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Abstract
Multi-view stereo remains a popular choice when recovering 3D geometry, despite performance varying dramatically accord-
ing to the scene content. Moreover, typical pinhole camera assumptions fail in the presence of shallow depth of field inherent
to macro-scale scenes; limiting application to larger scenes with diffuse reflectance. However, the presence of defocus blur
can itself be considered a useful reconstruction cue, particularly in the presence of view-dependent materials. With this in
mind, we explore the complimentary nature of stereo and defocus cues in the context of multi-view 3D reconstruction; and
propose a complete pipeline for scene modelling from a finite aperature camera that encompasses image formation, camera
calibration and reconstruction stages. As part of our evaluation, an ablation study reveals how each cue contributes to the
higher performance observed over a range of complex materials and geometries. Though of lesser concern with large aper-
tures, the effects of image noise are also considered. By introducing pre-trained deep feature extraction into our cost function,
we show a step improvement over per-pixel comparisons; as well as verify the cross-domain applicability of networks using
largely in-focus training data applied to defocused images. Finally, we compare to a number of modern multi-view stereo
methods, and demonstrate how the use of both cues leads to a significant increase in performance across several synthetic
and real datasets.

Keywords 3D reconstruction · Depth from defocus · Multi-view stereo

1 Introduction

The extraction of 3D geometry fromdigital images has a long
and varied history, and continues to be an actively studied
field. The understanding of a scene’s composition is central
to many applications such as robotics, augmented reality and
self-driving cars; and remains a challenging problem at the
forefront of computer vision research.

Given a single 2D projection of a scene captured by a cam-
era, the problem at hand is to estimate the underlying scene
structure. Though the shape of this geometry is independent
to its reflectance properities prior to capture, the projection of
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the scene to an image entangles these quantities as pixel inten-
sities. Clearly, this process is not invertible, and any number
of solutions exist that could describe the surface manifold.

Only recently has single-image3Dreconstruction achieved
compelling results due to the adoption of learning-based
methods. However, such methods are not perfect, and do
not necessarily generalise well to unseen data. The reason-
ing behind unsatisfactory results in these scenarios are not
always obvious, since the perception of the scene via con-
textual cues, image features and shape priors are learnt as
implicit components of the framework. It is therefore difficult
to evaluate why one scenemaywork better than another, or to
fully understand the limitations of a particular method. This
is true of any learning-based approach to varying extents.

It is apparent then that more information is required for
generalised 3D reconstruction. For passive methods, this
is usually some measurable change in the scene appear-
ance arising from different viewpoints, camera settings, or
environmental conditions such as lighting. By relating these
observational cues to scene-centric or camera-centric mod-
els, 3D information can be inferred frommultiple 2D images.
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For example, multi-view stereo (MVS) aims to triangulate
scene points from two ormore images.Within the constraints
of epipolar geometry, there exists a relationship between a
given scene point and its projection across multiple views;
providing candidate solutions of the original 3D coordinates.
The search of this candidate space is sometimes referred to as
the correspondence problem, and it is solved by comparing
the similarity of pixels across neighbouring viewpoints.

Clearly, this principle strongly implies a number of
properties about the scene content, and subsequently the per-
formance of such methods is intrinsically linked to the data it
is operating on. While capable of sub-millimeter accuracy in
the presence of uniquely textured diffused materials, MVS
reconstructions begin to degrade when applied beyond this
ideal Lambertian surface model. Without the introduction
of regularisation or scene priors, surfaces exhibiting com-
plex light interactions such as specularities and sub-surface
scattering cannot be recovered via multi-view consistency.
Furthermore, regions of low or periodic texture make corre-
spondence challenging, with concavities and thin structures
often failing due to few observations.

Whilemanypreviousworks focus ondeveloping approaches
that work around these constraints, in this work we aim to
overcome them by generalising image formation away from
the traditional pinhole camera model. In doing so, we are
able to exploit the characteristics of the camera to leverage
additional information about the scene.

Specifically, the use of a lens introduces aberrations to the
image that are not captured by the pinhole model. Tradition-
ally, their appearance in the image serves only as sources of
outlier that must be avoided or corrected. For example, while
lens distortion can be detected during calibration, defocus
blurring as a result of a finite aperture cannot. While this
may not be a concern for large scale scenes such as build-
ings, the scene must nonetheless remain within the depth of
field of the camera (DoF) where pixels can be considered
sharp.

At first glance, it appears the formation of defocus is the
prohibitive factor here; whose corruption of the scene radi-
ance prevents the application of MVS. While this is true it is
simply unavoidable - yet strangely presents an advantageous
situation. Perhaps surprisingly, defocus itself can be consid-
ered a rich source of information about the scene structure.
At its simplest, this could be the location of the focal plane
according to a focusmeasure, which identifies focused pixels
according to the axiom; defocus blur acts as a low-pass filter.

Instead, in this work we pursue the analysis of the defo-
cus appearance, which in literature is best known as depth
from defocus (DFD). While MVS introduces information
through changes in viewpoint, DFD instead modifies the
camera parameters; such as the focusing distance or aperture
size. Defocus analysis is therefore monocular, and permits
the recovery of view-dependent materials that would oth-

erwise be challenging for MVS. However, for this reason
traditional implementations only achieve partial reconstruc-
tions.

In this paper, we explore how MVS and DFD can be
used together to recover geometry from macro-scale scenes
with complex materials; and how the combination of these
cues achieves higher quality reconstructions than if theywere
used individually. Though somepreviousworks have demon-
strated this, no work that we are aware of does so in the
context of general 3D reconstruction. As part of our evalua-
tion,we compare against and outperformanumber ofmodern
MVS approaches.

The majority of defocus-based literature hinges on the
thin lens camera model. Here, we explain why this model is
not robust enough for multi-view reconstruction, and instead
develop our framework around the principles of a thick lens.
To supplement this, we propose a novel and practical thick
lens calibration procedure suitable for macro-lenses. The
effectiveness of our calibration is demonstrated experimen-
tally on a number of real-world datasets.

Defocus-based literature has only recently started shift-
ing towards modern learning-based methodologies. Here,
we evaluate the advantages of a feature-based cost func-
tion derived from a pre-trained convolutional neural network
(CNN). Though networks trained end-to-endmay have ambi-
guity as a whole regarding generalising to different inputs, it
has been shown that image-based feature extraction transfers
well across domains. Our results concur with these find-
ings, and demonstrate a step improvement over traditional
pixel-based comparison. Significantly, our results indicate
the feature extractor pre-trained largely on pinhole images
has the same capability with defocused images.

To summarise, this paper revisits the key aspects of image-
based geometry recovery - image formation, calibration and
multi-view reconstruction, and presents the following con-
tributions:

1. AnMRF-based reconstruction frameworkunifying stereo
and defocus cues using deep features

2. A novel thick lens calibration procedure used to capture
a number of real-world multi-view, multi-focus datasets

3. An extensive evaluation demonstrating the benefits of our
approach, including an ablation study and comparisons
against several modern MVS methods

4. Real and synthetic datasets released with this paper

This paper builds onour previousworksBailey andGuille-
maut (2020); Bailey et al. (2021), and combines them to
produce a complete pipeline for recovering geometry from
finite aperture images using stereo and defocus cues. We
introduce the feature-based cost function and have included
an extended calibration derivation and evaluation to better
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illustrate the contributions of each cue under different con-
ditions.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses previous work. Section 3 discusses image
formation, and introduces the thick lens model. Section 4
explains our proposed calibration for this model, and Sect. 5
provides details on the reconstruction pipeline. Section 6
evaluates results on both synthetic and real data, and Sect. 7
concludes this work.

2 PreviousWork

In this section, we survey related work. Here, stereo-based
and focus-based reconstruction approaches are covered, and
we include works considering these cues individually or in
combination. To clarify the often interchanged terminology
used in focus-based reconstruction and to keep the survey
concise, we largely exclude approaches which evaluate the
structure of a scene from a focal stack based on the response
of a focus measure e.g. Moeller et al. (2015).

2.1 Multi-View Stereo

Perhaps one of the most widely understood reconstruction
principles, MVS recovers 3D structure by identifying corre-
sponding features from images of the scene taken at different
viewpoints. Using geometric constraints arising from the
pinhole camera model, 3D points can be triangulated from
two or more of these features according to the pose of each
view. Broadly speaking, the quality of reconstruction largely
depends on three factors.

Scene RepresentationHow surfaces aremodelled not only
affects the resolution of the final result, but also places
restrictions on the reconstruction algorithm. For instance,
voxel-based Vogiatzis et al. (2007); Logothetis et al. (2019);
Hornung and Kobbelt (2006); Kar et al. (2017); Choy et al.
(2016) and mesh-based Li et al. (2016); Delaunoy and Polle-
feys (2014) representations allow for a globally optimal
result, since all views can be evaluated jointly. Alternatively,
view-dependent methods Schönberger et al. (2016); Tola et
al. (2012) only use a subset of the input images to recover
a depth map of each viewpoint. While they do not impose
the strict initialisation of voxel-based and mesh-based meth-
ods, they require post processing and produce potentially less
robust results.

Feature Matching At the heart of all MVS algorithms
is a similarity metric used to identify corresponding points
between images. Classical metrics implement per-pixel com-
parisons such as sum of squared differences (SSD) Li and
Zucker (2010) and normalised cross correlation (NCC) Li
et al. (2016); Bradley et al. (2008); Furukawa and Ponce
(2010). Some works exploit perspective distortion to also

estimate surface normals Bradley et al. (2008). More recent
approaches generally use feature descriptors to extract richer
information from the source images. Though initially hand-
crafted Tola et al. (2010, 2012), the advent of deep learn-
ing introduced data-driven feature extraction with CNNs
Zagoruyko and Komodakis (2015); Yao et al. (2018).

Regularisation To overcome the real-world limitations
of standard MVS assumptions, most approaches use a reg-
ularisation framework to enforce scene priors. A popular
traditional approach involves formulating these priors as part
of an energy function, and solving with a Markov Random
Field (MRF). Early deep learning works followed a similar
idea, though recent approaches regularise with learnt priors.

Of particular interest to this survey is view-dependent
methods. Many conventional approaches were able to pro-
duce compelling results despite the limitations of traditional
feature matching, often resulting in creative methodologies
Zhu et al. (2015); Liu et al. (2010); Tola et al. (2012).Notably,
PMVS Furukawa and Ponce (2010) combine matched
patches rather than point clouds, and refine the final mesh
using an energy optimisation to impose smoothness con-
straints. COLMAPSchönberger et al. (2016), arguably one of
the best performing conventional MVS methods, combines
a structure from motion calibration with a view dependent
reconstruction pipeline to produce high quality 3D models.

More recently, deep learning-based approaches have seen
widespread success. SurfaceNet Ji et al. (2017) introduced
the firstmethod trained end-to-end based around a voxel grid.
DeepMVS Huang et al. (2018) instead generates a plane
sweep volume and aggregates matched features from an
arbitary number of images. MVSNet Yao et al. (2018) intro-
duces differentiable homography warping, and R-MVSNet
Yao et al. (2019) improves thememory efficencywith a recur-
rent architecture. PointMVSNet Chen et al. (2019) adopts a
coarse-to-fine approach with multi-scale features. CasMVS-
Net Gu et al. (2019) develops a memory efficent cost volume
and adapts it to existing methods. VisMVSNet Zhang et al.
(2020) considers per-pixel visibility according to pair-wise
observations and generates a cost volume via uncertainty
maps. Though not advertised as MVS, neural radiance fields
Mildenhall et al. (2020) achieve dense implicit reconstruc-
tions. Other notable works include Luo et al. (2019); Kuhn
et al. (2020).

2.2 Depth fromDefocus

By modelling the point spread function (PSF) of the cam-
era, depth information of the scene can be leveraged from
the formation of defocus on the image plane. DFD is a
field of research that approaches this idea in many differ-
ent and creativeways. Though techniques exist for evaluating
depth from a single defocused imageChakrabarti and Zickler
(2012); Anwar et al. (2021); Carvalho et al. (2019); Kashi-
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wagi et al. (2019), we primarily focus onmethods that require
several defocused images captured with circular apertures.

Acquisition A convenient method for capturing multiple
defocused images iswith a lightfield cameraTao et al. (2013).
However, lightfield cameras can only capture the scene at a
limited resolution. With conventional camera lenses, there
are two main approaches to generate differently focused
images - with varying aperture size Pentland (1987); Mar-
tinello et al. (2015); Song andLee (2018) or focusing distance
Favaro et al. (2008); Namboodiri et al. (2008). Changing the
aperture size is often simpler, but the scene reconstruction
volume is limiteddue to the relative blur exhibiting a symmet-
rical transfer function Mannan and Langer (2015). Although
focal stacks largely overcome this ambiguity, refocusing the
camera in this way introduces scale and translational differ-
ences between images and subsequently requires correcting
Watanabe and Nayar (1998); Tang et al. (2017); Ben-Ari
(2014); Bailey and Guillemaut (2020). Some methods Hasi-
noff and Kutulakos (2009) vary both the aperture size and
focus setting to capture dense information about the camera
PSF.

PSF Modelling Most approaches assume a convolutional
formation model, allowing the PSF to be approximated as a
2Dkernel. Twopopular choices include thePillboxWatanabe
and Nayar (1998); Favaro (2010) and Gaussian Favaro et al.
(2008); Ben-Ari (2014); Persch et al. (2017) functions. These
methods do not consider many of the aberrations present
in optical systems, so some works Kashiwagi et al. (2019);
Martinello et al. (2015) instead directly measure the blurring
response of the camera. Other works do not model the PSF
explicitly, instead depending on a data driven approach Hasi-
noff and Kutulakos (2009); Carvalho et al. (2019); Favaro
and Soatto (2005). In many cases, a thin lens defocus model
is assumed despite the fact this model does not hold in
real-world optical systems. Lin et al. (2013) improves recon-
struction accuracy through iterative refinement. Paramonov
et al. (2016) considers a model beyond a thin lens, and for-
mulates sub-aperture disparity relative to the entrance pupil
in a colour coded-aperture camera. Bailey and Guillemaut
(2020) proposes a formal calibration of a thick lens camera
model, and applies it to capturing and reconstructing multi-
view focal stacks.

Aside from Emerson and Christopher (2019) who utilise
deep learning, most works adopt an MRF-based or numer-
ical optimisation framework. Moreover, the overwhelming
majority ofDFDmethods discussed only achieve single-view
reconstructions. This is in part due to limitions modelling the
PSF, as well as a lack of publically available datasets. To our
knowledge, Bailey andGuillemaut (2020) is the only attempt
at 3D reconstruction using only defocus cues; by fusing mul-
tiple single-view reconstructions together.

2.3 Hybrid Approaches

We will now discuss previous works that take advantage
of multiple reconstruction cues. Most existing methods for-
mulate their combination of stereo and defocus in an MRF
framework. One approach is to combine cues with defocused
stereo pairs Li et al. (2010); Rajagopalan et al. (2004); Chen
et al. (2015); often expressing the relative blurring kernel in
terms of pixel disparity. Takeda et al. (2013) applies coded
apertures in this way. Acharyya et al. (2016) instead uses
defocus to constrain stereo matching. Other methods apply
single-image defocus constraints to better recover disconti-
nuities Wang et al. (2016); Gheţa et al. (2007).

Alternative to pairwise-stereo, some methods use light-
field cameras to combine cues Lin et al. (2015); Tao et al.
(2013); Tao et al. (2017), though reconstructions are limited
to a very narrow baseline. Bhavsar and Rajagopalan (2012)
considers multiple viewpoints, but does not apply this to 3D
reconstruction. Chen et al. (2017) is the only approach we
know of to use deep learning for combining cues. However,
as with all works discussed, reconstructions remain limited
to a single view.

Finally, shading cues have been proposed in combination
with defocusChenLi et al. (2016), stereoWuet al. (2011) and
both Tao et al. (2017) to alleviate the texture requirements of
these cues.

2.4 Summary

Though many works have proposed methodologies consid-
ering stereo and defocus separately, far fewer have attempted
combining them. Those who have limit reconstruction to a
single view, and therefore do not recover a complete rep-
resentation of the scene. In comparison to our previous
works; though Bailey and Guillemaut (2020) remains the
only method we know of that achieves 3D reconstruction
using only defocus cues, it forgoes the explicit multi-view
consistency of MVS. Bailey et al. (2021) demonstrates the
advantages of using both stereo and defocus cues in 3D,
but does not use a robust cost function or extensively illus-
trate the contribution of each cue. In this paper, we present
the complete pipeline of our thick lens-based reconstruction
approach, and address these shortcomings.

3 Image Formation

3.1 ProjectionModel

As discussed in the introduction, the pinhole camera model
has become a key component to the theory behind MVS.
Ignoring lens distortion, the projection of aworld-space coor-
dinateX to an image point on the camera sensor x is described
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by this model as Hartley (2000),

x = K [R | t] X. (1)

Here, the intrinsic matrix K describes the projection itself,
while rotation matrix R and translation vector t define the
camera orientation in space. We define K as,

K =
⎡
⎣
F s x0
0 F y0
0 0 1

⎤
⎦ , (2)

with F denoting the effective focal length, x0 and y0 describ-
ing the principal point (the centre of the image sensor relative
to the centre of projection), and s the skew factor which is
usually zero.

Let r(x) define the radiance of the projected point. For a
pinhole image, it is enough to simply assign the pixel colour
according to r , as is the assumption in MVS. However, a
more general expression can be used instead to describe the
formation of a pixel y on image I Favaro et al. (2008),

I (y) =
∫

k(y, x) r(x) dx. (3)

Here, k(y, x) represents the PSF, or the influence of the lens
with respect to the formation of defocus. The pinhole model
therefore becomes a special case of Eq. 3 where k assumes a
Dirac delta centred around y; thereby permitting the captured
image to represent the incident radiance.

3.2 Defocus Model

In most DFD approaches, Eq. 3 is approximated as a convo-
lution which imposes a fronto-parallel assumption about the
scene. Although this technically becomes invalid at discon-
tinuities, we found in our experiments the error introduced is
negligble. Let us define kσ as a convolutional blurring kernel
that estimates the PSF of the camera. Our image formation
model then becomes a spatially variant convolution between
the projected radiance and kσ Favaro et al. (2008); Favaro
(2007)

I (y) = (kσ ∗ r)(y). (4)

The PSF kernel kσ resembles the shape of the aperture, and
describes the distribution of light formed on the sensor in
defocused regions.Apopular choice in literature is to approx-
imate the PSF as a 2DGaussian function Favaro et al. (2008);
Ben-Ari (2014). In thiswork,we also adopt this approach and
define

kσ (y) = 1

2πσ 2 e
− 1

2 (
y
σ )

2
. (5)

Fig. 1 Comparison of pinhole (top) and thin lens (bottom) image for-
mation models. Thin lens assumptions introduce defocus aberration by
replacing the virtual pinhole with a principal plane h1 at the same loca-
tion. In both cases, the image distance v becomes the effective focal
length derived in traditional stereo camera calibration

To complete our defocus camera model, we now need to
derive the blur variance σ . This aspect of the defocus model
is arguably the most important, since it relates the blurred
appearance to scenedepthd.Most existing literature consider
a thin lens abstraction of the camera optics giving Favaro
(2007)

σ(d) = γ av

2

(
1

d
+ 1

v
− 1

f

)
, (6)

where f is focal length,a is the aperture radius, v is the sensor
distance from the lens, and γ is a camera-specific constant.

This model has a number of drawbacks. First, the lens
is assumed to be infinitesimally thin - simplifying the light
transport to refract only once as it passes through the camera
optics. In reality, light refracts at the boundary between two
materials with differing refractive indices. For any physical
glass lens suspended in air, light refracts once when it enters
and again when it leaves.

Second, the thin lens model makes implicit and incor-
rect assumptions about the location of the principal plane
of refraction. Comparing to the pinhole camera model, thin
lens theory implies the centre of projection aligns with this
refractive plane as seen in Fig. 1. This does not hold in
practise, especially with macro-lenses. The implications of
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Fig. 2 Our camera model is a
thick lens composed of two thin
lenses each with focal length f
separated by some distance. The
effective pinhole location is at
the entrance pupil u1.
Calculation of the defocus
radius σ for a given pixel is
performed relative to the
principal planes h1 and h2

this become clear after realising defocus-based reconstruc-
tions are relative to the thin lens; while camera orientation
and stereo-based reconstructions are relative to the pinhole.
Therefore, any disparity between the locations of these quan-
tities will introduce ambiguity between cues.

To overcome these problems, we model defocus forma-
tion according to thick lens principles. This model describes
the camera lens as two principal planes h1 and h2 seper-
ated by some distance as illustrated in Fig. 2; implying light
refracts twice as it passes through the lens. Immediately, this
addresses the first problem with the thin lens model.

This addition of another refractive plane in our model
gives rise to a question - where is the aperture located? The
answer to this is not immediately clear, but for our purposes
this doesn’t matter. Instead, we need only consider the vir-
tual images of the aperture as seen through the front or the
back of the camera lens. These images are referred to as the
entrance u1 and exit u2 pupils respectively, and control the
amount of light entering or leaving each lens in the model.

If the pupil diameters are the same (a symmetric lens), then
their positions converge on their respective principal planes.
A more realistic model considers the scenario when their
sizes differ, which has the effect of displacing the pupils. The
size of this displacement is proportional to the ratio of pupil
diameters, or pupillary magnification p Rowlands (2017)

p = u2
u1

. (7)

Given that the effective pinhole location exists at the entrance
pupil u1, the second problem with the thin lens model can
be addressed by finding p. Then, the displacement w of the
front principal plane h1 can be found Rowlands (2017)

w = f

(
1

p
− 1

)
. (8)

To account for this offset, Eq. 6 now becomes

σ(d) = γ av

2

(
1

d − w
+ 1

v
− 1

f

)
, (9)

with scene depth d relative to the entrance pupil, and defocus
observations relative to h1. From the above it is clear that
when p → 1, w → 0. Only under these conditions do thin
lens assumptions become valid.

3.3 Camera Model Summary

Throughout this section, we have discussed three image for-
mation models; pinhole, thin lens and thick lens. Hopefully,
it is now apparent that the thick lens approach we take in
this paper is a generalisation of the thin lens model; and by
extension, thin lens assumptions are a generalisation of the
traditional pinhole camera. In this way, it is interesting how
the complexity of each model progresses by incrementally
building on the principles of the previous one.

Could this dynamic be continued further, and would it be
of any benefit? Consider, modern lenses are incredibly com-
plicated pieces of equipment, with many optical elements
involved in resolving the focused image. Surely, by incor-
porating more parameters into our model we could describe
the camera behaviour with even higher precision? Certainly,
additional factors could be included in the formation model -
for example,we only consider light as a particle and disregard
wavelength-dependent effects such as chromatic aberration.
However, the majority of the complexity in modern lenses
is to correct for such aberrations, so their appearance is far
less significant than defocus blurring. It is not unreason-
able to assume this will only continue to improve in future
cameras, whereas defocus formation remains unavoidable.
Moreover, the complexity of camera lenses is so great that
wewould argue only data-drivenmodels, rather than our ana-
lytical model, can incorporate these less prominent features
with any accuracy. That being said, we have already demon-
strated in our previous work Bailey and Guillemaut (2020)
the advantages our thick lensmodel has over traditional defo-
cus analysis. For the scope of this paper, thick lens principles
are sufficient for unifying stereo and defocus cues.
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Fig. 3 The capture of a dataset is composed of two stages: aquisition
and post-processing. During acquisition, an appropiate number of focal
stack images are captured depending on the scene volume and aperture
setting of the camera. Then, a series of images are taken concerning
the thick lens calibration detailed in Sect. 4. Finally, with each camera
setting calibrated, the capture of the actual scene can commence - with

multi-view datasets achieved by orbiting the single camera around the
scene. Using this data, the camera matrices describing image projection
and pose are derived; with differences in image scale and translation as
a result of refocusing the camera corrected. Finally, the parameters for
the thick lens defocus model are estimated and refined

3.4 Cue Considerations

Let us now revisit Eq. 3, which describes the behaviour of all
three cameramodels. Fundamentally, neither stereo nor defo-
cus cues model the light reflected from a scene point beyond
a simple projective transform. In other words, the light trans-
port of the scene is not considered prior to the final surface
interaction. Both cues are therefore dependent on the scene
appearance alone as observed in the 2D projection. This is in
contrast to shape from shading methods, that aim to recover
geometry with consideration of the lighting conditions; and
are well known for their independence of texture. Why then
do we consider two cues that appear to depend on similar
information?

First, it should be re-iterated that defocus information
is monocular, and therefore remains coherent in the pres-
ence of view-dependent materials. On the other hand, MVS
relies on multi-view consistency, and therefore degrades in
performance when applied to materials exhibiting complex
reflectance. Unlike shading information defocus is a camera-
centric phenomena, and its reconstruction principles can be
generalised across many complex environments and scenes
with little regard to their content. Often, shading cues must
make assumptions about the environment such as the num-
ber of light sources and may impose restrictions on the
scene materials. Provided sufficent defocus-variant texture is
present Favaro (2007), we argue defocus is one of the richest
passive sources of information regarding the scene structure.
At the macro-scale magnification explored in this paper, this
texture limitation is not a concern.

4 Calibration

The calibration of the thick lens camera model is non-trivial
for several reasons. First, unlike most approaches, we do not
consider camera parameters provided by the manufacturer to
be accurate for all focus settings. Rather, we only consider

these values relevant when the camera is focused at infinity.
Secondly, to our knowledge there is no standard approach
for reliably calculating the pupil ratio p, whose value is of
significant importance in our model. Finally, our calibration
needs to correct for translation and scale differences between
multi-focus images without dependance on DoF or texture
content.

In this section, we will discuss how we solved these prob-
lems. We begin by defining a number of focus settings that
sweep through the scene volume. In general, the more focus
settings captured, the better our model can be applied to
defocus-based reconstruction. Our calibration approach can
then be broken down into several stages as summarised in
Fig. 3. For each setting, the following key steps are made:

1. Calculate camera intrinsics and lens distortion
2. Derive affine transforms to register images
3. Estimate the defocus parameters in our model
4. Refine parameters in a per-viewpoint optimisation

From here onwards, we refer to parameters related to the ith

focus setting of this focal stack with a subscript.Without loss
of generality, let us define a reference setting at i = 0.

4.1 Camera Matrices

In this first step, we derive the intrinsic calibration of the
camera using a standard approach proposed in Zhang (2000).
A calibration plane is positioned in multiple orientations and
captured for each focus setting. Images are taken with both a
small and a large aperture. For each setting, feature points c
are identified from the smaller aperture images. The intrinsic
matrix Ki and lens distortion coefficents for each setting are
solved by minimising the reprojection error. In the following
sections, images have lens distortion removed. R and t are
calculated in a similar way for each viewpoint, using a set of
scene features common to all views.

123



International Journal of Computer Vision (2022) 130:2858–2884 2865

4.2 Registration

This step aims to register all images in a focal stack to a
reference setting. A naive approachmay be to directly use the
parameters from the geometric calibration. Since Fi is related
to the projection magnification mi by Rowlands (2017)

Fi = fi

(
1 + mi

pi

)
, (10)

the scaling between two settings could be found quite easily
if pi = 1 and fi = f ∀ i . However, in our model neither of
these conditions are guaranteed. In addition, while transla-
tion differences could be derived from the principal point in
theory, in practise the estimation of this quantity is ill-posed
and subject to unpredictable variations.

Instead, we exploit the detected features c from Sect. 4.1.
By identifying corresponding features in the images, an opti-
mal scale and translation can be calculated to best align them.
The ratio of effective focal lengths between the reference F0
and Fi is used as an initial scaling factor si . This is refined
in a least mean square optimisation:

min
si

∑
k

‖ tki − t̄i ‖2 (11)

tki = ck0 − sicki (12)

where c0 and ci are the feature coordinates, and t̄i is themean
of tki ∀ k. Eq. 11 is solved as a function of si using gradient
descent. Once si has been optimised, the corresponding t̄i
represents the required 2D translation. Images in the focal
stack are then subject to the affine transform

Ti =
[
si 0 t̄i x
0 si t̄iy

]
. (13)

After registration, all images in the focal stack share the cam-
era matrices of the reference setting.

4.3 Parameter Estimation

In this section, we discuss how the parameters in Eq. 9 fi , ai ,
vi andw are estimated.All parameters are implicitly assumed
to be positive.We begin by calculating two intermediate vari-
ables mi and pi .

PupillaryMagnification:Consider images of a uniformplane
focused at infinity and at each of the defined focus settings
(see Fig. 4). Our approach relates the change in observed
brightness in these images to the pupil ratio pi at a particular
focus setting under the following conditions:

Assumption 1 Exposure time andglobal illumination remain
constant between the images.

Fig. 4 Calibration images of a uniform plane used for deriving average
brightness focused at infinity (left) and at a focus setting (right). Besides
the focus distance, all camera parameters and lighting conditions remain
constant in both images. The observed change in brightness is therefore
attributed to the pupil ratio. Images are white balanced and brightened
for visualisation

Assumption 2 The pupil ratio has a value of 1 only when
focused at infinity.

The amount of light incident to the image plane of the
camera is related to the area of the smallest pupil. Therefore,
assumption 2 implies that the maximum brightness observed
will be when the camera is focused at infinity, since neither
pupil is constricting the light entering the lens. Therefore, the
value of pi will either be greater than or less than 1 depend-
ing on the camera lens. We will assume this is unknown,
and show the derivation for pi < 1 where u2 < u1. From
assumption 1, the following must hold true:

b∞
bi

=
(
u2∞
u2i

)2

. (14)

Here, b∞ and u2∞ are the average brightness and exit pupil
diameter focused at infinity; and bi and u2i are the average
brightness and exit pupil diameter at a given focus setting.
Since u1∞ = u2∞, Eq. 14 can be rewritten in terms of the
entrance pupil according to Eq. 7

b∞
bi

=
(

u1∞
u1i pi

)2

. (15)

Knowing that Rowlands (2017)

u1 = Fi
Ni

, (16)

u1∞ = f∞
N∞

, (17)

where f∞ is the known focal length when focused at infin-
ity, N∞ is the reported f-stop of the aperture and Ni is the
effective f-stop setting; Eq. 15 can be rewritten as:

b∞
bi

=
(

f∞Ni

Fi N∞ pi

)2

. (18)
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Since Rowlands (2017)

Ni = N∞
(
1 + mi

pi

)
, (19)

Equation 18 can be rearranged as a quadratic function of pi
by substituting Eq. 19:

Fi
f∞

√
b∞
bi

p2i − pi − mi = 0. (20)

The value of pi when u2 < u1 is given by the roots of Eq. 20.

pi = f∞
2Fi

√
b∞
bi

⎛
⎜⎝1 ±

√√√√1 + 4Fimi

f∞

√
b∞
bi

⎞
⎟⎠ . (21)

By definition, b∞ > bi and Fi > f∞. As a result, the dis-
criminant of Eq. 21will always be greater than 1whichwould
render a negative solution. This is therefore discarded, leav-
ing the single positive solution of pi ,

pi = f∞
2Fi

√
b∞
bi

⎛
⎜⎝1 +

√√√√1 + 4Fimi

f∞

√
b∞
bi

⎞
⎟⎠ . (22)

Note here that Eq. 22 is only defined for pi < 1. A similar
derivation can be made for u2 > u1 by removing pi from
Eq. 15. Conversely, in this case pi ≥ 1:

pi = mi

Fi
f∞

√
b∞
bi

− 1
. (23)

Equations 22 and 23 represent a piecewise function describ-
ing the pupil ratio. The choice of either one when calculating
pi is simply a case of whichever one gives a valid solution.
See Appendix 1 for a proof that only one of these solutions is
always valid. The only unknown here ismi , which we derive
next.

Projection Magnification The magnification mi in this con-
text is the ratio of the object size in the scene to the projection
of that object on the camera sensor. For a given focus setting,
this is found by first finding the focusing distance di . This
is the distance from the camera pinhole to the centre of the
DoF. mi and di are related as follows Kingslake (1992)

mi = Fi
di

. (24)

To calculate di , we apply the SumModifiedLaplacian (SML)
Nayar and Nakagawa (1994) focus measure to the large aper-
ture calibration pattern images captured in Sect. 4.1. Since

the poses of the patterns are known, feature points on the cal-
ibration plane can be sampled and the distance to the camera
found. Regions where a high response is measured indicates
an area in-focus. Assuming the DoF is a parallel plane, sam-
ples from multiple calibration images can be collected to
improve robustness. The weighted mean of the distribution
above a threshold gives the value of di , from which mi is
found.

Focal LengthGivenmi , pi and Fi , the value of fi is given
by rearranging Eq. 10 as

fi = Fi(
1 + mi

pi

) . (25)

Aperture The aperture radius ai is given by Kingslake
(1992)

ai = Fi
2Ni

. (26)

ImageDistanceUsually, vi is defined byKingslake (1992)

vi = fi (1 + mi ). (27)

While this is correct for a single image, this does not hold in
the context of a focal stack. This is because, as the camera is
refocused, there may be variance in the lens focal length f .
Thus, for DFD observations to be relative to the same point
(the reference focus setting at i = 0), this drift needs to be
accounted for when calculating vi

vi = fi (1 + mi ) − ( f0 − fi ) = fi (2 + mi ) − f0. (28)

Equation 28 offsets Eq. 27 by the difference in focal length
relative to f0. Essentially, this adjustment aims to ensure the
principal planes of each setting align with one another.

Pupil Displacement Finally, we can now define the value
of w according to Eq. 8.

4.4 Parameter Refinement

An important practical consideration during acquisition is to
capture multiple focal stacks with the same settings. So far,
we have assumed the ideal case where the camera refocuses
perfectly. However, throughout the calibration process the
lens will not be returning to exactly the same focus setting.
As a result, there may be a need to refine some parameters on
a per-viewpoint basis, depending on the quality of the lens.
In our experience, only the value ofw needs adjusting in this
way. All other parameters (including those used for image
registration) appear sufficently accurate.

We optimise w using scene features with known position
in the world reference frame. Our cost function is based on
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Fig. 5 Diagram of the proposed iterative reconstruction framework.
Defocus and stereo observations are generated from the calibrated focal
stacks and synthetic pinhole images respectively. The cost function is
generated from these observations via pixel values or extracted features,
and weighted according to the value of α. This weighted sum is input to
an MRF framework, where spatial consistency is enforced according to
second order smoothness priors. The output from the MRF is the esti-

mated depth, which is used in the next iteration to re-generate pinhole
images of the focal stacks. As iteration increases, α is updated and the
effective resolution of the pipeline doubles. This process continues until
the maximum number of iterations has been reached. To generate 3D
models, the depth and normal maps from each viewpoint are converted
to point clouds, and fused together

the relative blur between pairs of images in the focal stack.
The cost function presented here is similar to the one used in
Sect. 5 for reconstruction. First, we define the relative blur
between settings i and j :

σi j (d) =
√

|σi (d)2 − σ j (d)2| (29)

where σ(d) is defined in Eq. 9. Using this, we optimise w

using images Ia and Ib from the focal stack.

min
w

∑
{i j}∈�

∑
k

‖σi j (dk) ◦ Ia − Ib ‖2 (30)

{a, b} =
{

{i, j} σi (d) < σ j (d)

{ j, i} otherwise
(31)

Here, � is a vector of paired image indices, ◦ is a defocus
operator which we define later, and dk is the distance of the
kth feature from the camera. Equation 30 blurs whichever
image is sharpest to match the other for every feature, and
compares the result with a pixel-wise square difference. This
sparse optimisation can be thought of as a per-viewpoint
global adjustment of all blurring functions describing the
focal stack.

5 Reconstruction

Our approach combines defocus and stereo information to
leverage the benefits of both cues to generate complete 3D
models of macro-scale scenes. The proposed pipeline can be
broken up into two sequential stages, as shown in Fig. 5.

Per-View Reconstruction Using stereo and defocus cues,
we reconstruct per-viewpoint depth maps. As input, we take
multi-view focal stacks captured and calibrated using the
approach discussed in Sect. 4. These images have a narrow
DoF, making them unsuitable for direct stereo matching. As
part of our pipeline, we infer a focused image according to
the current depth estimate, and perform stereo matching on
these synthetically generated images. The two cues are then
jointly optimised to find the surface estimate, which is refined
in subsequent iterations. Our approach can be summarised as
follows:

1. Calculate an initial thick-lens DFD reconstruction
2. Selectively composite the focal stack inputs using the

camera model and estimated depth to approximate scene
radiance

3. Find corresponding points from synthesised radiance
4. Combine defocus and correspondence information and

recalculate surface at higher resolution
5. Repeat steps 2, 3 and 4 until maximum resolution or iter-

ation reached
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Point Cloud Fusion The point clouds from each view are
combined to produce the final 3D model. We enforce consis-
tency checks on each reconstructed point to reduce noise,
before applying screened Poisson surface reconstruction
Kazhdan and Hoppe (2013) to generate the final triangular
surface mesh.

5.1 Energy Function

We formulate depth recovery of each view as a discrete
labelling problem of N labels, which we generalise here to
exploit both defocus and stereo cues. Each cue is represented
as a data term in our energy function,

E(x, n) = (1 − α(n))
∑
p∈ν

�D(xp)

+ α(n)
∑
p∈ν

�S(xp) + λ

2n−1

∑
(p,q)∈ε

�pq(xp, xq).
(32)

Here, α is a scalar value between 0 and 1, and weights the
contributions of the defocus term �D and the stereo term
�S . The proposed method linearly modulates its value with
increasing iteration up to a maximum of 0.5. The value of λ

controls the amount of pairwise smoothness applied by�pq ,
which encourages second order smoothness as described in
Olsson et al. (2013).

In our framework, we assume each pixel represents a sur-
face and model it as a tangent plane. The orientation of each
surface is estimated after every iteration by fitting a plane
to neighbouring 3D points via singular value decomposition.
During reconstruction, the candidate search space of each
surface is independently reduced as a function of iteration n.
Unlike traditional MRF formulations, this approach allows
for high resolution reconstructions without requiring a cor-
responding number of labels; reducing memory usage and
computational load. As n increases, the effect of the smooth-
ness term is decreased to enable the recovery of higher fidelity
surface details. Equation 32 is minimised using α-expansion
Boykov et al. (2001); Szeliski et al. (2008).

Eachdata termdepends on aphotometric cost function that
compares the similarity of two image patches. In this paper
we evaluate two such functions. For now, this is denoted �

and will be explained in further detail later. We will now
define each of the terms in Eq. 32.

5.2 Defocus Term

To calculate the defocus term for a pair of images {Ii , I j }
in a given focal stack, a scale-space approach is taken. The
relative blur between the images is found according to Eq. 29,
and the sharper image is blurred to match the other. The
cost function φD(xp) is defined by the similarity between

the defocused and original image

φD(xp) =
∑

{i j}∈�

�
(
σi j (xp) ◦ Ia, Ib

)
. (33)

As in Eq. 30, ◦ denotes the defocus operator, � contains
indices of paired images, and {a, b} are defined in Eq. 31.
Since the accuracy of DFD is greatest when relative blur
is small, only neighbouring images in the stack are paired
together. When evaluating Eq. 33, we first remove harmonic
texture components in the source images

Ii = Ii − (Ii ◦ kσ ). (34)

This procedure, proposed inFavaro (2007), removes defocus-
invariant texture components, and has been shown to improve
the performance of focus analysis. We define our defocus
operator ◦ as a linear diffusion operator as proposed in Favaro
et al. (2008). Although this is equivalent to the Gaussian PSF
discussed in Sect. 3.2, we found linear diffusion performs
betterwith subpixel defocus radii. The forward diffusion con-
straint is enforced by starting Eq. 33 at the label closest to
the depth d0 where the relative blur σi j (d0) = 0. We derive
this from Eq. 29:

d0 = aivi ± a jv j
ai
fi
(vi − fi ) ± a j

f j
(v j − f j )

+ w. (35)

The above simplifies to the result in Favaro et al. (2008)
when fi = f j , ai = a j and w = 0. Finally, the generated
cost volume is normalised according to

�D(xp) = 1 − exp

(
−φD(xp)

μD

)
, (36)

where μD is the mean of the cost volume φD .

5.3 Stereo Term

While the defocus term has a stable response in the pres-
ence of defocus-variant texture, it does not necessarily permit
the recovery of high frequency surface detail. This is a con-
sequence of the nature of defocus blur; surface details are
attenuated by the aggregation of photons in out-of-focus
regions. The stereo term is intended to improve the fidelity
of the reconstruction by integrating correspondence informa-
tion from synthetically generated images that approximate
the scene radiance.

Compared to our previous work Bailey et al. (2021), we
found that deblurring the focal stacks via non-blind deconvo-
lution tends to be a source of instabililty; primarily in regions
which do not have an accurate depth estimate. Overall, the
benefits of a potentially sharper image vs the unstable con-
seqences when the reconstruction fails were not worthwhile.
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With our datasets, we found the radiance estimate produced
through selective sampling of the focal stack produced a
result that was perfectly adequate for stereo matching. As
before, observations from either side of the reference view
are used to improve robustness to occlusions.

Given an estimate of the depth map from the reference
view, the surface is raymarched to determine the distance
of all pixels from each view. Some pixels in the auxillary
views will not intersect this surface, but this means they are
probably not visible in the reference view anyway. With this
estimate of the scene radiance, let us now look in detail at
how a single pixel p is processed.

Assuming p is in the reference view, we define a square
support patchWp centred around p, and cast rays into world-
space. Unike Bailey et al. (2021), this is not done for every
pixel in the support patch - only the four corners. As a
result, computational efficiency is improved dramatically,
and remains reasonably consistent regardless of the patch
size.

These rays are intersected with sample tangent planes cor-
responding to p; at 3D locations determined by the candidate
labels. By considering the surface orientation in this way,
perspective distortion is applied to better resemble the patch
appearance in the auxillary view. Pixels are then sampled
between these corners, with subpixel sampling performed
via bilinear interpolation. For label x , the vector of costs
defining the similarity between a patch in the reference view
Wp and patches in the auxillary views Ŵp is defined by

ϕS(xp) =
{
�
(
Wp, Ŵp

0
)

, ...,�
(
Wp, Ŵp

j
)}

, (37)

where�S defines the vector of auxillary views with j ∈ �S.
In our implementation, we consider 4 neighbouring views.
To improve robustness, only the best 2 scores are considered
per label from ϕS(xp), and are averaged together; denoted
φS(xp). Finally, the costs are normalised to produce the final
stereo term, where μS is the mean of the cost volume φS :

�S(xp) = 1 − exp

(
−φS(xp)

μS

)
. (38)

5.4 Smoothness Term

The purpose of the smoothness term is to ensure the recon-
structions remain coherent in textureless or saturated regions
while retaining surface edges. The general form of such a
function can be written Szeliski et al. (2008)

�pq(xp, xq) = min
(
�max , Vpq(xp, xq)

)
. (39)

The above enforces pairwise smoothness between two pix-
els p and q taking labels xp and xq respectively, with the
truncation preserving discontinuities. Following Bailey and

Guillemaut (2020),we define Vpq as a second-order prior and
exploit the tangent plane surfacemodel. For twoworld-points
P and Q corresponding to labels xp and xq respectively, we
define Vpq

Vpq(xp, xq) =
(

1

δ(n)(N − 1)

∣∣∣∣
(Q − P) · qn

pr · qn
∣∣∣∣
)2

, (40)

similar to the definition proposed in Olsson et al. (2013).
Here, qn is the normal of the surface related to pixel q, pr

is a ray cast through pixel p and δ(n) is the metric distance
between labels. This expression penalises label assignment
based on the curvature of the surface, enabling a smooth
piece-wise linear reconstruction. In our framework, we set
�max = 0.1 and λ = 10000.

5.5 Photometric Cost Function

Throughout this section, our photometric cost has been
abstracted away as some similarity score between two image
inputs. Here, let’s consider the comparison of two image
patches a and b. In this paper, we explore two approaches
in our implementation. The first takes the per-pixel sum of
square differences (SSD) for all pixels contained within the
patches,

�SSD(a,b) =
∑
i

(ai − bi )
2 . (41)

This is a very simple and in some ways naive approach, but
remains a popular choice in DFD. In fact, Eq. 41 was used
exclusively in our previous work Bailey et al. (2021).

The second cost function we present in this paper is based
on the extraction of learnt features. This is achieved using
selected CNN layers of a pre-trained image classifier. In this
work,we useResNet-50 pre-trained on the ImageNet dataset.
The model was obtained from the TorchVision package for
PyTorch. Itwas trained using stochastic gradient descentwith
10−4 weight decay and 0.9 momentum for 90 epochs; with a
batch size of 32 and a learning rate of 0.1. Every 30 epochs,
the learning rate was reduced by a factor of 0.1. All pooling
layers and fully-connected layers are removed, and only the
initial 7x7 convolutional layer and thefirst 2 bottleneck layers
are used.Thesemodificationsweremadebecause the training
images are significantly larger than the image patches we
wish to evaluate. Consequently, we can truncate the network
and still maintain a receptive field that is appropiate for our
use case.

Let the function R represent a forward pass of our ResNet-
based feature extractor. Our similarity score then becomes a
comparison between features instead of pixels,

�CNN (a,b) =
∑
i

(R(a)i − R(b)i )
2 . (42)
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Fig. 6 Materials simulated in our synthetic datasets: gold (top row),
stone (middle row) and wood (bottom row)

Note that a and b remain subject to the usual image normal-
isation required by the network. In all experiments, we use a
patch size of 11x11 pixels - an increase from the 5x5 patch
size used in Bailey et al. (2021). When using�CNN , the out-
put of R produces a 3x3 patch with 512 channels; which is
flattened to a vector containing 4608 features.

5.6 Point Cloud Fusion

To filter out significantly erroneous points in the point
cloud outputs, a post-processing correspondence check is
performed. This process retains corresponding points from
neighbouring views that determined similar results during
reconstruction, indicating a level of robustness in that region,
and eliminates them otherwise. Our implementation requires
each point to correspond in at least two adjacent views to
within 0.5mm. We also exclude corresponding points where
the difference in normal vectors exceeds 30 degrees. The
position and normal vectors of all remaining points are aver-
aged with their corresponding matches, and are subject to
screened Poisson surface reconstruction to generate the final
triangular mesh of the scene.

6 Evaluation

In this section we evaluate the performance of our approach
on synthetic and real data. Here, we perform an ablation
study to analyse the contribution of each cue, by comparing
the proposed method against the performance of the stereo
and defocus terms operating individually. This is achieved
by fixing the weighting term α to 0 for defocus and 1 for

stereo for all iterations except the first. In all experiments,
the first iteration of the pipeline is defocus only to generate
an initialisation of the surface and an estimate of the radiance
required for stereo matching. Our evaluation considers two
cost functions: sum of square differences (SSD) and a pre-
trained feature-based cost (CNN). For all experiments, we
process N = 100 labels and run for 5 iterations with a visual
hull initialisation. Real-world object silhouettes were gener-
ated using Rother et al. (2004), with any ambiguous regions
manually corrected. Since the focal stack images are regis-
tered during calibration, only one silhouette is necessary per
view. We found that the defocus term did not respond well
without the object silhouettes shrunk to remove blurring due
to background pixels. Our results are therefore missing some
regions around the boundaries of objects, which is particu-
larly apparent in the Dragon dataset. Note that, in principle,
our approach does not necessarily require a visual hull ini-
tialisation.

This section begins by explaining how we generated our
synthetic and real datasets. Next, a per-viewpoint evalua-
tion is performed by comparing the accuracy of the depth
maps our method produces across a range of metrics. We
then explore the performance of our method in a 3D context.
A quantitative analysis of the synthetic data is performed
on the fused point clouds where we also compare to several
modern MVS methods, before a qualitative comparison on
the real datasets is conducted. Finally, an ablation study is
performed to analyse the effect of the number of images in
the focal stack.

6.1 Datasets

6.1.1 Synthetic

To generate the synthetic data, photo-realistic images of the
Stanford Armadillo, Bunny and Dragon were rendered from
24 viewpoints using Blender. Each object was rendered with
3 different materials as seen in Fig. 6; gold, stone and wood.
This initial output from the renderer represents the pinhole
radiance of the scene. These images then had depth of field
applied by blurring them with a Gaussian PSF according to
our convolutional model, with f = 100mm, a = 4.55mm
and w = 0mm. Each viewpoint is processed to create a
5-image focal stack, with the focusing distance uniformly
incremented according to the ground truth depth maps. To
simulate image noise, Eq. 4 is modified to become

I (y) = (kσ ∗ r)(y) + η, (43)

where η is modelled as additive white Gaussian noise. For
these experiments, the standard deviation of η is set equal to
1% of the pixel value range. In combination with the noise-
free data, this totals 18 synthetic datasets.
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Fig. 7 Example focal stack input images for our real datasets; Owl (top
row), Bauble (middle row) and Temple (bottom row), with the focusing
distance increasing from left to right. Only five of nine total images for

the Bauble and Temple datasets are shown. Rightmost column shows
the f/22 pinhole images used by the MVS methods we compare against

Table 1 MAE of generated depth maps from datasets with 0% noise

Armadillo Bunny Dragon Average

Gold Stone Wood Gold Stone Wood Gold Stone Wood

DFD (SSD) 0.4677 0.5558 0.6206 0.4635 0.4893 0.5596 0.6661 0.7589 0.8146 0.5996

DFD (CNN) 0.3428 0.3998 0.4418 0.3274 0.3620 0.3862 0.4719 0.5017 0.5560 0.4211

Stereo (SSD) 1.7132 0.5191 0.5039 2.6894 0.3316 0.5751 2.4367 0.7152 0.6696 1.1282

Stereo (CNN) 1.2583 0.4870 0.3912 2.3017 0.2635 0.3477 2.0981 0.6856 0.5738 0.9341

Proposed (SSD) 0.7127 0.3083 0.3540 1.0115 0.2035 0.3256 0.9259 0.3666 0.4159 0.5138

Proposed (CNN) 0.4699 0.2219 0.2496 0.5590 0.1281 0.1823 0.6074 0.2350 0.2801 0.3259

Bold values indicate the top performing approach for each object and material
All values are given in millimetres, and represent the average error across all viewpoints

6.1.2 Real

Real-world datasets are acquired according to the procedure
described in Sect. 4. In this paper we present three datasets;
Owl (29 views, 5-image stacks), Bauble (18 views, 9-image
stacks) and Temple (16 views, 9-image stacks). An example
set of images from a single viewpoint are shown in Fig. 7.
These are small objects that require relatively high magnifi-
cation to photograph, and exhibit reflectance properties that
resembles the synthetic data. Aperture values were chosen to
be f/5.6 for Owl, and f/6.3 for Bauble and Temple. For cam-
era pose estimation and comparison toMVS, small apertures
images were taken with an f-stop of f/22.

The datasets were captured using a Canon EOS 5DS cam-
era with a 100mm macro-lens. By physically measuring the
pupil diameters as viewed from the front and back of the
lens, we found the pupil ratio to be approximately 0.92 when
focused at infinity - closely matching the assumptions made
in Sect. 4.3. The images were downsampled to 2184 x 1464
pixels with 16-bit colour depth, before having lens distortion
corrected and undergoing registration.

6.2 DepthMap Evaluation

The per-viewpoint reconstruction approach we take permits
us to evaluate performance by directly analysing the gener-
ated depth maps. This allows for a more direct evaluation of
the cues, since the post-processing steps required to generate
a 3D model often attenuate or remove significant regions of
error.

6.2.1 Synthetic

We evaluate the performance of the single-view reconstruc-
tions usingMean Absolute Error (MAE),Mean Square Error
(MSE) and % Bad Pixels above 0.25mm, and take the aver-
age across all views. Tables 1, 2 and 3 show the results of
this evaluation under ideal 0% noise conditions, while Tables
4, 5 and 6 show results under 1% noise. In all cases, bold
indicates the top performer determined by the lowest error
reported for each column; with the proposed achieving the
best performance in most instances.
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Table 2 MSE of generated depth maps from datasets with 0% noise

Armadillo Bunny Dragon Average

Gold Stone Wood Gold Stone Wood Gold Stone Wood

DFD (SSD) 1.7634 1.7150 1.9887 0.7902 0.6803 0.8507 2.1411 1.8789 2.3352 1.5715

DFD (CNN) 1.3150 1.1544 1.4903 0.4956 0.4107 0.4898 1.5944 1.1209 1.5067 1.0642

Stereo (SSD) 11.8569 3.9730 3.1293 18.0694 1.5366 2.0851 20.5508 6.6582 5.3865 8.1384

Stereo (CNN) 8.8662 3.7989 2.6640 18.0354 1.1104 1.2247 20.8706 7.2628 5.4120 7.6939

Proposed (SSD) 2.2276 1.5351 1.6970 2.1105 0.4671 0.6332 2.9696 1.5051 1.7846 1.6589

Proposed (CNN) 1.4470 1.0629 1.3325 0.8881 0.2898 0.3604 1.9019 0.9489 1.2490 1.0534

Bold values indicate the top performing approach for each object and material
All values are given in millimetres, and represent the average error across all viewpoints

Table 3 % Bad pixels from
depth maps with greater than
0.25mm error generated from
datasets with 0% noise

Armadillo Bunny Dragon Average

Gold Stone Wood Gold Stone Wood Gold Stone Wood

DFD (SSD) 55.65 64.48 68.27 60.05 67.88 69.49 65.36 74.38 75.63 66.80

DFD (CNN) 43.02 57.09 58.63 48.81 60.60 59.14 55.90 67.96 67.42 57.62

Stereo (SSD) 80.24 24.07 29.99 90.49 15.63 33.27 86.89 25.88 32.01 46.50

Stereo (CNN) 68.41 21.63 19.91 81.70 12.76 19.46 78.44 22.62 23.25 38.69

Proposed (SSD) 70.70 21.19 27.63 81.52 15.77 30.39 77.88 26.57 32.88 42.73

Proposed (CNN) 55.45 15.57 16.30 61.72 8.89 14.75 63.74 16.84 19.67 30.33

Bold values indicate the top performing approach for each object and material
Values represent the average error across all viewpoints

Table 4 MAE of generated depth maps from datasets with 1% noise

Armadillo Bunny Dragon Average

Gold Stone Wood Gold Stone Wood Gold Stone Wood

DFD (SSD) 0.8830 1.7862 2.1420 1.3310 1.7808 1.9687 1.4694 2.2381 2.5746 1.7971

DFD (CNN) 0.6310 1.0146 1.6500 0.9614 0.9468 1.4938 1.0521 1.3543 2.0016 1.2339

Stereo (SSD) 1.7575 0.6204 0.5961 2.7919 0.4355 0.6527 2.5682 0.9536 0.8415 1.2464

Stereo (CNN) 1.3570 0.6891 0.7066 2.6374 0.3469 0.5643 2.5759 1.0963 0.9701 1.2159

Proposed (SSD) 0.8554 0.5685 0.6175 1.4814 0.5249 0.6836 1.2744 0.8336 0.8012 0.8489

Proposed (CNN) 0.5576 0.3053 0.4997 0.9065 0.1991 0.5080 0.8511 0.4144 0.6371 0.5421

Bold values indicate the top performing approach for each object and material
All values are given in millimetres, and represent the average error across all viewpoints

Table 5 MSE of generated depth maps from datasets with 1% noise

Armadillo Bunny Dragon Average

Gold Stone Wood Gold Stone Wood Gold Stone Wood

DFD (SSD) 2.8197 6.7594 9.8628 3.7143 5.7449 6.8730 5.9098 9.8261 13.0863 7.1774

DFD (CNN) 1.8713 2.6320 6.6965 2.4226 1.7354 4.8073 3.7714 4.1111 8.8884 4.1040

Stereo (SSD) 12.5764 5.4708 4.6355 19.8165 3.0136 2.9735 22.7204 10.3162 8.4367 9.9955

Stereo (CNN) 10.8243 6.5852 6.9420 24.4333 2.0313 2.9657 30.6319 13.9392 11.2732 12.1807

Proposed (SSD) 2.7353 3.0031 3.5305 4.2895 1.9686 2.1308 4.9882 4.7122 5.2661 3.6249

Proposed (CNN) 1.6525 1.4068 2.7509 2.1008 0.5236 1.6627 2.9451 1.8495 3.3945 2.0318

Bold values indicate the top performing approach for each object and material
All values are given in millimetres, and represent the average error across all viewpoints
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Table 6 % Bad pixels from
depth maps with greater than
0.25mm error generated from
datasets with 1% noise

Armadillo Bunny Dragon Average

Gold Stone Wood Gold Stone Wood Gold Stone Wood

DFD (SSD) 75.98 89.52 91.54 85.15 90.56 91.97 84.69 92.13 93.61 88.35

DFD (CNN) 64.99 81.93 87.48 76.38 82.14 86.87 76.28 85.94 89.56 81.29

Stereo (SSD) 80.38 25.62 31.85 90.65 17.07 35.95 87.09 29.23 34.78 48.07

Stereo (CNN) 68.93 24.58 26.01 83.02 14.72 27.97 79.64 27.50 30.82 42.58

Proposed (SSD) 74.45 33.04 36.86 87.39 29.25 42.82 82.67 40.34 41.89 52.08

Proposed (CNN) 60.22 19.48 25.97 73.14 12.13 28.90 71.30 22.89 32.62 38.52

Bold values indicate the top performing approach for each object and material
Values represent the average error across all viewpoints

Under noisy conditions, the performance of defocus
degrades significantly, yet this does not appear to negatively
influence the combination of cues; the contrary in fact. At
first this seems strange - noise is not explicitly modelled in
either cue, so why is only defocus sensitive to it? Our under-
standing is as follows. The basis of defocus modelling relies
on texture analysis; specifically the appearance of high fre-
quency textures under defocused conditions. By artifically
injecting additive noise to the image, defocused regions now
contain a large amount of unexpected high frequencies that
confuse the cost function and degrade the resulting depth
map. In contrast, the stereo term does not concern itself with
the spectrum of texture components; simply the similarity
of two image patches. Hence, the noise only increases the
variance of the cost function, and does not impact the results
a great deal. Even under adverse conditions, the defocus cue
appears to positively influence the proposed method; and
helps us achieve the best result in almost all cases.

Figures 8, 9 and 10 provide further insight by illustrating
how each cue behaves recovering depth maps in the presense
of different geometry and materials. These figures show both
the SSD and CNN cost functions. In ideal 0% noise condi-
tions, defocus appears to produce complete yet imprecise
reconstructions, whereas stereo achieves higher accuracy at
the expense of significant outliers. In combination, a balance
of these benefits is achieved. The results under noisy con-
ditions reflect the analysis above, with defocus alone highly
sensitive to noise yet the proposed continuing to perform
consistently.

6.2.2 Real

Figure 11 show a selection of depth map reconstructions on
the real data. As with the synthetic data, the combination
of cues appears to improve the depth map consistency and
reduce significant error while also extracting detailed fea-
tures. This figure shows the performance of both the SSD
and CNN cost functions, and while this general trend is fol-
lowed by both sets of results, the CNN cost produces the
smoothest and most consistent output.

6.3 3D Reconstruction Evaluation

We compare performance on our datasets to three view-
dependent MVS approaches; CasMVSNet Gu et al. (2019),
VisMVSNet Zhang et al. (2020) and COLMAP Schönberger
et al. (2016). Instead of operating on focal stacks, thesemeth-
ods take pinhole images as input. When operating on real
data, these pinhole images are captured with an f/22 aper-
ture. Though all of our datasets have a 16-bit colour depth,
all MVS methods require 8-bit input images instead.

To share our pinhole camera calibration with COLMAP,
we manually generated the configuration files that would
otherwise be created by its structure from motion pipeline.
Although CasMVSNet and VisMVSNet provide scripts to
convert from the COLMAP format, we found overall these
methods produced the best results when configured directly
with our calibration and constrained to the same auxillary
views our framework uses. These methods were run pre-
trained with 256 labels on an Nvidia RTX 3070 graphics
card; and the input images were downsampled to a maxi-
mum resolution of 1536 x 1024. For point cloud fusion, both
methods use a threshold of 3 consistent views. Otherwise,
parameters were left at their default values.

In all cases, our approach uses a visual hull initialisation
for the first iteration, but is then disabled for all subsequent
iterations. Since the MVS methods do not have access to
our silhouette information, for fairness all points that are
background are removed. For the synthetic data, this is based
on the RGB value of the reconstructed point cloud. The real-
world scene reconstructions are instead cleaned based on the
position of the points; with the majority of points outside
of the object volume removed. We do not perform similar
post-processing on our own results. Finally, normals for the
CasMVSNet point clouds were estimated prior to Poisson
surface reconstruction since CasMVSNet does not provide
this.
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Fig. 8 Single view results on the gold Armadillo dataset with 0% and
1% noise. Rows 1 & 2 show the results from the SSD cost function; and
rows 3 & 4 show results using the CNN cost function. Odd rows: depth
maps produced by each variant of the method. Even rows: error maps

when compared to the ground truth. Our method demonstrates robust-
ness to noise despite the performance of both cues degrading when used
seperately

Table 7 Point cloud F-scores with τ = 0.5mm

Armadillo Bunny Dragon Average

Gold Stone Wood Gold Stone Wood Gold Stone Wood

CasMVSNet 0.8579 0.9665 0.9672 0.7915 0.9443 0.9509 0.7755 0.9004 0.9058 0.8956

VisMVSNet 0.6466 0.9151 0.8952 0.7056 0.9327 0.9208 0.6394 0.8786 0.8685 0.8225

COLMAP 0.7720 0.9734 0.9695 0.6501 0.9540 0.9508 0.6719 0.9092 0.8984 0.8610

DFD (SSD) 0.9276 0.8834 0.8691 0.8841 0.8863 0.8487 0.8254 0.7760 0.7739 0.8527

DFD (CNN) 0.9640 0.9529 0.9372 0.9285 0.9340 0.9178 0.8738 0.8632 0.8530 0.9138

Stereo (SSD) 0.7838 0.9765 0.9634 0.5546 0.9576 0.9147 0.6397 0.9186 0.9038 0.8459

Stereo (CNN) 0.8719 0.9774 0.9811 0.7209 0.9579 0.9530 0.7542 0.9230 0.9193 0.8954

Proposed (SSD) 0.8850 0.9809 0.9765 0.7723 0.9575 0.9365 0.7880 0.9194 0.9150 0.9035

Proposed (CNN) 0.9333 0.9826 0.9851 0.8779 0.9576 0.9575 0.8565 0.9269 0.9293 0.9341

Bold values indicate the top performing approach for each object and material
Results generated from data with 0% noise

6.3.1 Synthetic

Figures 12, 13 and 14 show a comparison of 3D reconstruc-
tions on a selection of synthetic datasets with 1% noise.

Recall under these conditions in the previous section defocus
did not perform well. The results shown appear to indicate
much the same, with the proposed depending heavily on the
stereo term to produce a coherent output.
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Fig. 9 Single view results on the stone Bunny dataset with 0% and 1%
noise. Rows 1 & 2 show the results from the SSD cost function; and
rows 3 & 4 show results using the CNN cost function. Odd rows: depth
maps produced by each variant of the method. Even rows: error maps

when compared to the ground truth. The proposed achieves the highest
overall precision and attenuates outliers resulting from specular regions

Tables 7 and 8 show an evaluation of our synthetic data on
the fused point cloud outputs using the F-score metric pro-
vided byKnapitsch et al. (2017). In both tables, bold indicates
the top performer of each columnwhichmaximises the score.
In ideal 0% noise conditions where both cues are functioning
at their best, we outperform all MVS methods, with the pro-
posed outperforming the individual cues the majority of the
time and achieving the best result on average. Under noisy
conditions, the result is less clear-cut; though the proposed
remains the best performer on average. Note the consistency
in performance between Table 8 and Figs. 12, 13 and 14.

Figures 15 illustrates the average recall and precision of
the point clouds across all experiments with 1% noise. Figure
16 shows the same, but on the Poisson meshes. Note the pro-
posed approach achieves the best recall of all the methods,
with the individual DFD and stereo terms consistently under-
performing compared to the proposed. Interestingly, the
stereo term achieves greater recall than defocus term, though
this is probably due to the cross-correspondence check dur-
ing point cloud fusion. Observe the difference between the
CNN and SSD cost functions - the former achieves better
performance in all cases.While they recover less overall com-
pleteness, all MVSmethods appear to outperform in terms of

precision; though the difference between the proposed and
MVS closes when comparing meshes instead of clouds. This
is to be expected to some extent, especially when compared
to the performance of our stereo term by itself. If anything,
this indicates more performance remains on the table that
could be exploited by improving the robustness of each cue.
However, the main objective of this paper is to explore their
complementary nature rather than absolute performance, so
this is left as future work.

In comparison to the depth evaluation in Sect. 6.2, the
complete yet imprecise nature of the defocus term is less
important due to the cross consistency checks performed
when generating the point cloud. However, it remains use-
ful for recovering the geometry of complex materials. This is
reflected in the F-scores, with defocus performing best on the
highly specular gold material while the stereo-based meth-
ods struggle to resolve a complete cloud. The decomposition
of the F-scores showed the performance of the proposed
exceeds that of both terms individually in recall and pre-
cision. A similar argument could be made from Sect. 6.2
regarding the performance of the ablation under noisy con-
ditions.

123



2876 International Journal of Computer Vision (2022) 130:2858–2884

Fig. 10 Single view results on the wooden Dragon dataset with 0% and
1% noise. Rows 1 & 2 show the results from the SSD cost function; and
rows 3 & 4 show results using the CNN cost function. Odd rows: depth
maps produced by each variant of the method. Even rows: error maps
when compared to the ground truth. Since this dataset has a largely dif-

fused surface, failings in the stereo termaremostly due to occlusion. The
proposed successfully captures the benefits of single-viewpoint recon-
struction from the defocus term while retaining the higher accuracy
afforded by the stereo term

Fig. 11 Single view results on the real datasets Owl (top row), Bauble (middle row) and Temple (bottom row). Depth maps normalised manually
to the specified range
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Table 8 Point cloud F-scores with τ = 0.5mm

Armadillo Bunny Dragon Average

Gold Stone Wood Gold Stone Wood Gold Stone Wood

CasMVSNet 0.8767 0.9674 0.9685 0.7973 0.9457 0.9494 0.7870 0.9001 0.9033 0.8995

VisMVSNet 0.6316 0.9144 0.8938 0.6709 0.9328 0.9149 0.6165 0.8791 0.8641 0.8131

COLMAP 0.7766 0.9744 0.9672 0.6303 0.9538 0.9470 0.6638 0.9085 0.8938 0.8573

DFD (SSD) 0.8393 0.4979 0.3944 0.7029 0.4583 0.3950 0.6580 0.3897 0.3012 0.5152

DFD (CNN) 0.9219 0.7945 0.6749 0.8512 0.7717 0.6776 0.8008 0.7038 0.5705 0.7519

Stereo (SSD) 0.7814 0.9747 0.9613 0.5491 0.9575 0.9140 0.6310 0.9101 0.8960 0.8417

Stereo (CNN) 0.8710 0.9748 0.9673 0.7099 0.9581 0.9459 0.7374 0.9167 0.8983 0.8866

Proposed (SSD) 0.8582 0.9748 0.9583 0.6640 0.9514 0.9093 0.7270 0.8897 0.8803 0.8681

Proposed (CNN) 0.9198 0.9784 0.9673 0.8324 0.9563 0.9463 0.8259 0.9164 0.8911 0.9149

Bold values indicate the top performing approach for each object and material
Results generated from data with 1% noise

Fig. 12 Mesh reconstructions (top row) and error maps (bottom row) on the gold Armadillo dataset with 1% noise. On this dataset, defocus appears
to perform best out of the comparisons shown, which we believe is due to the particularly high frequency appearance of the scratched gold material

Fig. 13 Mesh reconstructions (top row) and error maps (bottom row) on the stone Bunny dataset with 1% noise. Defocus appears to fail in improving
performance over our stereo term alone
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Fig. 14 Mesh reconstructions (top row) and error maps (bottom row) on the wooden Dragon dataset with 1% noise. The proposed compares well
with the MVS methods

Fig. 15 Average recall (left) and precision (right) of point clouds across
all synthetic experiments with 1% noise. Plots show the average per-
centage of points with respect to their distance from the ground truth
mesh. Vertical line at 0.5mm represents the value of τ used when calcu-
lating the F-scores presented in Table 8. The proposed method with the

CNN-based cost (shown in bold red) outperforms all methods by a clear
margin when comparing against the recall, but trails the state-of-the-art
MVS methods by around 5% in terms of precision at τ (Color figure
online)

6.3.2 Real

Figures 17, 18 and 19 show a comparison of the point
cloud and triangular mesh reconstructions of our real-world
datasets. TheOwl object is themost diffused, and so performs
the most consistently across all methods. In contrast, the
MVS methods struggle to achieve a complete reconstruction
of the Bauble, with the meshing algorithm smoothing over
holes in the point cloud. The proposed approach performs
much better; achieving a complete and detailed surface.

Finally, the MVS methods fail almost completely on the
Temple object due to its highly specular and reflective appear-
ance. Our ablative study illustrates the contribution of each
cue very well on this object. Defocus alone achieves a com-
plete cloud, yet lacks finer details such as the roof ornament.
Stereo alone produces a noisy cloud with many holes due to
a lack of robust matches, leading to a deformed mesh. The

proposed recovers a complete point cloud suitable for recov-
ering a stable mesh complete with many details. Figure 20
illustrates this point further.

6.4 Focal Stack Ablation

Finally, we present a set of experiments that explores how
the number of images in the focal stack effects the perfor-
mance of the approach. For this, each variant of the method
was tested with 2, 3 and 5 images of the wood Bunny dataset.
When using 2 images, only the nearest and furtherest images
in the focal stack are seen by the method. Note the results
with 5 images are the same as those seen previously - they
are presented here again for ease of comparison. As with the
other synthetic experiments, 24 viewpoints are made avail-
able to the method - only the number of images per view
are modified. Since DFD has been shown to tolerate noise
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Fig. 16 Average recall (left) and precision (right) of reconstructed
meshes across all synthetic experiments with 1% noise. Plots show the
average percentage of vertices with respect to their distance from the
ground truth mesh. For reference, the vertical line at 0.5mm represents

the value of τ used when calculating the F-scores on the point clouds.
The proposed method with the CNN-based cost (shown in bold red)
achieves excellent recall and performs very competitively in terms of
precision (Color figure online)

Fig. 17 3D reconstructions of the real-world Owl dataset, and a comparison of several MVS methods (left) to an ablation of the proposed method
(right). Top row: filtered point clouds produced by each method. Bottom row: triangular meshes generated from Poisson surface reconstruction

Fig. 18 3D reconstructions of the real-world Bauble dataset, and a comparison of several MVSmethods (left) to an ablation of the proposed method
(right). Top row: filtered point clouds produced by each method. Bottom row: triangular meshes generated from Poisson surface reconstruction
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Fig. 19 3D reconstructions of the real-world Temple dataset, and a comparison of several MVSmethods (left) to an ablation of the proposed method
(right). Top row: filtered point clouds produced by each method. Bottom row: triangular meshes generated from Poisson surface reconstruction

Fig. 20 Alternative view of the Temple point clouds and mesh recon-
structions using the CNN cost function. Defocus alone recovers a
complete cloud but lacks surface details. Stereo alone recovers a point

cloudwithmany holes present,making it unsuitable for recovering a sta-
ble mesh. The proposed achieves the best result; recovering a complete
cloud and achieving a mesh reconstruction with many surface details

Table 9 Results from ablation
study where the number of
images in the focal stacks are
varied from 2 to 5

Images MSE (mm) MAE (mm) % Bad Pixels Precision Recall F-Score

DFD (SSD) 2 1.2317 0.6655 71.33 0.7629 0.8964 0.8243

3 1.2519 0.7335 71.61 0.6974 0.8650 0.7722

5 0.8507 0.5596 69.49 0.8066 0.8955 0.8487

DFD (CNN) 2 0.8491 0.4603 55.89 0.8669 0.9087 0.8874

3 0.6213 0.4718 65.71 0.8261 0.9054 0.8639

5 0.4898 0.3862 59.14 0.9304 0.9056 0.9178

Stereo (SSD) 2 2.5127 0.7203 49.76 0.8582 0.9257 0.8906

3 2.2331 0.6195 37.57 0.8887 0.9290 0.9084

5 2.0851 0.5751 33.27 0.8989 0.9310 0.9147

Stereo (CNN) 2 1.7173 0.4567 30.02 0.9477 0.9346 0.9411

3 1.3707 0.3627 20.55 0.9716 0.9343 0.9526

5 1.2247 0.3477 19.46 0.9734 0.9335 0.9530

Both (SSD) 2 0.9976 0.4862 46.38 0.8936 0.9300 0.9114

3 0.6833 0.3350 29.64 0.9447 0.9316 0.9381

5 0.6332 0.3256 30.39 0.9417 0.9314 0.9365

Both (CNN) 2 0.6397 0.2777 24.80 0.9657 0.9285 0.9467

3 0.4005 0.1932 14.92 0.9893 0.9299 0.9587

5 0.3604 0.1823 14.75 0.9887 0.9281 0.9575

The Wood Bunny dataset with 0% noise was used to perform this study. As in the previous sections, MSE,
MAE and % Bad Pixels (> 0.25mm error) are calculated from the per-viewpoint depth maps; with the value
shown representing the average across all views. The F-Score metrics (Precision and Recall) are calculated
from the combined point clouds, and use the ground truth mesh as reference with τ = 0.5mm. Bold indicates
top performer for each variant of the approach
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poorly, ideal 0% noise conditions were chosen for this test.
Table 9 combines the quantitive results from the 2D depth

maps (MSE, MAE and % Bad Pixels) as well as evaluation
on the fused point clouds (Recall, Precision and F-score). For
the 2D results, there is a clear overall improvement in MSE
and MAE when more images are used. Interestingly, DFD
with the CNN cost function has fewer bad pixels when using
only 2 images. The reasons for this are not immediately clear,
but could be related to reduced ambiguity in the DFD cost
when fewer images are used.

At first glance, the results from the fused point cloud anal-
ysis appear less clear. Although half of the results indicate
better performance with 5 images, the rest appear to show
the opposite. On closer inspection, the majority of these con-
flicting values are within one thousandth of the second best
performer. This indicates that the influence of the focal stack
size is either marginal or generally positive depending on the
metric - at least with this dataset. It is also worth noting the
proposed method almost always outperforms the individual
stereo and defocus terms, even with less input data. How-
ever, these results only tell some of the story, as they do not
consider the influence other parameters have on reconstruc-
tion such as the aperture diameter. Nevertheless, these results
verify the proposed method continues to operate coherently
with smaller focal stacks.

7 Conclusion

In this paper, we have presented a complete pipeline for
reconstructing scenes frommulti-viewfinite aperture images.
We began by generalising the image formation process, and
introduce a novel camera calibration procedure that char-
acterises the unavoidable formation of defocus according
to thick-lens principles. Next, an MRF-based reconstruc-
tion framework was proposed that unifies defocus and stereo
cues and exploits the benefits of each; achieving performance
greater than the sumof its parts. In our evaluation, we demon-
strate how each cue contributes to the reconstruction with an
ablation study; with the proposed method exhibiting robust
and consistent performance across a range of complex mate-
rials. We also explored how a feature-based cost function
could benefit our reconstruction. This became even more
apparent in our comparison to several MVS methods, where
in most cases we achieve similar or better performance.

There are several limitations with our current approach.
While our stereo term is reasonably robust and achieves per-
formance comparable to the other MVS methods tested, the
defocus term can fail under the influence of noise. Though
noise is less of a concern in macro photography where large
apertures and exposure times are used, it remains an unavoid-
able feature of the image much like defocus itself. Though
the proposed method continues to work well in most cases,

under adverse conditions the defocus term does appear to
contribute less useful information. In future work, the mod-
elling of noise could be introduced to improve the robustness
of the defocus term to noise.

Challenges also remain concerning how best to weight
the contribution of each cue. Here, a scalar weighting was
used that combined the stereo and defocus cues independent
to the image context; leading to residual errors where the
influence of an erroneous term is particularly strong. In our
experiments, this usually originated from the stereo term in
low noise data, and the defocus term in high noise data. In
future work, it would be interesting to introduce a contex-
tually aware weighting, where the contribution of a cue is
conditional based on the appearance of the scene. Perhaps a
classifier could be implemented that can perceive in a broad
sense the reflectance function of the surface, and output a
weighting of cues that extracts the most performance from
our framework. Finally, there are additional variables that
could be explored further relating to the focal stack, such as
the aperture size and number of images.
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AMutually Exclusive Solution for Pupil Ratio

Recall that our calibration defines the pupil ratio pi as the
piecewise function,

pi =
{
p1, if p1 < 1

p2, if p2 ≥ 1
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where,

p1 = 1

2A

(
1 +√

1 + 4mi A
)

, (44)

p2 = mi

A − 1
, (45)

A = Fi
f∞

√
b∞
bi

. (46)

Let us show that one and only one solution of pi is valid.
From Eq. 45,

A = mi

p2
+ 1. (47)

Substituting Eq. 47 in Eq. 44,

p1 = 1

2
(
mi
p2

+ 1
)
(
1 +

√
1 + 4mi

(
mi

p2
+ 1

))
, (48)

We need to show that p1 is valid when p2 is invalid. Since
p1 is valid when less than 1, we can show using Eq. 48,

√
1 + 4mi

(
mi

p2
+ 1

)
<

2mi

p2
(49)

which simplifies to p2 < 1. Similarly, when p1 ≥ 1 this
implies p2 ≥ 1. Thus, only one function defining pi gives a
valid solution for all cases. This completes the proof.
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