional Neural Networks (CNNs) to obtain a proba-
bilistic VH (Gilbert et al., 2018). However, this class of
techniques remains inherently limited to the reconstruction
of convex objects due to the impossibility of visualising con-
cavities in silhouettes.

Binocular Stereo and Multi-View Stereo (MVS) methods
(Szeliski et al., 2008; Seitz et al., 2006) use point correspon-
dences across images to infer surface depth. Contrary to SfS
they are not limited to the reconstruction of convex objects.
However, the reconstructed surfaces are often assumed to be
Lambertian or sufficiently textured to perform point match-
ing across views. This assumption is the main drawback as
it is often violated in practice. Certain approaches attempt
to jointly estimate surface reflectance and scene geometry.
In Oxholm and Nishino (2014) and Lombardi and Nishino
(2016), the geometry is obtained iteratively form a previ-
ous estimate of the reflectance and vice versa. This hinders
performance, as each solution will only be as good as the
previously estimated other term. In Holroyd et al. (2010),
instead, light descattering is used in conjunction with an
active MVS technique to obtain both geometry and BRDF.
The results are highly precise, however the method requires
a complex setup comprising two coaxial camera/light source
assemblies to capture stacks of coaxial images and reciprocal
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images of the object. More recently, several MVS formula-
tions have explored the use of CNNs. Examples include (Kar
et al., 2015), in which reconstruction is limited to a specific
set of categories, and Choy et al. (2016), where volumetric
renditionof the analysed scenes is class-independent.Despite
the potential of CNN-based methods, they have yet to reach
the level of accuracy of other types of approaches when a
larger number of images are used. A further hindrance that is
still holding back machine learning approaches in this con-
text is the availability of training data. Recently unsupervised
solutions have been proposed such as in Dai et al. (2019),
however the quality of results is still far from that of tradi-
tional techniques.

Photometric Stereo (PS) (Woodham, 1980) allows recon-
struction of non-Lambertian surfaces, however the surface
reflectance needs to be known a priori. An extensive survey
of PS techniques was published in Ackermann and Goesele
(2015). Han and Shen (2015) use a complex setup to obtain
a very densely sampled set of lights and viewing directions.
This allows to exploit specularities and shadows to obtain the
reconstruction of both isotropic and anisotropic objects. The
BRDF is modelled by dividing it into its components: dif-
fuse, specular and shadows. Capturing many images under
varying lighting allows to perform BRDF modelling and PS
reconstruction. The main drawbacks of this approach are its
computational complexity and the unsatisfactory accuracy
obtained when few lighting directions are used. In Ikehata
(2018), a CNN-based approach is proposed to reconstruct
non-convex objects. The approach learns relations between
the reflections in the input images and surface normal orien-
tation, using synthetic datasets for training. A similar work is
applied to near-field PS in Logothetis et al. (2020). Despite
showing promising results, the surface estimation remains
tied to the per point network predictions and no explicit
surface optimisation strategy is implemented. PS removes
the need to establish correspondences across views required
in stereo approaches, allowing for scenes with more com-
plex reflectance to be reconstructed. Further, it achieves
high quality reconstruction under Lambertian conditions or
when an accurate model of the scene reflectance is avail-
able. However, the Lambertian assumption is often violated
and it remains challenging to obtain an accurate model of
the scene reflectance (Ward, 1992; Tunwattanapong et al.,
2013). Many challenges remain in achieving accurate recon-
struction of non-Lambertian surfaces which present spatially
varying or anisotropic BRDF and most PS approaches still
rely on the assumption of isotropic reflectance to oper-
ate. Multi-View Photometric Stereo (MVPS) methods gen-
eralise PS to multiple viewpoints enabling both geometric
and photometric cues to be leveraged in the same framework
(Park et al., 2016; Logothetis et al., 2019; Li et al., 2020).

Another important set of techniques used to perform
3D reconstruction is based on separating specular and dif-

fuse reflections. For example, in Mallick et al. (2005), a
data-driven colour space conversion is performed on the
RGB images, allowing to separate the two components. The
authors present this method for surfaces that can be mod-
elled using dichromatic reflectance, a special case of BRDF.
Performing this separation allows to only consider the two-
channel diffuse component, which can be approximated as
Lambertian, to produce accurate reconstructions using PS.
Similarly,Ma et al. (2007) propose the use of spherical gradi-
ent illumination patterns to separate the specular and diffuse
components of objects made up of complexmaterials such as
human faces. The main drawbacks of this technique are the
single viewpoint and the trade-off at the edge of the objects.
Conversely, in Ghosh et al. (2011), the authors use two
polarised spherical gradient illumination patterns to perform
the reconstruction with multiple viewpoints. The cameras
are equipped with polarisers to selectively capture the cor-
rect pattern. Finally, in Fyffe et al. (2016) the authors perform
colour space conversion and use the results to obtain the dif-
fuse normals and albedo and the specular normals for each
colour sub-space. They further compute a per-pixel specular
exponent to refine the resulting mesh. An advantage of this
method with respect to Ma et al. (2007) and Ghosh et al.
(2011) is that off-the-shelf components are used and the total
capture time is significantly lower. However the setup is still
fairly complex and requires a large number of cameras and
flashes.

Recent advances in neural scene representations and vol-
ume rendering techniques have enabled an unprecedented
level of photorealism in novel view synthesis from only a
sparse number of input views, pioneered by the introduction
of NeRF (Mildenhall et al., 2021). The approach is based
on combining a neural radiance field scene representation,
which uses a neural network to model both radiance and
volume density at each point in space, with a volume ren-
dering approach which, being differentiable, is particularly
well suited for learning the network’s weights. Although
the approach is primarily aimed at novel view synthesis,
scene geometry can be retrieved from the volume density.
However, the quality of the surface that can be extracted is
limited since the network is tailored for novel view synthe-
sis rather than reconstruction. Several concurrent subsequent
works have extended the approach to address this limitation
and enable high-quality surface modelling by incorporat-
ing an implicit surface representation into the framework
(Wang et al., 2021; Yariv et al., 2021; Oechsle et al., 2021).
Wang et al. (2021) and Yariv et al. (2021) achieve this by
parametrising the volume density based on a signed distance
function, while Oechsle et al. (2021) introduce a continu-
ous occupancy field to represent the surface. All approaches
demonstrate the ability to recover fine detail including thin
structures. Interestingly, these techniques do not make any
assumption about the scene reflectance. Other approaches
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combine inverse rendering techniques with deep learning to
recover shape alongside material properties (Bi et al., 2020;
Zhang et al., 2021). Bi et al. (2020) use a volumetric repre-
sentation to model opacity, surface normal and reflectance
at each voxel, and they require the images to be acquired
under the assumption of a collocated light source. Zhang et
al. (2021) use a signed-distance function to represent shape
and spherical Gaussians to approximate the light transport.
Their approach is able to infer the scene properties from a
set of images captured under static illumination.

The vast majority of existing methods, aside from some
of the more recent learning-based approaches using neural
radiance fields, fail to address surfaces presenting complex
and varying reflectance as they mainly rely on simplifying
assumptions to constrain the problem. An interesting alterna-
tive to these techniques that allows reconstruction of surfaces
with complex BRDFs is HS.

2.2 Helmholtz Stereopsis

Helmholtz Stereopsis (HS) exploits the principle of
Helmholtz reciprocity (von Helmholtz, 1924) to make the
reconstruction process agnostic to the reflectance. This was
first introduced in Magda et al. (2001) and subsequently
developed into what is known as HS in Zickler et al. (2002).
The key idea is to exploit Helmholtz reciprocity as a con-
straint to identify 3D points located on the surface of an
object and their corresponding normals. Helmholtz reci-
procity states that the measured BRDF at a surface point
remains invariant when illumination and viewing directions
are swapped (Nicodemus et al., 1977; Snyder, 2002). This
invariance is exploited to obtain the normal of a surface point,
using multiple reciprocal pairs of images from which the
point is visible. In its original formulation, HS is posed as a
maximum likelihood problem, with no regularisation, which
can yield noisy results.

Given a point light sourcewith strength κ located atOr, the
intensity of the surface pointP imagedby a camera positioned
at Ol satisfies:

il = f (vr, vl)
n · vr

‖Or − P‖2 κ, (1)

where f (vr, vl) is the BRDF at surface point P (see Fig. 1).
The unit vectors vr and vl indicate the lighting and viewing
directions respectively, while n denotes the surface normal
at point P. When inverting camera and light positions, the
same point P viewed by the camera located at Or and lit by
a light source with strength κ located at Ol satisfies:

ir = f (vl, vr)
n · vl

‖Ol − P‖2 κ. (2)

Fig. 1 Helmholtz Stereopsis (HS) acquisition principle. A reciprocal
pair of images is taken by swapping camera and light positions (Ol and
Or). The BRDF at a surface point (P) is invariant in the two scenarios,
allowing to obtain its normal (n) when at least three reciprocal pairs are
considered from different positions

Helmholtz reciprocity states that the reflectance mea-
sured at point P remains unchanged when the positions of
cameras and light source are interchanged, i.e. f (vr, vl) =
f (vl, vr), from which the following BRDF-agnostic con-
straint is obtained:
(
il

vl
‖Ol − P‖2 − ir

vr
‖Or − P‖2

)
· n = w · n = 0. (3)

With three or more camera pairs, both the surface loca-
tion and its normal can be recovered. Stacking all vec-
tors w into a matrix W and performing Singular Value
Decomposition (SVD), the ratio of the second and third sin-
gular values σ2 and σ3 can be used to define a measure of the
coplanarity of the w vectors which, in turn, provides a means
to identify surface points. Once the surface location has been
identified, the last singular vector of the corresponding point
provides an estimate of the surface normal.

To relax the requirement of having at least three cam-
era/light pairs, binocular formulations (Tu & Mendonca,
2003; Zickler et al., 2003) were subsequently introduced,
employing a single pair of reciprocal images for reconstruc-
tion. Both works utilise a partial differential equation to
compute the surface depth at each epipolar line, obtaining a
set of solutions that are then disambiguated with further opti-
misation. In Guillemaut et al. (2004) the authors extend the
classes of surface that can be reconstructed to strongly tex-
tured and rough ones, by performing HS over image patches
instead of using single pixels. In Janko et al. (2004), Janko
et al. propose a radiometric calibration approach to account
for variations in pixel sensitivity and non-isotropic illumi-
nation. In Zickler (2006), specular highlights, which have
precise correspondences across reciprocal pairs, are used to
perform radiometric and geometric calibration, without the
need of acquiring additional images. Finally, in Guillemaut
et al. (2008) a different normal error measure is proposed in
the form of the radiometric distance function.

An alternative to maximum likelihood for classic HS
was proposed in Roubtsova and Guillemaut (2014a, b, 2017,
2018). They present a maximum a posteriori formulation for
both classic HS (Roubtsova & Guillemaut, 2014a, 2018)

123



International Journal of Computer Vision (2023) 131:2243–2266 2247

Fig. 2 Pipeline for the fused
view-dependent HS approaches.
The methods are initialised
using a Visual Hull (VH)
obtained from silhouettes of the
input images. Multiple partial
reconstructions are then
obtained using either
orthographic sampling (VDo
approach) or perspective
sampling (VDp approach). The
partial surfaces are then
integrated using confidence
scores and Poisson surface
reconstruction

and colour HS (Roubtsova & Guillemaut, 2014b, 2017).
In the latter, wavelength multiplexing is used to extend HS
to dynamic surfaces. All the aforementioned techniques are
applied to 2.5D surfaces and do not handle visibility or
occlusions directly. Furthermore, they all use virtual ortho-
graphic cameras to perform the reconstruction, which does
not fully leverage the available segmentation information and
can cause artefacts when the methods attempt to estimate
depth at pixels where the object’s surface may not be visible.

InWeinmann et al. (2012), HS is used in conjunction with
a structured light approach as a refinement step to perform
full 3D reconstruction. The technique is employed on areas of
the surface where fine details are present, while the low fre-
quency shape of the object is obtained using structured light.
A complex setup consisting of a light dome is used, making
thismethod difficult to reproduce and constrained to a limited
set of scenes. The first time HS is used on its own to perform
full 3D reconstruction is inDelaunoy et al. (2010), where gra-
dient descent is proposed to perform the optimisation. The
faces of the initial surface are iteratively moved towards a
lower energy solution. Despite obtaining convincing results,
the use of gradient descent makes the method prone to local
minima and does not guarantee a globally optimal solution.

To date, most HS approaches have been limited to per-
forming 2.5D reconstructions. In contrast, this paper intro-
duces several methods to achieve full 3D reconstruction of
scenes with arbitrary unknown reflectance, exploring differ-
ent strategies to improve performance. This paper presents
our previous work from Addari and Guillemaut (2019a,
2020, 2019b) in a unified light and extends it in sev-
eral ways. Firstly, this advances our earlier formulation
by generalising the fused view-dependent approach to full
perspective enabling us to leverage segmentation informa-
tion and improve modelling accuracy. This generalisation is
shown to translate into a significant improvement in perfor-
mance compared to our previous orthographic formulation.
We also introduce several confidence metrics to improve
the fusion of view-dependent reconstructions. Second, the
experimental evaluation has been substantially expanded in

terms of number of datasets considered, the depth of the
analysis which now incorporates a quantitative evaluation
for each dataset, and some additional benchmarking results
on the DiLiGenT-MV dataset. The proposed approaches are
evaluated against a wide range of approaches including two
MVSmethods, one neural radiance field-based approach and
two MVPS methods. The final contribution is the release of
datasets to support further research in the field and allow
benchmarking of algorithms for reconstruction of scenes
with complex surface reflectance.

3 Methodology

3.1 FusedView-Dependent Helmholtz Stereopsis

In this first approach, partial reconstructions are performed
from multiple viewpoints around the objects which are then
fused to obtain a full 3Dmodel (see illustration of pipeline in
Fig. 2). Different approaches are possible depending on the
types and placement of the viewpoints used to perform the
partial reconstructions. In particular, two variants are con-
sidered. The first one consists in using virtual orthographic
cameras. In practice, six orthographic views are considered,
coinciding with each of the three world axes, with two direc-
tions per axis. This provides an intuitive way of sampling
the scene volume allowing a full coverage of the object from
a minimal number of reconstructions. The second variant is
based on using perspective views. In this case, each partial
reconstruction can be performed directly from the viewpoint
of one of the input cameras used to acquire the scene. This
second approach presents the benefit of being able to leverage
segmentation information during the reconstruction process
by ensuring that all pixels for which a depth is estimated cor-
respond to the object (something that is not feasible in the
case of an orthographic reconstruction where no image has
been acquired from the reconstruction viewpoint).

More formally, given a set of reciprocal pairs of images
I l
0, Ir

0, . . . , I l
n−1, Ir

n−1 and a camera fromwhich reconstruc-
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tion is performed, a 2-dimensional grid G is created over the
image plane, where each node directly corresponds to a pixel
in the frameof the camera used for reconstruction. Eachnode,
or pixel, will be assigned a label indicating at what depth the
surface is found when backprojecting the image point. The
depth labels are denoted by: d0, ..., dN−1, where d0 and dN−1

correspond to the closest and furthest points respectively.
To estimate the depth at which the surface is located at

each pixel of the camera used for reconstruction, an MRF is
constructed. Each node corresponds to an entry in the grid
and an energy function, containing a data term to express
the surface occupancy likelihood and a smoothness term to
regularise the solution across all nodes, is defined. The energy
function is formulated as follows:

E(d) = (1 − α)
∑
p∈G

D2D(B(p, dp)) +

α
∑

(p,q)∈N2D

S2D(B(p, dp), B(q, dq)), (4)

where α is a balancing parameter between the data and
smoothness terms, G is the 2-dimensional grid defined by the
virtual camera, D2D(B(p, dp)) is the data termof the function
measured at 3D point B(p, dp), obtained by backprojecting
image point p at the depth corresponding to label dp.N2D is
the set of interacting nodes defined by a 4-connected neigh-
bourhood in the image grid, and S2D(B(p, dp), B(q, dq)) is
the smoothness term, which corresponds to the normal con-
sistency term between 3D points B(p, dp) and B(q, dq).

In this approach, the data term is computed as:

D2D(P) =
⎧⎨
⎩
1 if |vis(P)| < nvis,

e
−μ× σ2(P)

σ3(P) otherwise,
(5)

where vis(P) indicates the set of reciprocal pairs of cameras
from which point P is visible, nvis is a threshold represent-
ing the minimum number of reciprocal pairs of cameras for
reliable normal estimation, μ is set to 0.2 ln(2) to replicate
the same weight used in Roubtsova and Guillemaut (2018)
and σ2 and σ3 are the second and third singular values ofW .
To prevent any potential numerical stability issues when σ3
becomes numerically close to zero, a very small ε value can
be added to the denominator of the exponent in (5).

An important contribution, to enable application to com-
plex 3D scenes, is the introduction of the visibility term.
The first criterion to determine visibility is to only consider
the cameras whose axes stand at an angle smaller than 80◦
with respect to the virtual camera axis. Then, occlusions are
computed by approximating each point’s visibility based on
the visibility at its closest point on the surface of the VH.
If an intersection is found between the VH and the segment
connecting the camera centre to the approximated point, the

Fig. 3 A point P on the surface is approximated as its closest point P′
on the VH before occlusions are taken into consideration for visibility
computation

Fig. 4 Illustration of the computation of δP,Q used to define the smooth-
ness term. Given two neighbouring nodes’ depth estimates (dp and dq ),
δP,Q is computed as the distance between dp and the estimated surface
position at the same node based on dq and its estimated normal n(Q).
zcam denotes the unit vector defining the virtual camera axis and oriented
such that it is pointing towards the camera

camera and its reciprocal are considered to be occluded and
therefore are not used, as shown in Fig. 3.

The smoothness function used here is the distance based
DNprior (Roubtsova & Guillemaut, 2018), which enforces a
smooth surface that is consistent with the normals obtained
through HS. This term is calculated as follows:

S2D(P,Q) =
{

1
2 (δ

2
P,Q + δ2Q,P) if δP,Q and δQ,P < t,

t2 otherwise,
(6)

where t is the maximum threshold for δP,Q and δQ,P. δP,Q is
the distance between point P and the projection of Q, per-
pendicular to its estimated normal, on the pixel where P lies,
as illustrated in Fig. 4. It is calculated as follows:

δP,Q = |PQ · n(Q)|
n(Q) · zcam , (7)

where PQ is the vector connecting P and Q, n(Q) indicates
the estimated normal at point Q and zcam defines the virtual
camera axis. We adopt the convention that zcam is oriented
towards the camera. Consequently, n(Q) · zcam is guaranteed
to be positive for any visible surface point. Whenever δP,Q or
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Fig. 5 Pipeline for the volumetric approach to full 3D optimisation.
The VH is used for initialisation. Then an orthographic grid is used to
compute the probability of voxel occupancy for the surface. The opti-

misation is then performed using a Markov Random Field (MRF) to
obtain the final representation of the object

δQ,P are greater than a threshold t , dependent on the recon-
struction resolution, this term is truncated to t2 in order to
avoid heavy penalties where a strong discontinuity is present
on the surface. An illustration of how S2D is computed is
shown in Fig. 4.

The energy function is then minimised using Sequential
Tree-Reweighted Message Passing (TRW-S) (Kolmogorov,
2015) to obtain the depth maps from each viewing direc-
tion. This optimisation framework was chosen because it is
able to perform optimisation in a multi-label MRF, while
giving strong optimality guarantees. The partial surface
reconstructions are then fused together using Poisson surface
integration (Kazhdan et al., 2006). This process may lead to
inconsistencies across overlapping areas of the partial sur-
faces, therefore a confidence score is employed to weight the
different samples based on their reliability during the fusion
process.During the energy function computation of the view-
dependent methods, two confidence scores are computed for
each point to be used during the surface integration process.

The first confidence score is derived from the saliency and
defined from Eq.5 as follows:

Cs(P) = 1 − D2D(P), (8)

where P is the selected point after the optimisation pro-
cess. The second confidence score is derived from the angle
between the viewing direction and the estimated normal and
is defined as:

Cn(P) = n(P) · zcam, (9)

where n(P) is the estimated normal at 3D point P and zcam
is the camera axis of the chosen view, orthographic or per-
spective depending on the reconstruction method used. The
overall confidence score is obtained by multiplying the two
confidence scores, that is:

Csn(P) = Cs(P)Cn(P). (10)

Utilising these confidence scores allows to resolve ambigu-
ities for points that are in close proximity, but stem from
different views. In particular, the saliency score may appear
low in specific camera combinations due to object occlusions
or poor visibility, while Cn might detect a decline in normal
estimation precision at the edges of a reconstructed view or
when the surface is heavily slanted with respect to the cam-
era axis. In these scenarios the fusion algorithm may favour
the use of a different view with higher confidence scores, to
increase the overall reconstruction accuracy.

3.2 Volumetric Full 3D Helmholtz Stereopsis

This second method performs direct optimisation over a
voxel grid, where each voxel is labelled as outside the sur-
face, inside, or containing a section of the surface itself. The
method enforces coherency between neighbouring voxels on
thewhole surface, presenting a strong advantagewith respect
to the fusion of multiple partial 2.5D reconstructions, where
the optimisation is performed separately for each partial
reconstruction prior to merging. After dividing the volume
in a regular voxel grid, a multi-label MRF is constructed,
where each node corresponds to a voxel and its labels indicate
whether the voxel is occupied by the surface or found inside
or outside the object.Weights are then assigned to each voxel
depending on their occupancy probability and a regularising
term based on the HS estimated normals across neighbouring
nodes. The optimisation is performed using a modified ver-
sion of Iterative Conditional Modes (ICM) (Besag, 1986),
where the labelling is changed iteratively to obtain the lowest
score possible across local node clusters. The result is finally
integrated using Poisson surface reconstruction to obtain the
full 3D object representation. See Fig. 5 for an overview of
the pipeline.

A 3D orthographic grid, that encompasses the whole
object, is first created and each voxel is assigned a node in a
multi-label MRF graph. The label set used is the following:
{I , O, L0, . . . , LN−1}, where I and O indicate respectively
whether the voxel is found inside or outside the reconstructed
surface,while the remaining labels are assignedwhen the sur-
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face is crossing inside the voxel. The sampling strategy used
consists in subdividing the voxel into equal size subvoxels,
where the centre of each subvoxel will correspond to a label
between L0 and LN−1. In this paper, each voxel is subdivided
into 27 subvoxels, subdividing by 3 along each dimension.
The use of multiple surface labels is employed to generate
enough variations in the orientation of the segments connect-
ing neighbouring surface samples, which allows to exploit
the normals estimated through HS. Using a single surface
label would not allow to fully exploit the normals during the
energy function regularisation, as the segments connecting
the voxels would only be sampled at 45◦ steps. It must be
noted that sampling the voxel regularly means that the sur-
face may cross a voxel at multiple labels, in which case the
algorithm will prioritise the label where a lower weight is
achieved for the overall solution.

Performing a full 3D optimisation requires improving vis-
ibility estimation with respect to how it was approximated
in the view-dependent approaches. To do so, a probabilistic
approach is presented here, which is then applied in themeth-
ods outlined in this section. A first selection of cameras is
performed by approximating the chosen point to their closest
neighbour on the initialisation surface and computing occlu-
sions for said point. A further selection is then performed
on these cameras by finding the k pairs that have the highest
likelihood of producing coplanar w vectors. The parameter
k may be chosen to be 3, since this is the minimum number
of camera pairs needed to perform HS. The method consists
in iteratively selecting all possible combinations of k cam-
era pairs and obtaining their resulting W matrix, computed
by stacking the corresponding w from Eq.3. The subset that
satisfies the following equation is then selected:

max
c0,...,ck−1

σ2(Wc0,...,ck−1)

σ3(Wc0,...,ck−1)
, (11)

where c0 to ck−1 indicate the selected camera pairs and σ2
and σ3 are respectively the second and third singular values
of the obtained W matrix.

It must be noted that during the visibility computation
it is unknown whether the chosen point is actually on the
surface or not. This approach maximises the probability of
computing the correct visibility for points on the surface.
In case of points outside or inside the object, it is expected
that the agreement of the camera pairs will generally be low.
An added benefit of selecting a fixed number of cameras
to perform the HS calculations is that it provides saliency
scores that are consistent across the whole surface, making
the optimisation process more robust.

Now that the graph construction, visibility handling and
label strategy have been established, the energy function used

for the MRF optimisation is defined as:

E(L) = (1 − β)
∑
v∈V

D3D(v, Lv) +

β
∑

(v,w)∈N3D

S3D(v, Lv,w, Lw), (12)

where D3D and S3D are respectively the data and smoothness
terms, β is a weight to balance their effects, V indicates the
volume in which the 3D grid is constructed andN3D is the set
of interacting nodes defined by a 6-connected neighbourhood
in the 3D grid.

The data term is based on the HS saliency as in the meth-
ods previously presented. The higher the ratio between the
singular values σ2 and σ3 of matrix W , the higher the prob-
ability of the point being located on the surface. In addition
to the previous methods, however, the additional inside and
outside labels are considered in this approach and the full
data term calculation is performed as follows:

D3D(v, Lv)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if Lv ∈ {I , O},
1 if Lv /∈ {I , O} and

|vis(M(v, Lv))| < nvis,

e
−μ× σ2(M(v,Lv))

σ3(M(v,Lv)) otherwise,

(13)

whereM(v, Lv) indicates the 3D position of the surface point
at node v when assigned label Lv and vis(P) represents the
set of camera pairs from which point P is visible. Usually
nvis is set to 5, which is greater than the minimum number of
camera pairs required in HS to avoid geometric ambiguities.
Whenever a voxel is assigned a surface label (L0, . . . , LN−1)
and is visible in a sufficient number of cameras, the weight
assigned is computed as the data term in the view-dependent
methods as shown in Eq.5.

The smoothness term is used as a regularising constraint
to ensure that neighbouring voxels have coherent normals
and that there is always a surface voxel between an outside
and inside voxel pair, avoiding holes in the final surface. It is
computed as follows:

S3D(v, Lv,w, Lw)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(M(v, Lv), M(w, Lw)) if Lv, Lw ∈
{L0, . . . , LN−1},

∞ if Lv, Lw ∈ {I , O}
and Lv �= Lw,

0 otherwise,

(14)
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Fig. 6 Illustration of the
computation of γ (V,W). The
term is based on the assigned
label of nodeW and its predicted
position based on the label of V
and its estimated normal n(W)

where

�(V,W) =
{

1
2 (γ

2
V,W + γ 2

W,V) if γV,W and γW,V < t,

t2 otherwise,
(15)

represents the normal consistency between points V and W.
t is used as a truncation term for γV,W which is defined as
follows:

γV,W = |VW · n(W)|, (16)

where VW is the vector connecting points V and W, while
n(W) indicates the unit normal estimated via HS at pointW.
This term represents the distance between W and the plane
perpendicular to n(V) intersecting point V. Figure6 illus-
trates how this term is calculated. The ∞ term is used to
constrain inside and outside voxels to be separated by sur-
face voxels, thus avoiding an empty solution where all nodes
are either labelled to be inside or outside. The truncation is
performed on the regularisation term to avoid heavy penal-
ties where a corner may result in two neighbouring voxels
having severely different normals.

Once the graph has been initialised, optimisation is per-
formed using a tailored version of ICM (Besag, 1986). ICM
is an exhaustive search algorithm that iterates through an
MRF graph and changes one variable at a time, by trying to
optimise its local neighbourhood cost. In its classic formu-
lation, ICM would not work in this scenario because of the
constraint on the surface. Namely, changing the label of a sur-
face node to be either outside or inside would result in a hole
on the surface, which is currently prevented by having an infi-
nite weight when outside and inside voxels are neighbours.
However, by changing two neighbouring variables at a time
and considering all surrounding nodes to compute the cost
change, the surface can be shifted closer to its optimal solu-
tion through multiple iterations. Only tuples where one node
is on the current surface of the reconstruction are considered
at each iteration. To compute their local neighbourhood cost,
all possible configurations of said tuple and their neighbours
are considered, selecting the solution with the lowest energy.
If the problem is initialised close to the actual surface, this
step typically converges after a small number of iterations.
During experimentation it was attempted to use TRW-S to
perform the optimisation, however, due to the high number
of nodes and low number of labels, TRW-S obtained poor

results, while ICM proved to be suitable in this specific sce-
nario.

Finally, the nodes labelled to be on the surface are
extracted together with their Helmholtz estimated normals
and integrated using Poisson surface reconstruction to obtain
a mesh representation.

3.3 Mesh-Based Full 3D Helmholtz Stereopsis

The key idea of this third approach is to introduce a single-
step method to perform full 3D reconstruction from a coarse
initialisation, providing a mechanism to perform global
optimisation and recover a solution with strong optimality
properties through the use of state-of-the-art MRF solvers.
This method offers some major advantages with respect to
the volumetric approach, which is much more computation-
ally expensive, by providing a mesh-based optimisation that
seeks to find the optimal 3D positions of the vertices in the
solution space. The target surface is obtained through aMax-
imum a Posteriori (MAP) approach using an MRF graph.

The3D reconstruction is performed through apipeline that
is illustrated in Fig. 7. To initialise the method and identify
the search space over which the optimisation is performed,
two surfaces are defined. The first one corresponds to the
outer boundary of the solution space and must completely
encompass the object. For instance, the VH of the object or
an accordingly dilated approximation of a previous solution,
obtained from a different technique, could be used. The sec-
ond surface must, instead, be completely inside the object,
while maintaining a similar topology to the outer surface;
this can be achieved by carving the outer surface. Non-rigid
Iterative Closest Point (ICP) (Audenaert et al., 2019) is used
to draw correspondences between the two surfaces, allowing
to match key features between the surfaces despite their dif-
ference in scale. The result is a dense matching between the
two surfaces, where a point of the target surface is necessarily
found between each pair of registered vertices.

These correspondences are used to construct a multi-label
MRF graph. Each pair of corresponding vertices between the
two surfaceswill be assigned to a node and its neighbourswill
be established depending on the surface topology. In prac-
tice, the surface is represented as a 3Dmesh fromwhich each
edge corresponds to a graph edge, defining the neighbour-
hood of the two bound vertices. Each node is then assigned
a set of labels {L0, L1, . . . , LN−1}, where each label indi-
cates a 3D point on the segment connecting the two surfaces
at the node’s corresponding vertices. In particular, L0 will
coincide with the vertex on the outer surface, LN−1 with the
corresponding vertex on the inner surface and all the inter-
mediate labels will be spaced regularly in between them. In
the remainder of this section, the energy function used to
perform the optimisation is detailed.
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Fig. 7 Pipeline overview for the mesh-based approach. Two initialisa-
tion surfaces that contain the object’s boundary are used to construct
an MRF graph where each node corresponds to a pair of points on the

surfaces and their labels are the points between them. The output sur-
face is obtained by performing global optimisation on the graph and
connecting the nodes estimated positions

To reconstruct the target surface, an energy function is
defined as follows:

E(L) = (1 − α)
∑
v∈M

DM(X(v, Lv)) +

α
∑

(v,w)∈NM

SM(X(v, Lv), X(w, Lw)), (17)

where L indicates the labels assigned across the entire set
of nodes, α is a weighting factor to balance the effect of
data and smoothness terms and NM is the set of interacting
nodes defined by the connectivity of the mesh representing
the optimised surface M. DM and SM are respectively the
data and smoothness terms, calculated for all the nodes and
edges of the graph, while the operator X(v, Lv) is used to
identify the resulting position when node v is assigned the
label Lv.

The data term is based on the HS saliency measure and
computed in a similar fashion to Eq.5 whenever the point is
deemed visible by at least a certain number of cameras:

DM(P) =
⎧⎨
⎩
1 if |vis(P)| < nvis,

e
−μ× σ2(P)

σ3(P) otherwise,
(18)

where σ2 and σ3 indicate the second and third singular values
of the W matrix, and vis(P) is the set of camera pairs from
which point P is visible. Points that are not visible from
enough cameras are given a strong weight that still allows
for points affected by self-occlusions to be reconstructed,
in accordance with the neighbouring points which may be
visible.

The smoothness term serves as a regularising weight to
ensure the surface is smooth and consistent with the photo-
metric normals calculated through HS. It is based on a depth
disparity measure, here referred to as δ(V,W), calculated
between pairs of neighbouring nodes. δ(V,W) represents the
distance between a point and its predicted position based on
the estimated normal of its neighbour. It is calculated as fol-

Fig. 8 Illustration of the computation of the smoothness term. The point
WLy is projected perpendicularly to its estimated normal towards the
segment ViVo and the error is measured as the distance between the
projection and point VLx

lows:

δ(V,W) = VW · n(W)

n(W) · s(V)
, (19)

where VW indicates the vector connecting the two points
and s(V) is a unit vector representing the direction of the
segment that connects inner and outer surfaces at the node
corresponding to point V. The disparity error is computed
as the difference between point V and the projection of W
perpendicular to its estimated normal n(W) towards said seg-
ment. Figure8 illustrates the definition of the smoothness
term.

This term is a generalisation to a perspective sampling in
full 3D of the depth disparity measure presented in Eq.7.
Moreover, the error measure presented here is more discrim-
inative than the one used in Eq.14, which is tied to the voxel
size chosen and where strong discontinuities do not result
in a considerable error. In contrast, the proposed distance
penalises more heavily depth and normal assignments which
are inconsistent between neighbouring nodes, which are not
bound by the volume sampling resolution.

The smoothness term is then computed as the average of
the squared disparity terms for the two neighbours and it is
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truncated at a threshold of t2:

SM(V,W) =

⎧⎪⎨
⎪⎩

1
2 (δ(V,W)2 + δ(W,V)2) if δ(V,W) and

δ(W,V) < t,

t2 otherwise.

(20)

The threshold is used to allow for natural discontinuities and
it is also used where occlusions do not allow HS to produce
an estimated normal.

The final aspect taken into consideration in this method-
ology is the technique that can be used to perform the
final optimisation. The energy function chosen to repre-
sent the problem violates the submodularity constraint and
non-submodular functions cannot be properly minimised by
classic graph-cut approaches, as indicated in Kolmogorov
and Rother (2007). However, many techniques exist to
approximate the solution of a non-submodular function
with a high degree of confidence. The approach used here
is Tree-Reweighted Message Passing (TRW) (Wainwright et
al., 2005) in its more recent formulation called TRW-S (Kol-
mogorov, 2006, 2015), which, contrary to TRW, guarantees
that the energy lower bound does not decrease during optimi-
sation and introduces the condition of weak tree agreement
to identify local maxima in the energy bound.

After the final solution is obtained, it is not necessary
to perform surface integration, since the initialisation sur-
face topology is maintained in the obtained result. It was
however found beneficial to perform some integration using
Poisson surface reconstruction on the obtained vertices, as
an extra regularisation step to leverage the normals obtained
using HS. The extra integration step is also able to smooth
some artefacts caused by minor differences which may exist
between the topology of the outer and inner surfaces.

4 Experimental Evaluation

This section performs a comparative evaluation of the pro-
posed approaches using both synthetic and real datasets.
The methods evaluated will be referred to thereafter as: VH
for SfS; VDo for orthographic fused view-dependent HS
(Sect. 3.1); VDp for perspective fused view-dependent HS
(Sect. 3.1); 3DHSv for volumetric full 3D HS (Sect. 3.2) and
3DHSm formesh-based full 3DHS (Sect. 3.3). An additional
method referred to as 3DHSc is also introduced. This uses a
volumetric graph-cut approach (Vogiatzis et al., 2007) which
we adapted to HS for comparison purposes. Themethod esti-
mates the voxel occupancy in a grid by performing graph-cut
on a binary-label MRF. The data term is a constant bal-
looning term which is applied to outside voxels to avoid
an empty solution. The smoothness term is computed at the

Fig. 9 Examples images from the Armadillo and Bunny datasets

Fig. 10 Illustration of the different image noise levels applied to the
synthetic dataset: no noise (left), Gaussian noisewith standard deviation
0.01% (middle) and 0.1% (right). The inset images showmagnifications
of the portion inside the square

edges of neighbouring voxels and is based on theHS saliency
measure, similarly to the data terms proposed in the previ-
ous methods. The proposed approaches are also compared
against state-of-the-art MVS, MVPS and neural radiance
field-based techniques in the case of real scenes. An abla-
tion study analysing the effects of the proposed confidence
scores on the performance of the view-dependent approaches
(VDo and VDp) is also included in Appendix A.

4.1 Evaluation on Synthetic Scenes

A novel synthetic dataset was generated using the Stanford
Bunny (Turk & Levoy, 1994) and the Armadillo (Krishna-
murthy & Levoy, 1996). To ensure the synthesised images
are physically plausible, and in particular satisfy Helmholtz
reciprocity, images were rendered using the modified Phong
reflectance model (Lewis, 1994). The model combines a dif-
fuse and a specular component, with the BRDF defined as:

f (kd , ks) = kd
1

π
+ ks

1
r + 2

2π
(h · n)

1
r , (21)

where ks and kd respectively represent the diffuse and specu-
lar coefficients. The specular component further depends on
the surface roughness r and the angle between the normal
n at the observed surface point and the vector h bisecting
the incoming and outgoing light directions. In each case, 40
reciprocal pairs of images were generated by sampling view-
points on a sphere of radius 600mm with the object located
at the centre of the sphere. Armadillo and Bunny are 151mm
and 153mm tall respectively. The camera used to render the
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Fig. 11 Results including error maps obtained on the synthetic scenes Armadillo and Bunny with 0.01% noise level

Fig. 12 Examples of partial reconstructions for the Armadillo and
Bunny datasets produced using the orthographic and perspective view-
dependent approaches. It must be noted that the reconstructed portions
differ slightly between the two methods due to the different viewpoints
and image formation models they use

views had a horizontal field of view of 40◦, equivalent to a
focal length of 2638pixels/mm. Images were rendered at a
resolution of 1920 × 1080. Different datasets were gener-
ated by adding Gaussian noise at three different levels with
standard deviation of 0%, 0.01% and 0.1% of the full 16-bit
image range. Example images in case of the 0.01% noise
level are shown in Fig. 9 for each object. Figure10 shows a
close-up of an image corrupted at the different noise levels
in the case of the Bunny dataset. Ground truth models are
shown in the first column of Fig. 11.

Figure 11 shows the reconstructions for the different
methods and their respective error maps in the case of the
intermediate noise level (with standard deviation 0.01%).
Figure12 also shows an example of intermediate view-
dependent reconstruction for each object in the case of the
VDo and VDpmethods. As can be observed, the VHmethod
performs poorly, especially with regards to reconstructing
concavities. In comparison, 3DHSc achieves better results
due to the use of HS for normal estimation, but results
still lack surface detail. This shows the limitations of rely-
ing solely on HS saliency and a ballooning term for energy
regularisation. VDo achieves better results by introducing a
tailored regularisation term enforcing the consistency of the
depth and normal estimates. However, artefacts are present
on the surface due to the fusion of the separately computed
partial surfaces, which present some imperfections due the
use of orthographic cameras. While this is somewhat miti-
gated by the use of Poisson surface reconstruction and the
confidence scores, some fine details present on the surfaces
are lost in the process. VDp obtains notably better results,
presenting considerably fewer artefacts and achieving a faith-
ful reconstruction of the object. Improvements resulting from
switching to a perspective gridwithVDp are clearly visible in
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Fig. 13 Geometric accuracy, normal accuracy and completeness graphs for the synthetic scenes Armadillo and Bunny

Fig. 14 Error maps of the results obtained on the Armadillo and Bunny datasets at different levels of noise for the proposed methods

the partial reconstructions shown in Fig. 12, which ultimately
results in better final reconstructions after fusion into com-
plete models, compared to their orthographic counterparts
obtained using VDo. Results obtained using 3DHSv over-
come some of the limitations of the fused view-dependent
approaches, by introducing a volumetric optimisation step.
However, the use of ICM during optimisation is iterative and
unable to fully retrieve some minute concavities present on
the surfaces. Furthermore, the implementation of the method
as a voxel grid ties its results to the resolution chosen, which
is hindered by the computational resources available since
memory consumption grows cubically with resolution in
the case of a vanilla voxel implementation. Experiments

reported here were run on a server with 60GB memory.
These limitations could be alleviated through use of an octree
implementation, however this was not considered in our
implementation. In contrast, 3DHSm is able to retrieve fine
surface details such as the shell grooves of the Armadillo and
the facial features of the Bunny.

A quantitative evaluation is performed by computing the
Middlebury geometric accuracy, normal accuracy and com-
pleteness scores (Seitz et al., 2006) for all methods. These are
shown in Fig. 13. The graphs show how the geometric and
normal accuracies vary for each method as a wider percent-
age of the surface is taken into consideration (shown on the
horizontal axis), while for the completeness a varying dis-
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Table 1 Results obtained on the synthetic scenes using all methods under different noise levels

Method No Noise 0.01% Noise 0.1% Noise
G. Acc. ↓ N. Acc. ↓ Comp. ↑ G. Acc. ↓ N. Acc. ↓ Comp. ↑ G. Acc. ↓ N. Acc. ↓ Comp. ↑

Armadillo VH 1.02 35.41 43.6 1.02 35.41 43.6 1.02 35.41 43.6

3DHSc 0.76 32.69 83.7 0.77 33.21 83.4 0.75 32.73 83.0

VDo 0.26 18.61 97.3 0.26 18.51 97.3 0.26 18.57 97.1

VDp 0.17 15.01 98.7 0.18 15.44 98.1 0.19 15.49 98.1

3DHSv 0.22 16.02 99.0 0.22 16.03 99.0 0.22 16.00 99.0

3DHSm 0.16 14.71 99.5 0.16 14.84 99.4 0.18 14.97 99.3

Bunny VH 1.8 34.62 13.9 1.80 34.62 13.9 1.80 34.62 13.9

3DHSc 2.51 93.95 75.5 2.24 112.06 74.6 2.30 106.16 74.1

VDo 0.49 13.22 91.2 0.52 12.59 89.7 0.57 12.56 88.3

VDp 0.22 7.02 97.6 0.25 7.28 96.6 0.27 7.56 96.1

3DHSv 0.30 8.46 97.6 0.51 14.47 89.3 0.29 8.75 97.6

3DHSm 0.23 6.80 98.6 0.25 6.96 98.4 0.38 7.64 96.8

Geometric accuracy (expressed in mm and denoted by G. Acc.) and normal accuracy (expressed in degrees and denoted by N. Acc.) are computed at
a 90% threshold, while the completeness (expressed in % and denoted by Comp.) is obtained at a threshold of 0.5mm. Top performers are marked
in bold

Fig. 15 Acquisition setup consisting of a pair of cameras fitted with
external flashes mounted on each camera lens

tance threshold is considered. The graphs confirm that VH
and3DHScproducepoor results, highlighting the impossibil-
ity of reconstructing concavities in the first approach and the
lack of an effective regularising term in the second method.
It can then be observed that VDo, VDp, 3DHSv and 3DHSm
significantly outperform the other approaches, achieving sig-
nificantly better geometric accuracies, normal accuracies and
completeness on both objects. VDo performs slightly worse
on the Bunny dataset, but overall still obtains submillime-
tre accuracy and an above 90% completeness on thresholds
below a millimetre. It can be noted that VDp achieves better
results than 3DHSv, despite being based on fusing multiple
partial reconstructions. This is likely due to the limitation
imposed by the resolution used in the 3DHSv experiments
asmentioned previously. In contrast, 3DHSmobtains the best
results thanks to the global optimisation performed directly
on the mesh vertices.

Fig. 16 Timing graph showing how the cameras synchronisation is
handled between the camera pairs to capture both HS image and direct
flash image with consistent exposure

4.2 Analysis of Robustness to Image Noise

To assess robustness, the different approaches are evaluated
on the datasets generated with three different noise levels
with standard deviation of 0%, 0.01% and 0.1% of the full 16
bit image range. Figure14 shows the error maps on the fully
reconstructed objects with respect to the ground truth at those
different noise levels. Table 1 shows the geometric accuracy,
normal accuracy and completeness for eachnoise level for the
typical 90% accuracy and 0.5mm completeness thresholds.
Overall only a small deterioration can be noticed in the results
when affected by noise. Areas such as the shell, ears and
neck area of the Armadillo and the concavities between the
legs of the Bunny show the main differences between the
presented approaches. As it can be observed, in each method
the errors are not significantly increased by the introduction
of noise, which demonstrates the robustness of the different
approaches proposed. This can be explained by the use of
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Fig. 17 Example images for the
Fox, Corgi, Llama, Bee, Duck
and Giraffe datasets

Fig. 18 Results obtained on the real datasets Fox, Corgi, Llama, Bee, Duck and Giraffe for the different methods

Fig. 19 Results obtained on the real datasets Fish and Dragon for the different methods
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Fig. 20 Examples of partial reconstructions obtained using the orthographic and perspective view-dependent methods on the Fox, Corgi, Llama,
Bee, Duck, Giraffe, Fish and Dragon datasets. Reconstructed portions differ slightly between the approaches due to different viewpoints and image
formation models

Fig. 21 Error maps for the results obtained on the real datasets Fox, Corgi and Llama for the different methods

window-based averaging to compute the data terms and also
the regularisation approaches that both mitigate the effects
of noise.

4.3 Evaluation on Real Scenes

Two real datasets are used for evaluation: a novel dataset
released with this paper and the Dragon and Fish scenes
from Delaunoy et al. (2010). The new dataset was acquired
using a pair of Canon EOS 5DS cameras equipped with
Canon Macro Ring Lite MR-14 EX II flashes, which are
external macro flashes mounted around each lens to approx-
imate camera/light collocation. The flash on a given lens is
synchronised with the other camera to allow acquisition of a
reciprocal pair by triggering each camera separately. More-
over, synchronisation of the two cameras allows acquisition
of an extra pair of images in which the object is lit directly by
the flash mounted on the same camera capturing the image,
which can be used for segmentation. Figures15 and 16 show

respectively the acquisition setup and the timing of the left
and right cameras and flashes during the acquisition of a
reciprocal pair. This provides a flexible setup for HS capture
which can either be staticwith the object placed on a turntable
or moved around the object. The former configuration was
used to acquire this dataset. The dataset is acquired at a reso-
lution of 2928×4368 and comprises six objects: Fox, Corgi,
Llama, Bee, Duck and Giraffe (see Fig. 17). These present
several types of materials with varying BRDFs and are for
the most part untextured, making them difficult to recon-
struct with traditional methods and without prior knowledge
over their reflectance properties. Duck also presents some
subsurface scattering. For each object, 20 image pairs were
captured. The cameras were positioned at about 1.5m from
the object and each pair had a baseline of about 60cm. To
perform the capture, the objects were placed on a rotating
table, with each image pair taken after a rotation of 18◦ from
the previous pair.
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Fig. 22 Geometric accuracy, normal accuracy and completeness graphs for the real datasets Fox, Corgi and Llama for the different HS methods

Figures 18 and 19 show the results obtained on the real
scenes for each approach. Further, Fig. 20 shows examples
of partial reconstructions for the view-dependent methods.
As can be observed, the VH reconstructions are coarse. The
3DHSc method also produces low quality results due to the
poor regularisation it relies on. The VDo results are some-
what noisy due to the fusion ofmultiple 2.5D surfaces that are
sometimes incoherent. This can be observed especially at the
base of the tail of the Fox and Fish or in the nose area of the
Corgi. The perspective approachVDp significantly improves
the results with respect to the orthographic method, thanks to
the possibility of leveraging segmentation information dur-
ing the reconstruction. The use of perspective cameras has
the advantage of reconstructing views that have been cap-
tured directly in the input images, reducing possible effects
from occlusions, which can be observed in the Dragon and
Fish datasets, where it is not possible to perform segmenta-
tion due to the different setup used for capture. The artefacts
produced by the fusion is partially mitigated in the 3DHSv
results, however, due to the resolution used, somefiner details
are lost. Finally, the results from 3DHSm present an accurate
reproduction of minute object details, such as the ears of the
Corgi, the ornaments on the neck of the Llama or the patterns
on the neck of theGiraffe. In the Fish scene, the small cavity
inside the eye is maintained as well as the features on the side

of the tail fin and the two small concavities behind the dorsal
fin. The high-frequency details of the scales on the side of the
object are also faithfully reconstructed, while they are overly
smoothed in the previous approaches. In the Dragon scene,
the scales pattern on the side is accurately reconstructed and
more details can be seen on the face compared to the other
approaches.

We also perform a quantitative evaluation based on laser
scans of Fox, Corgi and Llama, which are the only three
fully rigid objects suitable for use as ground truth. The other
three objects could not be used as they were either made of
deformablematerials (rubber in the case ofDuck andGiraffe)
or contained moving parts (moving wheels and axles in the
case of Bee). Due to their specular nature, the objects had
to be spray-coated with talc powder in order to enable laser
scanning. The ground truthmesheswere thenmanually regis-
tered to the set of images, followed by ICP alignment against
the reconstruction for each approach in order to compute
the geometric accuracy, normal accuracy and completeness
metrics. Figure21 shows the error maps for each method.
The geometric accuracy, normal accuracy and completeness
results are represented in Fig. 22 andTable 2. Results indicate
some good performance overall, with the different methods
achieving close tommaccuracy and a high completeness.Not
surprisingly the VDo approach performs the worst out of the
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four proposed HS methods. The VDp approach was found
to be overall the best performer followed by 3DHSv, and
then 3DHSm. It may be that the volumetric and mesh-based
approaches are more sensitive to calibration errors than the
view-dependent approach which would explain their lower
performance on this dataset.

Finally, a run-time analysis is performed to benchmark the
different methods. All experiments were performed on the
same server with 16 cores and no use of GPU. Results are
reported in Table 3. The view-dependent techniques are the
slowest, requiring optimisation to be performed separately
for each viewpoint. While this allows some parallelisation,
this also generates some redundant processing, particularly
if a large number of viewpoints are considered. The mesh-
based approach is the fastest, while at the same time having
a considerably lower memory footprint than the volumetric
approach. None of the approaches have been optimised for
speed and they all run entirely on the CPU. It is likely that
performance could further reduced with some optimisation
including porting of some of the operations to the GPU.

4.4 Comparison Against Multi-view Reconstruction
Approaches

The proposed approach is compared against three 3D
reconstruction techniques (one classical, two learning-based)
on the real dataset releasedwith this paper. Thefirst approach,
referred to as COLMAP, is based on Schönberger and
Frahm (2016) and Schönberger et al. (2016). It is a classical
approach consisting in jointly estimating depth and normal
information by performing pixelwise view selection thanks
to photometric and geometric priors and then minimising
a multi-view geometric consistency term. This technique is
one of the top performers on the Middlebury datasets. The
second approach, referred to as CasMVSNet, is a deep learn-
ing approach, which is a fusion ofMVSNet (Yao et al., 2018,
2019) and a technique that uses a cascade cost volume (Gu et
al., 2020) to achieve higher resolution outputs during recon-
struction. The third approach, referred to as NeuS, is a recent
learning-based approach that combines a neural scene rep-
resentation with a volume rendering technique (Wang et al.,
2021).

To ensure a fair comparison, all the objects in the dataset
were re-acquired under constant illumination conditionswith
the same number of views and similar camera placement as
for the HS dataset. For the multi-view dataset, a constant
ambient illumination was used instead of flash illumination
and a camera was moved around the object instead of rotat-
ing the object using a turntable. This guarantees that the
illumination conditions remain unchanged during the acqui-
sition process, to ensure objects are acquired under optimal
conditions for these methods. The results obtained on the
real scenes are shown in Fig. 18 with error maps shown in

Table 2 Results obtained on the real datasets Fox, Corgi and Llama

Method G. Acc. ↓ N. Acc. ↓ Comp. ↑
Fox VH 3.77 52.99 46.9

3DHSc 4.24 73.79 50.0

VDo 2.19 37.54 70.1

VDp 0.78 22.25 86.2

3DHSv 1.06 34.09 84.1

3DHSm 1.38 33.50 72.1

COLMAP 1.71 70.17 69.1

CasMVSNet N/A N/A N/A

NeuS 2.15 29.94 57.6

Corgi VH 3.92 46.12 41.0

3DHSc 3.51 118.47 56.0

VDo 1.74 49.03 82.9

VDp 0.79 17.54 83.4

3DHSv 1.10 29.15 84.3

3DHSm 1.12 25.91 81.6

COLMAP 1.01 40.99 83.5

CasMVSNet 1.02 22.78 74.4

NeuS 1.40 17.96 74.7

Llama VH 3.76 44.08 30.0

3DHSc 3.17 39.93 38.0

VDo 2.18 89.51 46.7

VDp 1.94 25.62 43.0

3DHSv 2.06 29.72 40.0

3DHSm 2.20 36.08 38.4

COLMAP 1.94 78.93 37.7

CasMVSNet 2.16 45.61 26.4

NeuS 1.90 22.25 44.9

Geometric accuracy (expressed in mm and denoted by G. Acc.) and
normal accuracy (expressed in degrees and denoted by N. Acc.) are
computed at a 90% threshold, while the completeness (expressed in %
and denoted by Comp.) is obtained at a threshold of 1mm. Top per-
formers are marked in bold, considering separately the HS approaches
and the Multi-View Stereo (MVS) approaches

Table 3 Runtime comparison for the different methods benchmarked
on the Bee dataset

VDo VDp 3DHSv 3DHSm

Time 4h 29m 52h 45m 12h 46m 1h 30m

Fig. 21. Figure22 and Table 2 show the geometric accuracy,
normal accuracy and completeness results. Note that for a fair
comparison, prior to computing the errormaps and errormet-
rics for these methods, the reconstructions were truncated to
remove any protrusions located below the ground plane level.

As it can be observed, COLMAP and CasMVSNet often
produce poor reconstructions of the objects. Themost notable
examples for COLMAP are theFox and Llama scenes, where
untextured regions on the objects result in holes. This is
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Fig. 23 Results on the DiLiGenT-MV datasets Bear, Buddha, Cow, Pot2 and Reading

a result of point clouds being rather sparse and presenting
holes that then lead to poor reconstruction once points are
fused using Poisson surface reconstruction. The only excep-
tion is the Giraffe which, while being untextured, presents a
Lambertian surface. Similarly, CasMVSNet produces poor
reconstructions in the case of the Fox, Duck, Llama and
Giraffe, obtaining very few point correspondences. This
is likely due to the network not being trained on non-
Lambertian scenes or due to the lack of textured surfaces.
Although less dramatically affected, the other objects show
very little detail and are noisy in places, ultimately resulting
in worse results than the ones obtained using our proposed
approaches. In contrast, NeuS was able to produce clean
reconstructions, although these have a tendency to smooth
out some of the detail. The quantitative analysis confirms that
NeuS comes out as the top performer amongst the considered
multi-view reconstruction approaches considered and comes
close to the proposed methods.

4.5 Comparison Against Multi-View Photometric
Stereo Approaches

The proposed approach is also evaluated on the DiLiGenT-
MV dataset from Li et al. (2020). This dataset is tailored
for reconstruction using MVPS approaches. It consists of
five objects (Bear, Buddha, Cow, Pot2 and Reading), each
captured from 20 different viewpoints under 96 different illu-
mination conditions, i.e. a total of 1920 images per object. To
test our approaches, we used a subset of the dataset consisting
of 20 pairs of images that were found to approximately sat-
isfy the Helmholtz reciprocity constraint. More specifically,

we defined these 20 pairs by considering all pairs of adjacent
cameras, with View i lit by LED 20 paired with View i+1 lit
by LED 68 in order to most closely approximate a reciprocal
configuration. As such, our approaches are only able to use
a fraction of the original dataset (approximately 2%).

Weevaluate our twoproposedview-dependent approaches
VDo and VDp as well as the volumetric and mesh-based
methods 3DHSv and 3DHSm. Performance is also compared
against two MVPS approaches: the first one from Park et
al. (2016) referred to thereafter as Park and the second one
from Li et al. (2020) referred to as Li. Results for these two
approaches are based on the mesh reconstructions provided
for these two methods as part of the DiLiGenT-MV dataset.
The reconstructed meshes for the different methods together
with their corresponding error maps are shown in Fig. 23.
Table 4 shows the geometric accuracy, normal accuracy and
completeness metrics.

The proposed approaches based on Helmholtz reciprocity
are able to achieve good reconstruction results, recovering
generally well the geometric detail of the objects, even in the
presence of complex topologies such as in the case of the
Buddha and Pot2. Errors in reconstruction are most promi-
nent in the case of Reading which contains some concavities
causing inter-reflections that violate the reciprocity assump-
tion. Amongst these four variants, VDo performs the worst.
In contrast, VDp performs particularly well, outperforming
the other three proposed approaches on all objects except
Bear in which case 3DHSm is the top performer. This trend
is confirmed by a qualitative analysis of the results which
shows that VDp and 3DHSm produce more realistic results
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Table 4 Results on the DiLiGenT-MV datasets Bear, Buddha, Cow,
Pot2 and Reading

Method G. Acc. ↓ N. Acc. ↓ Comp. ↑
Bear VDo 2.30 29.54 65.1

VDp 2.02 22.99 67.0

3DHSv 2.06 22.82 65.4

3DHSm 1.48 19.34 64.5

Park 1.90 21.28 62.7

Li 0.39 6.93 75.3

Cow VDo 3.68 70.36 60.3

VDp 0.67 13.04 76.4

3DHSv 1.37 22.89 74.0

3DHSm 1.21 20.44 77.2

Park 0.89 25.56 89.2

Li 0.14 5.12 77.2

Buddha VDo 2.73 105.81 77.9

VDp 1.07 43.81 74.3

3DHSv 1.25 57.33 85.9

3DHSm 1.15 44.63 82.4

Park 1.95 36.16 87.4

Li 0.40 24.49 86.2

Pot2 VDo 3.66 42.28 53.2

VDp 1.03 17.80 72.3

3DHSv 1.85 20.43 71.2

3DHSm 1.43 20.21 70.0

Park 2.70 20.72 37.7

Li 0.37 10.25 88.4

Reading VDo 5.63 96.14 57.8

VDp 2.40 52.00 80.4

3DHSv 2.78 62.97 78.1

3DHSm 2.85 61.74 74.8

Park 1.67 24.58 77.3

Li 0.47 15.59 84.3

Geometric accuracy (expressed in mm and denoted by G. Acc.) and
normal accuracy (expressed in degrees and denoted by N. Acc.) are
computed at a 90% threshold, while the completeness (expressed in %
and denoted by Comp.) is obtained at a threshold of 1mm. Top per-
formers are marked in bold, considering separately the HS approaches
and the Multi-View Stereo (MVS) approaches

than VDo and 3DHSv which suffer from more noisy recon-
structions.

When compared against the MVPS approaches, our pro-
posed approaches are found to perform less well on this
dataset. This is not surprising considering that they only
utilise about 2% of the data the MVPS methods have access
to. It is worth noting that our proposed approaches are still
able to achieve reasonably close performance to Li, and are
even outperforming the earlier method of Park et al. These
results demonstrate the potential of the proposed approach as
an alternative paradigm tomodel scenes frommulti-viewdata

under different illumination conditions. However, further
evaluation is necessary to better understand how it compares
against MVPS approaches under some more controlled eval-
uation conditions where each class of methods has access to
the same amount of data.

5 Conclusions and FutureWork

This paper introduced a family ofBRDF-agnostic approaches
for full 3D reconstruction. The first approach is based on
fusing a set of orthographic or perspective view-dependent
reconstructions fromviewpoints distributed around theobject.
The second approach casts instead the problem as a vol-
umetric optimisation problem seeking the optimal surface
location within a voxel grid. The third approach uses a mesh-
based formulation optimising vertices positions for a given
mesh topology. Further, the paper contributes novel datasets
to allow future benchmarking of full 3D HS approaches. An
extensive experimental evaluation demonstrates that the pro-
posed approaches are able to accurately model objects with
complexmaterials, achieving sub-millimetre accuracy on the
synthetic scenes and exhibiting robustness to image noise.
A comparison against multi-view reconstruction techniques
shows how the proposed HS approaches are able to improve
reconstruction quality on challenging non-Lambertian low-
texture objects where MVS approaches typically perform
poorly. The proposed approacheswere also compared against
MVPS approaches and found to achieve good quality results
while using only a fraction of the number of images.

The proposed approaches all suffer from the following
limitations. Firstly, they are unable to handle scenes with
significant subsurface scattering as these cannot be described
by a BRDF which requires light to enter and leave a surface
at the same point. In practice, we have observed that the
approach is still able to reconstruct scenes exhibiting small
amounts of subsurface scattering such as in the case of the
Duck scene in our dataset. Secondly, performance degrades
in the presence of inter-reflections, particularly in concavities
where these are likely to be significant such as in the case of
the Reading scene from the DiLiGenT-MV dataset. Finally,
the approach usually fails in the presence of highly reflective
surfaces (mirror-like surfaces) due to the limited dynamic
range of the sensors used during acquisition; this may be
alleviated by making use of high dynamic range imaging.

An interesting avenue for future work would be to extend
the approach to enable capture in less controlled environ-
ments such as outdoor settings. This could be achieved in
principle by capturing an additional image acquired with
only the ambient illumination which could then be factored
out from the images acquired using the light sources for
Helmholtz reciprocal pair acquisition. Another avenue for
future work would be to extend the approach to dynamic

123



International Journal of Computer Vision (2023) 131:2243–2266 2263

scenes. To date, use of HS for dynamic scenes has been lim-
ited to 2.5D reconstruction. The extension to full 3D could
be made possible via multi-spectral imaging using a larger
number of frequency bands or using temporal multiplexing.
Finally, another direction would be to explore the use of deep
neural networks. This may prove beneficial in overcoming
the remaining limitations relating to dealing with subsurface
scattering and inter-reflections which are currently difficult
to model explicitly.
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Appendix A: Confidence Scores Ablation

This section conducts further analysis to evaluate the effect
of the confidence scores that were introduced in the context
of the view-dependent approaches in Sect. 3.1. To this end, an
ablation study is conducted for both the VDo and the VDp
approaches. In each case, we compare the reconstructions
obtained with no confidence score (denoted by no conf.),
only the saliency-driven confidence score (denoted by Cs),
only the surface normal-driven confidence score (denoted by
Cn) or the complete confidence score combining saliency-
driven and surface normal driven scores (denoted by Csn).
Quantitative results obtained on the synthetic dataset using
geometric accuracy, normal accuracy and completeness are
reported in Table 5. These indicate the benefit of using the
combined confidence scores which consistently outperforms

Table 5 Results on synthetic scenes using the view-dependent methods
with different confidence scores: no confidence (denoted by no conf.),
saliency-driven confidence only (denoted byCs ), surface normal-driven

confidence only (denoted by Cn) and complete confidence score com-
bining salience-driven and surface normal-driven scores (denoted by
Csn)

Method No Noise 0.01% Noise 0.1% Noise
G. Acc. ↓ N. Acc. ↓ Comp. ↑ G. Acc. ↓ N. Acc. ↓ Comp. ↑ G. Acc. ↓ N. Acc. ↓ Comp. ↑

Armadillo VDo – no conf. 0.26 18.62 97 0.26 18.50 97 0.26 18.58 97

VDo – Cs 0.26 18.62 97 0.26 18.51 97 0.26 18.57 97

VDo – Cn 0.26 18.61 97 0.26 18.51 97 0.26 18.57 97

VDo – Csn 0.26 18.61 97 0.26 18.51 97 0.26 18.57 97

VDp – no conf 0.19 15.43 98 0.20 15.93 97 0.21 15.94 97

VDp – Cs 0.18 15.24 99 0.19 15.71 98 0.20 15.80 98

VDp – Cn 0.17 15.09 98 0.18 15.52 98 0.19 15.51 98

VDp – Csn 0.17 15.01 99 0.18 15.44 98 0.19 15.49 98

Bunny VDo – no conf. 0.49 13.22 91 0.52 12.60 90 0.57 12.55 88

VDo – Cs 0.49 13.22 91 0.52 12.59 90 0.57 12.56 88

VDo – Cn 0.49 13.22 91 0.52 12.59 90 0.57 12.56 88

VDo – Csn 0.49 13.22 91 0.52 12.59 90 0.57 12.56 88

VDp – no conf 0.24 7.26 97 0.28 7.57 96 0.29 7.74 95

VDp – Cs 0.23 7.08 97 0.26 7.36 96 0.28 7.62 96

VDp – Cn 0.23 7.18 97 0.27 7.50 96 0.28 7.73 96

VDp – Csn 0.22 7.02 98 0.25 7.28 97 0.27 7.56 96

The analysis is conducted under different noise levels. Geometric accuracy (expressed in mm and denoted by G. Acc.) and normal accuracy
(expressed in degrees and denoted by N. Acc.) are computed at a 90% threshold, while the completeness (expressed in % and denoted by Comp.)
is obtained at a threshold of 0.5mm. Top performers are marked in bold
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Fig. 24 Results obtained on the real dataset Bee and Fish using the perspective view-dependent HS approach VDp with different confidence scores
considered during the fusion process

all other approaches across all three metrics in the case of
the VDp approach. The use of confidence score does not
appear to yield any improvement in the case of the VDo
approach. This is due to the fact there is limited overlap
between view-dependent reconstructions with this approach
which only considers six views. In contrast, the benefit is
more apparent with the VDp approach which uses a larger
number of overlapping views. Qualitative results obtained
using the VDp approach are illustrated in the case of the Bee
and Fish objects in Fig. 24. These show a modest yet notice-
able improvement, confirming the benefit of incorporating
confidence into the fusion process.
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