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Abstract
Scene relighting and estimating illumination of a real scene for insertion of virtual objects in a mixed-reality scenario are
well-studied challenges in the computer vision and graphics fields. Classical inverse rendering approaches aim to decompose
a scene into its orthogonal constituting elements, namely scene geometry, illumination and surface materials, which can later
be used for augmented reality or to render new images under novel lighting or viewpoints. Recently, the application of deep
neural computing to illumination estimation, relighting and inverse rendering has shown promising results. This contribution
aims to bring together in a coherent manner current advances in this conjunction. We examine in detail the attributes of the
proposed approaches, presented in three categories: scene illumination estimation, relighting with reflectance-aware scene-
specific representations and finally relighting as image-to-image transformations. Each category is concluded with a discussion
on the main characteristics of the current methods and possible future trends. We also provide an overview of current publicly
available datasets for neural lighting applications.
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1. Introduction

With the recent surge in augmented and mixed reality applications
in games and digital effects, the demand for more plausible light-
ing has become the centre of attention. Traditionally, trained artists
carefully tune the final lighting effects in post-production in an artis-
tic and plausible, but manual and time-consuming manner. [Deb08]
suggests recording the scene lighting as high dynamic range (HDR)
light probes so that it can later be used for harmonizing the appear-
ance of inserted virtual objects to the real scene. This concept has
been improved over the years and is still being deployed in vari-
ous applications. Both manual fine tuning of lights and probing are
offline and costly in terms of time and the required equipment. In-
verse rendering approaches aim to address these shortcomings by
decomposing a scene into its building components, potentially in-
cluding lighting parameters, from one or a few images. However,
this has proved to be a challenge considering the ill-posed nature
and the dimensionality of the problem formulation. Normally, sim-
plifying priors are therefore imposed in terms of specific lighting or
material models.

Deep neural models have recently shown promising results in
various computer vision and graphics tasks, among others neural

rendering [TFT*20], neural inverse rendering [YS19], scene rep-
resentation [SMT*20], relighting [LMF*19], etc. Despite being in
its infancy, deep learning is believed by the community to be nat-
urally suitable for the inherent high-dimensionality of visual com-
puting problems. For example, Murmann et al. [MGAD19] show
a deep autoencoder without any domain knowledge in graphics
can potentially relight an indoor scene to a desired target illumina-
tion. However, the main challenge here remains to obtain training
data at scale and diversity with appropriate metadata – as regards
to data labelling, self-supervision has been explored in the litera-
ture [SGK*19]. Nevertheless, many recent efforts aim to resolve
this matter by generating realistic looking, large, synthetic datasets
[PGZ*19], HZBS20]. In this case, the intrinsic issue is the general-
ization ability of the trained models to unseen real scenes.

This article specifically focuses on lighting estimation, harmo-
nization and relighting applications in conjunction with recent ad-
vances in deep neural computing.We have categorized and precisely
compared the attributes of the recent contributions. The rest of this
section will provide more details on the scope and respectively the
structure of this review and the comparison terminology. This report
concludes with a discussion on current and future research trends in
this field.
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Figure 1: Examples of relighting and illumination estimation for compositing virtual objects using deep neural networks. In order from left
to right images from [GHS*19, GSH*19, PGZ*19, ZFT*20, HZBS20, PPYW20]

1.1. Scope of the review

The focus of this review is on neural lighting applications and there-
fore it does not survey neural rendering approaches per se. Refer to
Tewari et al. [TFT*20] for a comprehensive state-of-the-art on neu-
ral rendering and its applications. Also, neural geometry reconstruc-
tion [PHC*19, ZYW*19] and similarly neural material reflectance
modelling [GLD*19a, KCW*18] are out of scope of this review.

1.2. Structure of the review

This review is structured in four main sections. Section 2 addresses
the problem of scene illumination estimation. More specifically, the
lighting parameters of a scene are estimated from one or more in-
put images and then potentially used to render augmented virtual
objects in a mixed reality scenario. Neural inverse rendering tech-
niques are also included in this section only when they explicitly
estimate the parameters of a lighting model. Here we further cat-
egorize the contributions based on their use case, that is the scene
content for general scenes (indoor and/or outdoor) or scenes with
specific contents, for example human faces, certain object(s), etc.

Section 3 and Section 4 both address the problem of scene re-
lighting. Section 3 covers different approaches that model and store
scene-specific reflectance fields which are used for rendering a scene
under novel unseen lightings via image-basedmethods, or novel un-
seen lightings and viewpoints via geometry-aware methods.

The relighting approaches presented in Section 4 are not scene-
specific and unlike the inverse rendering methods, do not decom-
pose a scene into its constituting elements to facilitate relighting.
On the other hand, they rely on direct image-to-image transforma-
tions to relight a scene under a desired target lighting condition. As
a result, these approaches do not necessarily explicitly estimate the
lighting parameters or model the scene reflectance field. A further
partitioning is considered in this section based on the scene content,
and whether the approaches address either or both of the shading
and shadow harmonization sub-problems.

Furthermore, we provide an overview of publicly available
datasets for the purpose of scene illumination estimation and relight-
ing in Section 5.

1.3. Comparison terminology

For comparing the attributes of the examined contributions, we
adopt the terminology of the neural rendering review by Tewari et al.

[TFT*20] with some modifications and extensions. Below is a sum-
mary of the attributes and their possible values.

• Required Data, Network Input and Network Output: LDR image
(I), HDR image (H), LDR panorama (P), HDR panorama (N),
stereo images (S), colour gradient images (T), binary mask (B),
video (V), lighting (L), depth (D), 3D information (G), for ex-
ample mesh, normals, face models, volumetric scene representa-
tions, etc., material (M), camera (C), locale (E)

• Scene Content: general indoor (I), general outdoor (O), human
face (F), human hands (H), human body or garment (B), single or
multiple objects (J)

• LightingModel: dominant direction (D), distance (T), colour (C),
HDR illumination map (M), spherical harmonics (H) [RH01],
spherical Gaussian (G) [LSR*20], Hosek and Wilkie sky model
(S) [HW12], Lalonde-Matthews outdoor illumination model (O)
[LM14], reflection maps (R) [MH84], reflectance fields (F), vol-
umetric RGBα representation (V)

• Spatially Varying Lighting Effects
• Explicit Controllable Lighting
• Temporal Coherency
• Computer Graphics Module: differentiable (D), non-
differentiable (N)

• Training Dataset: real or based on real data (R), synthetic (S)
• Generality

Possible attribute values are extended compared to Tewari et al.
[TFT*20] to include more details. More specifically, as this arti-
cle is concerned with lighting, we extend the original terminology
by including the used or inferred lighting model, and whether or
not it is modelling spatially varying effects. The lighting model is
not necessarily an immediate output of the neural model. Further-
more, we report if a training dataset is real or synthetic. If images are
warped or cropped from a real dataset, they are still considered real.
Synthetic datasets, on the other hand, benefit from real or synthetic
scene representations to render new content.

Modifications to the comparison terminology of Tewari et al.
[TFT*20] are: (1) Required Data is only for the training phase of
the system. Note that All required data can still be derived by con-
sidering both the Required Data and the Network Input; (2) Tempo-
ral Coherency is not explicitly enforced in the network design; (3)
Explicit Controllable Lighting cannot be defined for some contribu-
tions as they do not directly address neural rendering, but illumina-
tion estimation.
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Table 1: Surveyed methods compared based on the terminology of Section 1.3.

Required
data

Network
input

Network
output

Scene
content

Lighting
model

Spatially
varying

Controllable
lighting

Temporal
coherency

CG
module

Training
dataset Generality

Bi et al. [BXS*20a] I E LG J F
√ √

✗ D R ✗

Boss et al. [BJK*20] IBLDGM IB LGM J G ✗ – ✗ D S
√

Calian et al. [CLG*18] ING I L F M ✗ – ✗ ✗ RS
√

Chalmers et al. [CZMR20] PN I L IO MR ✗ – ✗ ✗ R
√

Cheng et al. [CSC*18] N I L IO H ✗ – ✗ ✗ R
√

Gardner et al. [GSY*17] PN I L I M ✗ – ✗ ✗ R
√

Gardner et al. [GHS*19] NLD I L I DTC
√

– ✗ ✗ R
√

Garon et al. [GSH*19] ND IE LD I H
√

– ✗ ✗ R
√

Hold-Geoffroy et al. [HSH*17] P I L O S ✗ – ✗ ✗ R
√

Hold-Geoffroy et al. [HGAL19] PN I L O M ✗ – ✗ ✗ R
√

Jin et al. [JDL*20] PL I L O O ✗ – ✗ ✗ R
√

Kán and Kafumann [KK19] ID I L IJ D ✗ –
√

✗ S
√

Kanamori and Endo [KE18] IBLM IB LM B H
√

– ✗ N S
√

LeGendre et al. [LMF*19] VL I L IO M ✗ –
√

D R
√

Li et al. [LGC*19] P I L I G ✗ – ✗ ✗ S
√

Li et al. [LSR*20] ILDGM I LDGM I G
√

– ✗ D S
√

Liu et al. [LLQX20] NIGM I LGM J H ✗ – ✗ D R
√

Liu et al. [LLZ*20] IB IB IB J – – – ✗ N S
√

Marques et al. [MCV18] IL I L H H ✗ – ✗ ✗ S
√

Meka et al. [MHP*19] ITL TL I F D ✗
√

✗ ✗ R
√

Murmann et al. [MGAD19] H H H I – – ✗ ✗ ✗ R
√

Park et al. [PPYW20] IPNL I L J M ✗ – ✗ N RS
√

Philip et al. [PGZ*19] IL IL I O D ✗
√

✗ N S
√

Reddy et al. [RTO*20] ILGC ILGC I F D –
√

✗ D R
√

Sengupta et al. [SGK*19] ILGM I LGM I M ✗ – ✗ D RS
√

Sheng et al. [SZB20] LG LB I J – – ✗ ✗ ✗ S
√

Sial et al. [SBVS20] IL I L IJ DC ✗ – ✗ ✗ S
√

Song and Funkhouser [SF19] PND IE L I M
√

– ✗ D R
√

Srinivasan et al. [SMT*20] IPSC S LG I V
√

✗ ✗ D S ✗

Sun et al. [SBT*19] IL IL IL F M ✗
√

✗ ✗ R
√

Sun et al. [SLL*20] P I L IO H ✗ – ✗ ✗ R
√

Wang et al. [WWL19] I I I I – – – ✗ ✗ S
√

Wang et al. [WSL*20] IL I I I – – – ✗ N S
√

Weber et al. [WPL18] ING IG L J M ✗ – ✗ ✗ RS
√

Wei et al. [WCD*20] IND IG LM J M ✗ – ✗ N S
√

Xu et al. [XSHR18] IL IL I J D ✗
√

✗ ✗ S
√

Xu et al. [XLZ20] N I L IO H ✗ – ✗ ✗ R
√

Yi et al. [YZTL18] ING I L F M ✗ – ✗ ✗ RS
√

Yu and Smith [YS19] IN I LGM O H ✗ – ✗ D R
√

Yu et al. [YME*20] I I LGM O M ✗
√

✗ D R
√

Zhan et al. [ZLZ*20] IB IB IL J H ✗ – ✗ N R
√

Zhan et al. [ZYW*21] ND I L I DTC
√

– ✗ ✗ R
√

Zhang et al. [ZSHG*19] PN I L O O ✗ – ✗ ✗ R
√

Zhang et al. [ZFT*20] ILGC ILGC I B F
√ √

✗ D R ✗

Zhou et al. [ZHSJ19] IL IL IL F H ✗
√

✗ ✗ S
√

Zhu et al. [ZHZ*20] IBLGM IB LGM B H ✗ – ✗ N S
√

Table 1 summarizes the key differences between themethods cov-
ered in this review based on the above criteria. Regarding the at-
tribute values, note that Not Applicable is denoted with –, and Yes
and No respectively with

√
and ✗.

2. Illumination Estimation for Mixed Reality

The methods in this section are divided based on their assumptions
on the scene content into two groups: general scenes with no explicit
assumption on the scene content, except the indoor or outdoor con-

straint; and those assuming a specific content present in the scene
such as human face(s), hand(s) or other certain objects of known
geometry and/or material. Note that neural inverse rendering is also
addressed in this section, as it too estimates illumination.

2.1. General scenes

Approaches presented in this section make no explicit assumptions
on the scene content, geometry or appearance, aside from the indoor
or outdoor constraint.
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2.1.1. Indoor scenes

Gardner et al. [GSY*17] were the first to estimate an HDR illu-
mination map from a single limited field of view (FOV) low dy-
namic range (LDR) image, “in the wild,” for indoor environments.
There are no explicit assumptions on the scene geometry, materials
or the illumination. The proposed approach consists of a two-stage
trainable deep encoder-decoder network with two decoder heads –
one predicting the light direction/intensity and the other one pre-
dicting an RGB panorama. In the first stage of training, light di-
rections are learned from LDR panoramic images of the SUN360
dataset [XEOT12]. The second stage refines the network to predict
the HDR intensities using a newly recorded HDR illumination map
dataset consisting of 2100 images: the Laval Indoor HDR panorama
dataset.

Sial et al. [SBVS20] estimate the colour and direction (pan/tilt)
of a single dominant light source from an input LDR image of an in-
door scene using a simple DNN. For training, a synthetic dataset is
generated based on the synthetic dataset of Sial et al. [SBV20]. Ex-
periments show the practicality of the approach, both quantitatively
and qualitatively, on synthetic and real images (dataset of Murmann
et al. [MGAD19]).

Li et al. [LGC*19] estimate the parameters of a spherical Gaus-
sian lighting model (128 parameters) using a simple CNN – given as
input an LDR image of an indoor scene. The synthetic training data
is generated based on the SUN360 dataset [XEOT12]. The network
is trained both with a lighting parameters loss, and a new glossy loss
in order to maintain the high frequency features of lighting during
training. Experiments show improvements to [GSY*17] in terms of
shading effects; shadows are not compared.

Kán and Kafumann [KK19] also estimate a dominant light direc-
tion with a DNN but relative to the camera viewpoint and in a live
augmented reality (AR) system. The proposed network is based on
ResNet [HZRS16] and takes an RGB-D image as input. A filtering
method motivated by Dante and Brookes [DB03] is applied on the
predictions of each frame to remove outliers and smooth the light
direction. This leads to a temporally coherent lighting estimation in
AR applications.

2.1.2. Indoor scenes: modelling spatially varying illumination

Modelling indoor illumination with only one illumination map is in-
herently limited and cannot cover spatially varying localized light-
ing effects due to near light sources or nearby geometries. Gard-
ner et al. [GSY*17] seek to address this problem by warping the
LDR/HDR illumination maps to be suitable for the exact position
of the scene where the virtual object is going to be composited. Yet,
Gardner et al. [GHS*19] show with a user study that their proposed
approach, which regresses geometric and photometric properties of
discrete light sources in an indoor scene, leads to more plausible
composites of virtual objects.

Gardner et al. [GHS*19] train a DNN to predict the direction,
distance, size, and colour of a pre-defined number of light sources
from a single LDR input image. To do so, the Laval Indoor HDR
panorama dataset [GSY*17] is further manually labelled for four
types of predefined discrete light sources and pixel-wise depth in-

Figure 2: Song and Funkhouser [SF19] predict separate HDR
illumination maps for each locale. Images taken from Song and
Funkhouser [SF19].

formation. This labelled dataset is then employed for the training of
the proposed neural model.

The inherent problem with a discrete light source model is its
inability to represent realistic global illumination effects. It is how-
ever generating spatially consistent lighting effects when composit-
ing virtual objects into the scene.

Song and Funkhouser [SF19] also address the issue of lack
of modelling spatially varying illumination in indoor scenes by
Gardner et al. [GSY*17]. However, in contrast to Gardner et al.
[GHS*19], they seek to regress a separate illumination map for any
selected point in the visible scene (see Figure 2). The task is chal-
lenging in nature but Song and Funkhouser [SF19] propose to tackle
it in multiple steps. In the first step, partial scene geometry is esti-
mated from an input LDR image which is then used to warp the im-
age to a partial LDR illuminationmap –Gardner et al. [GSY*17] as-
sume a sphere for warping due to lack of geometry. The partial LDR
illumination map is completed by another network, and yet trans-
formed to HDR by another one. Inferred HDR illumination maps
by Song and Funkhouser [SF19] have much more details compared
to [GSY*17] and are locale-aware. To train the proposed model,
a dataset is generated based on the high quality RGB-D and HDR
panoramas of Matterport3D dataset [CDF*17].

In the same direction, Garon et al. [GSH*19] infer instead the
parameters of a fifth order spherical harmonics (SH) illumination
model given an LDR image and a selected point in the scene, there-
fore also locale-aware. The proposed neural model has two paths:
local and global. Extracted features from each path are concate-
nated to regress the SH model parameters (similar to Cheng et al.
[CSC*18]), among others. The training dataset is generated syn-
thetically based on the SUNCG depth dataset [SYZ*17]. In addi-
tion, 20 more scenes are recorded with 79 spatially varying HDR
light probes for testing. Relighting/compositing results show – as
expected – substantial improvements to Gardner et al. [GSY*17]
regarding modelling local changes in illumination.

GMLight by Zhan et al. [ZYW*21] also regresses a locale-aware,
parametric light model of an indoor scene. A proposed encoder es-
timates the distribution, depth and the intensity of individual light
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sources as well as an ambient term, given as input a single LDR im-
age. These parameters are then used in a generative scheme to render
illumination maps for the specific locations of the scene. An inno-
vative geometric mover’s loss, “inspired by earth mover’s distance,”
is introduced to train the proposed system (the encoder and the gen-
erator) in an end-to-end manner. The Laval Indoor HDR panorama
dataset [GSY*17] is used for the training. Compared to the work of
Gardner et al. [GHS*19] and Garon et al. [GSH*19], experiments
show that the generated illumination maps have more details for dif-
ferent locations in the scenes, and are therefore more suitable for the
realistic insertion of virtual objects.

Very similar to GMLight [ZYW*21], EMLight by Zhan et al.
[ZZY*20] also predicts a parametric lighting model of an indoor
scene but it fails to generate locally-correct illumination maps due
to the lack of depth information in the proposed model.

Lighthouse [SMT*20] shows, by a compositing and relighting
experiment, improvements over previous methods [GHS*19, SF19,
GSH*19]. The key idea is to generate a volumetric scene represen-
tation from a narrow-baseline stereo camera such as those avail-
able on the rear side of a mobile phone. For more details, see
Section 3.2.

2.1.3. Outdoor scenes

Hold-Geoffroy et al. [HSH*17] propose a DNN to estimate para-
metric sun-sky model of Hosek and Wilkie [HW12] – specifically
the sun position, skylight exposure factor and turbidity (amount of
atmospheric aerosols) – given a single input LDR image. Virtual
objects can thereby be composited into the real scene with an il-
lumination map generated based on these parameters. Training is
done based on the estimated parameters of the model of Hosek and
Wilkie [HW12] on the outdoor panoramas of the LDR SUN360
dataset [XEOT12]. The proposed approach fails in predicting out-
door lighting in cases of lack of illumination cues in the input im-
age, or co-existence of specular surfaces or complex geometries
[HSH*17].

In a very similar approach, Zhang et al. [ZSHG*19] base their
work on the Lalonde-Matthew outdoor illumination model [LM14]
which has separate sun and sky parameters. They propose a deep
network, dubbed CropNet, to regress the illumination parameters
for crops of the LDR SUN360 dataset [XEOT12]. For training of
CropNet, another DNN (PanoNet) is employed to generate ground
truth data (here parameters of Lalonde-Matthewmodel) for the input
LDR panoramas of the SUN360 dataset. Experimental compositing
results show improvements to Hold-Geoffroy et al. [HSH*17] for
the claimed “all-weather” conditions. However, soft shadows are
not handled gracefully with this illumination model. The approach
proposed by Jin et al. [JDL*20] is very similar to that of Zhang et al.
[ZSHG*19].

As opposed to the above parametric outdoor illumination models,
SkyNet [HGAL19] aims to estimate a non-parametric HDR illumi-
nation map from a single input LDR outdoor image using a three-
stage learning method. The key difference to the low-dimensional
parametric models [HSH*17], ZSHG*19, JDL*20] is that an illu-
mination map can potentially model more sky lighting conditions
such as partially cloudy or fully overcast [HGAL19]. The proposed

Figure 3: LeGendre et al. [LMF*19] augment virtual objects into
a real scene. Images taken from LeGendre et al. [LMF*19].

neural system is trained on the Laval HDR sky database [LM14]
and SUN360 LDR outdoor panoramas [XEOT12]. Hold-Geoffroy
et al. [HGAL19] also record a new HDR outdoor panorama dataset
for evaluating their approach. The evaluation results show signif-
icant improvements compared to [HSH*17] regarding the shading
of the composited objects into the outdoor scenes; however, the pro-
posed approach fails to regenerate the hard shadows of the paramet-
ric model of [HSH*17]. Hold-Geoffroy et al. [HGAL19] also report
lack of texture in the estimated sky illumination maps.

2.1.4. Indoor or outdoor scenes

A common application area for light estimation in general indoor
or outdoor scenarios is mobile AR. We cover a number of these
contributions below.

Cheng et al. [CSC*18] propose a novel mobile AR solution that
uses both front and rear cameras of a mobile device to regress the
parameters of a forth order SH illumination model. The proposed
model consists of two feature-extraction convolutional neural net-
works (CNNs), respectively for the two input images, and an illumi-
nation estimation CNN that takes as input the concatenated feature
maps of both images. A dataset of 200 HDR illumination maps are
recorded for training and testing. Experiments show improvements
to both [GSY*17] and [HSH*17] for indoor and outdoor scenes,
respectively. Also experimental results show the benefit of using a
rendering-based loss in addition to the loss computed on SH param-
eters.

Similar to [CSC*18], Sun et al. [SLL*20] and Xu et al. [XLZ20]
also estimate the parameters of an SH lighting model for in-
door/outdoor scenarios using a CNN trained with a rendering-
based loss. The approach of Xu et al. [XLZ20] is tested for real-
time relighting on mobile devices. Sun et al. [SLL*20] introduce a
new warping method similar to [GSY*17] to compensate for local
changes in illumination in indoor scenes.

LeGendre et al. [LMF*19] propose a mobile AR solution for re-
lighting in both indoor and outdoor scenarios. The proposed ap-
proach entails a DNN which is trained with a rendering-based loss
to predict an HDR illumination map from a single input LDR im-
age (see Figure 3). The capture setup consists of a mobile phone and
three light probe spheres with varying reflectance properties (visi-
ble in the FOV of camera) assembled on a rig – which is then used
to record the training dataset. The results show improvements in
compositing virtual objects compared to [GSY*17] and [HSH*17]
in the case of indoor and outdoor scenes, respectively. The known
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Figure 4: Chalmers et al. [CZMR20] utilise stacked CNNs to
predict reflection maps. Diagram content and images taken from
Chalmers et al. [CZMR20].

limitations are however (1) inability to model the spatially varying
illumination in indoor scenes and (2) lack of generalization to the
input images captured with other cameras with regard to white bal-
ancing and FOV.

For improving the performance of compositing in indoor/outdoor
AR, Chalmers et al. [CZMR20] propose to model environment
lighting as Reflection Maps (RMs) [MH84] – pre-lit lookup ta-
bles for objects with different material roughness. A novel multi-
level stacked CNN is designed and trained to predict RMs with spe-
cific roughness at each level (see Figure 4). The outdoor training
dataset is generated synthetically based on LDR panoramas from
the SUN360 database [XEOT12] – after conversion to HDR. Exten-
sive experiments show comparable augmentation results to LeGen-
dre et al. [LMF*19]. The main disadvantage of such an approach is
however the dependence on a material model (here Phong [Pho75])
with a roughness parameter.

2.2. Scenes including known object(s)

To estimate scene lighting, methods presented in this section assume
certain contents with known geometry and/or reflectance proper-
ties are directly visible in the captured images, for example human
face(s), hand(s), or other objects.

2.2.1. Human face

Calian et al. [CLG*18] propose a neural model to estimate a para-
metric model or a high frequency HDR spherical map of outdoor
illumination from a single LDR image of a human face. They as-
sume a high quality 3D reconstruction of the face – for detecting
self-shadowing. A neural model is trained to regress incident illu-
mination and face albedo parameters – with strong priors imposed
on both to achieve realistic results. They evaluate their approach on
a novel synthetic and a recorded real dataset. The experiments show
the superiority of the regressed HDR illumination maps in compar-
ison to parametric lighting models such as SH or Lalonde-Matthew
[LM14] for augmentation of virtual objects into the scene.

Yi et al. [YZTL18] also estimate a non-parametric illumination
map from a single image of a human face (similar to [CLG*18]).
However, they benefit from a deep neural model to regress highlight
areas of the face which can be traced back to the scene to form an
illumination map. These maps are then further refined to remove
the blurring effect caused by the diffuse properties of human skin.
Experimental results show improvement for compositing compared
to [GSY*17] in the case of indoor scenes and [HSH*17] for outdoor
environments. Yi et al. [YZTL18] show that the extra capability of
this approach compared to the previous work [CLG*18, LMF*19,
GSY*17, HSH*17, GZA*20] is that if there are multiple faces in
a scene, one can potentially triangulate for the light sources from
multiple inferred illumination maps.

2.2.2. Human hands

Marques et al. [MCV18] address the problem of realistic virtual
scene and hand relighting in mixed reality games. The proposed ap-
proach assumes that the user’s hands are visible in the scene and
convey enough information from the surrounding lighting. The seg-
mented user’s hands are fed to a trained deep CNN to regress the pa-
rameters of a second order SH lighting model. The CNN is trained
on a synthetically generated hands dataset. Experiments show im-
provements over the previous work of Marques et al. [MDVC18]
which is limited to estimating only a single point light source from
the same input images.

2.2.3. Other objects

Weber et al. [WPL18] present a neural model to estimate an HDR
illumination map of a scene from a single visible object with known
geometry and reflectance. This inherently imposes limitations in
data preparation and training phases. The neural model of [WPL18]
consists of a deep autoencoder and a deep CNN. The autoencoder
learns the latent space of an HDR illumination map, while the CNN
transforms an LDR input image to the autoencoder latent space –
similar to the “T-Network” architecture of Girdhar et al. [GFRG16].
To overcome the lack of training data for the autoencoder network,
[WPL18] generates 21,000 novel HDR illumination maps. A subset
of HDR illumination maps from the Laval Indoor HDR panorama
dataset [GSY*17] are manually labelled for illumination surfaces
and their depth using EnvyDepth [BCD*13]. The CNN is trained
with pairs of synthetic renderings of five selected 3D models with
three different materials under random illumination maps. Experi-
ments show sharper illumination maps compared to the parametric
SH light model.

Park et al. [PPYW20] propose a step-by-step neural approach to
estimate an HDR illumination map from a single LDR image of a
scene, as long as it contains an object with homogeneous (uniform)
material with no dominant concavity. The presented method first in-
fers an average incident illumination map given the cropped image
of an object using an importance sampling technique. It therefore
factors out the effects of the shape and material for the next stages
of themethod. The second and third stages respectively regress LDR
and HDR illumination maps of the scene using two additional neu-
ral models. The proposed approach shows improvements in render-
ing the appearance of augmented virtual objects over Meka et al.
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[MMZ*18] and Georgoulis et al. [GRR*18] for both indoor and
outdoor scenarios. The neural models are trained with a proposed
publicly available synthetic dataset.

2.3. Neural inverse rendering

Methods presented in this section, while estimating scene attributes
such as reflectance or shape, reproduce lighting parameters as a by-
product.

2.3.1. Indoor scenes

The neural model of Sengupta et al. [SGK*19] estimates lighting,
albedo and normals of an indoor scene from a single input image.
Their main contribution is a differentiable residual appearance ren-
derer which reconstructs high-frequency scene details such as shad-
ows and inter-reflections from the aforementioned scene compo-
nents – to facilitate a self-supervised training mechanism. Another
contribution is a photorealistic, synthetic dataset based on SUNCG
[SYZ*17] which improves the dataset of Zhang et al. [ZSY*17] in
terms of natural lighting, materials and denoised renderings. With
regard to lighting specifically, experiments show quantitative im-
provement over the work of Gardner et al. [GSY*17] for the pre-
dicted low-frequency HDR illumination maps over synthetic and
real data.

Li et al. [LSR*20] employ a cascade neural model consisting of
two autoencoder networks, one for material and geometry and the
other one for lighting, plus a differentiable renderer and a refine-
ment module. For indoor scenes, the proposed approach can regress
parameters of both spatially varying lighting and BRDF models. In
contrast, Sengupta et al. [SGK*19] use the Phong [Pho75] model.
In particular, lighting is estimated as parameters of spatially vary-
ing spherical Gaussian lobes which, as shown in the experiments,
can handle high-frequency lighting effects on objects much better
than the fourth order SH parameters. In terms of compositing vir-
tual objects into real scenes, comparisons showmore plausible shad-
ing and shadows compared to [GSH*19] and [GSY*17]. Note that
[GSY*17] does not model spatially varying lighting. The main con-
tribution of [LSR*20] is a synthetically, GPU generated dataset of
images with global illumination and various complex spatially vary-
ing BRDFs based on scene geometries from the SUNCG dataset
[SYZ*17].

2.3.2. Outdoor scenes

InverseRenderNet by Yu and Smith [YS19] addresses the same
problem formulation but in arbitrary outdoor scenes. The key idea
is to use multiview stereo (MVS) based on an available dataset
[LS18b] to supervise neural inverse rendering training in a Siamese,
self-supervised fashion. The selected lighting model is a second or-
der SH which is acceptable for modelling low frequency properties
of lighting. Figure 5 shows the extracted scene elements from a sin-
gle input image and then used for re-rendering the shading.

Yu et al. [YME*20] improve InverseRenderNet [YS19] with an
HDR illuminationmap as illuminationmodel instead of SH. In addi-
tion, foreground monuments are segmented using a novel sky detec-

Figure 5: InverseRenderNet [YS19] infers scene elements from a
single image. Images taken from Yu and Smith [YS19].

Figure 6: Kanamori and Endo [KE18] perform inverse rendering
even for unseen sitting poses. Images taken from Kanamori and
Endo [KE18]

tion DNN. Also, a new outdoor relighting dataset is recorded con-
sisting of 10 views and six lighting directions for each scene. Exper-
iments show plausible relighting of outdoor scenes in general and
specificallymore reconstruction details compared to InverseRender-
Net [YS19].

2.3.3. Clothing or fashion

Kanamori and Endo [KE18] estimate illumination, shape and albedo
from a single image of a posed human (see Figure 6). Potential ap-
plications are relighting or lighting transfer. The main idea is based
on the precomputed radiance transfer work of Sloan et al. [SKS02]
and second order SH based lighting to infer light occlusions on
body parts or apparel. The network consists of an encoder with
two separate decoders, one for albedo estimation and the other one
for light transport estimation. The training is achieved end-to-end
with synthetic data. Compared to the state-of-the-art, this work pro-
duces plausible (darker) shading for concave parts of human body or
clothing wrinkles which otherwise would have been rendered much
brighter. This is due to the consideration of occlusion in the esti-
mated light transfer maps.

Zhu et al. [ZHZ*20] address the inverse rendering problem for
complex-textured fashion images. A generative adversarial concept
[GPAM*14] is employed on a local and a global level – to regress
complex local shading variations while avoiding artifacts caused by
neglecting global illumination conditions. The proposed network is
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Figure 7: Boss et al. [BJK*20] re-render objects from two input
images (with and without flash light) and their respective masks.
Images taken from Boss et al. [BJK*20]

trained on a synthetically generated dataset. Experiments show the
suitability of the approach for texture replacement on fashion im-
ages.

2.3.4. Single or multiple object(s)

Boss et al. [BJK*20] focus only on single objects and propose a
two-shot capture method (with and without flash) to regress illumi-
nation, shape and spatially varying BRDF. The environment illumi-
nation is modelled with magnitudes of a spherical Gaussian model.
The network architecture follows a cascade concept (similar to Li
et al. [LSR*20]), that is regressed shape is used for illumination
estimation and thereafter both shape and illumination are used for
the reflectance model. The network is trained on a large number of
procedurally generated geometries rendered with complexmaterials
and HDR illumination maps. Figure 7 shows sample results.

Liu et al. [LLQX20] also address inverse rendering from sin-
gle or multiple objects on planar surfaces. The lighting model is
a fifth order SH and a novel “differentiable screen-space rendering”
method is proposed for a self-supervised training phase. Object nor-
mals, albedo, roughness and the respective lighting parameters are
regressed in a conventional encoder-decoder scheme. The model is
trained with synthetically generated images based on the Matter-
port3D dataset [CDF*17].

Wei et al. [WCD*20] propose a neural model to regress an illu-
mination map lighting model from the existing objects’ appearance
and depth information. A key idea is to mirror and project the high-
light regions of an intermediate regressed specular shading to the
illumination map through a network with angular convolution lay-
ers. The mirroring is facilitated by an estimated normal map given
the local depth information. The network is trained on synthetically
rendered scenes of 600 artist modelled objects lit under real and

synthetic HDR illumination maps. The experiments show the gen-
eralization ability of the network in regressing the illumination map
for synthetic and real scenes with various lighting conditions such
as a dominant light, multiple lights, area lights, etc. Also, a com-
parison to LeGendre et al. [LMF*19] and Gardner et al. [GSY*17]
shows a more precise reconstruction of the specularities for an in-
serted virtual object.

Meka et al. [MMZ*18] do not explicitly estimate illumination.
They present a neural architecture consisting of seven DNNs which
learn separate diffuse and specular albedo of an object from a single
input image in indoor environments (without manual segmentation).
This method can potentially estimate an incident illumination map
(diffuse and specular) only if depth information is provided. Depth
information facilitates the mapping of inferred (diffuse and mirror-
like) illumination components onto a spherical map. The proposed
method can be used live in mixed-reality applications.

2.3.5. Notable considerations

There are also a few other neural inverse rendering methods that do
not estimate lighting parameters, for example Gao et al. [GLD*19a]
and Kang et al. [KCW*18] only for spatially varying BRDFs and
Li et al. [LXR*18] and Kang et al. [KXH*19] for spatially varying
BRDFs and shape. Also, intrinsic image decomposition approaches
such as Zhou et al. [ZKE15] only estimate shading and reflectance
and therefore no explicit lighting parameters. Similarly, the esti-
mated reflectance maps of Rematas et al. [RRF*16] bind lighting
and surface reflectance in an inseparable representation. The same is
valid for the neural appearancemaps of Maximov et al. [MRLF19].
The appearance maps [MRLF19] are however view-independent –
in contrast to the reflectance maps [RRF*16].

It is also worth mentioning neural rendering approaches that
are physically motivated, for example Chen et al. [CCZ*20]
and Granskog et al. [GRPN20]. They have therefore lighting
parametrization orthogonal to the representations of other scene
components. However, they should not be confused to be perform-
ing inverse rendering. For the state-of-the-art on neural rendering,
the reader is referred to Tewari et al. [TFT*20].

2.4. Discussion

Estimating illumination from a single or a number of input im-
ages has been extensively investigated in an inverse rendering for-
mulation. Deep learning not only provides solutions to this clas-
sic problem, but also addresses the illumination estimation from in-
put image(s) with little or no explicit domain knowledge in com-
puter vision or graphics. With regard to neural inverse rendering,
approaches such as those of Sengupta et al. [SGK*19] and Yu et al.
[YME*20] can already estimate all scene components from a sin-
gle input image. All of the methods proposed in this category have
generality, that is they are not instance specific. There is a recent
trend to infer spatially varying lighting effects, especially in indoor
scenes, where can be significant changes in lighting even in nearby
locations [GHS*19].

Some recent work exploits differentiable CG modules, for exam-
ple differentiable renderers, in their proposed architecture [YS19,
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SGK*19]. This is beneficial for self-supervised learning with “in
the wild” collected data, as generating supervision metadata still re-
mains a challenge.

As neural processing architectures become more affordable on
mobile devices, neural illumination estimation methods for more re-
alistic AR rendering is on the rise. However, so far, not enough atten-
tion has been given to temporally coherent estimations which would
avoid noise and outliers in lighting predictions. Recently, Kán and
Kafumann [KK19] apply a filtering mechanism on the output of the
neural network to temporally smooth the inferred lighting. However,
this is not achieved by the network itself. LeGendre et al. [LMF*19]
show samples of temporal coherency as an output of their neural
model, despite the fact it is not explicitly enforced in the learning
optimization. The majority of approaches consider estimation from
each input image independently and do not address temporal coher-
ence for image sequences.

3. Relighting with Reflectance-Aware Scene-Specific
Representations

Reflectance-aware scene representations model the reflectance
properties of a specific scene, either purely based on images or with
the consideration of scene geometry. This enables the two differ-
ent use cases of relighting and novel view synthesis which will be
discussed in the following.

3.1. Image-based relighting

Debevec et al. [DHT*00] in their seminal work propose using a light
stage setup to sample the reflectance field of a human face for re-
lighting under novel lighting conditions from one of the existing
sparse camera viewpoints. Their work is based on the additive be-
haviour of light transport. However, in addition to the costly setup
of a light stage, a dense sampling of a subject with a one-light-at-a-
time (OLAT) technique requires a substantial amount of time while
the subject is required to remain still. Nevertheless, the proposed ap-
proach is able to generate photorealistic renderings of human faces.
In addition, OLAT images are often used as ground truth for com-
parison to other learning-based systems [MHP*19, ZFT*20].

Ren et al. [RDL*15], on the other hand, propose to employ only
a small number of images taken by a commodity single-lens reflex
camera and therefore alleviate the need for a light stage setup. The
main idea is to regress the different parts of a 4D light transport func-
tion by different ensembles of neural networks of a proposed design.
The system is trained separately on three real, indoor datasets con-
taining scenes with various materials – captured under a fixed cam-
era viewpoint and a moving light. A relighting experiment on these
scenes – using the respective trained models – show the ability of
the proposed method to regress images of the same viewpoint under
new light source positions.

3.2. Geometry-aware relighting and novel view synthesis

Purely image-based rendering approaches [DHT*00, RDL*15] fail
to synthesize the scene under novel unseen viewpoints without
having a proper notion of geometry. Recent advances [GLD*19b,

ZFT*20] leverage explicit pre-acquired geometry, while Bi et al.
[BXS*20a] and Srinivasan et al. [SMT*20] introduce a geometry
and reflectance-aware scene representation.

The Relightables by Guo et al. [GLD*19b] combine common
approaches for volumetric performance capture of humans, for ex-
ample [PKC*17] with an image-based rendering from a light stage
setup to overcome the issue of relightability and photorealism of
free-viewpoint video. Their proposed light stage is additionally
equipped with high-speed, high-resolution depth sensors to recon-
struct precise meshes of the performer from multiple views. The
mesh is tracked over time and relit in arbitrary new environments
using the two captured images under Colour Gradient illumination
similar to [MHP*19]. A learning-based approach is employed for
background subtraction of the subjects in the light stage to avoid
the colour spill of a green screen. The Relightables suffer from an
inability to reconstruct thin geometrical structures, or highly spec-
ular or transparent materials.

Zhang et al. [ZFT*20] train a DNN to estimate the 6D light trans-
port function of a full human body for not only relighting but also
novel view synthesis of a subject in a light stage setup. Their ap-
proach reconstructs a high quality base mesh of each subject similar
to Guo et al. [GLD*19b]. In addition, a base diffuse image is created
by combining all available OLAT images of the subject. The pro-
posed network then infers only the non-diffuse residuals to the base
diffuse reconstruction as cosinemaps [ZFT*20], given a target light-
ing and viewpoint. Compared to Guo et al. [GLD*19b], the benefit
of such an approach is its tolerance to imperfectly reconstructed ge-
ometry for, for example hair, and having no parametric prior (cosine
lobes in [GLD*19b]) for the reflectance model of the scene.

Neural Reflectance Fields [BXS*20a] provide a general scene
representation that tackles the problems of free-viewpoint synthesis
and relighting. The work formulates a reflectance-aware ray march-
ing framework similar to Bi et al. [BXS*20b]. It is equipped with
a Deep Multilayer Perceptron (MLP) to regress the volume density,
normal and parameters of a differentiable reflectance model at each
shading point on a camera ray. In contrast to [BXS*20b] which has
a fixed step size ray marching, volume density allows adaptive sam-
pling of shading points on a camera ray. In contrast to light stage
setups [DHT*00, MHP*19, GLD*19b, ZFT*20] which are costly,
the MLP is trained with a few images captured from a scene with
a collocated camera-light setup – here a mobile phone with flash
photography. The experimental results show photorealistic render-
ings of different scenes such as toys, human faces and furry objects
under arbitrary unseen lighting and viewpoints.

Similar to [BXS*20a], Lighthouse by Srinivasan et al. [SMT*20]
also generates a “multiscale volumetric lighting representation” of a
scene, however from only a pair of narrow-baseline stereo images.
This representation is later used to infer local spherical illumina-
tion maps for relighting purposes. The proposed neural model con-
sists of two networks to predict visible scene geometry, as well as
unobserved scene contents. The training dataset however does not
include depth data. A key benefit of having such a scene representa-
tion is that the rendered local illumination maps are readily coherent
for all scene positions.

Gao et al. [GCD*20] also leverage hand-held multiview stereo
with flash photography to reconstruct a proxy geometry of an object
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with complexmaterial on which a learned neural texture [TZN19] is
projected. In contrast to the deferred neural rendering of Thies et al.
[TZN19], Gao et al. [GCD*20] introduce an additional lighting pass
in which the aforementioned textured geometry is multiplied by the
radiance cues – “global illumination renderings of a rough proxy
geometry of the scene for a small set of basis materials and lit by the
target lighting” – and eventually passed to the neural renderer. The
proposed method is trained separately on nine recorded real scenes
and three synthetic ones, all containing objects of complex mate-
rials. Experiments show plausible renderings of the scenes under
novel views and/or novel directional lights or illumination maps.

More recently but limited to human faces skin area, Reddy et al.
[RTO*20] propose a neural face full reflectance field model that
can be trained on monocular images from a light stage dataset
[WMP*06]. The learned neural model is parametrized over a de-
sired light direction, viewpoint and instance face geometry to re-
construct the respective OLAT images – which can later be used for
relighting. Experiments show the suitability of the reflectance field
representation for modelling specularities and self-shadowing. This
work is not scene-specific per se – as the face geometry is required
as an input to the proposed neural reflectance model. It is however
surveyed here due to the strong conceptual similarity to the other
approaches in this section.

3.3. Discussion

Reflectance-aware scene-specific representations are well studied
in computer graphics, for example for measuring reflectance fields.
The neural approach to learn these representations is, as expected,
instance specific, that is a new model must be learned if the content
of the scene changes. This can be time consuming with regard to
data capture and/or learning time. On the positive side, these repre-
sentations guarantee spatial coherency, which means, once a scene
is learned, generated novel views [BXS*20a], or illumination maps
[SMT*20] are coherent for all desired viewpoints or locations.

4. Relighting as Image-to-Image Transformations

This section covers relighting with image-to-image transforms that
do not rely on neural scene-specific representation, nor image de-
composition and inverse rendering techniques. The first two parts
address the problem of relighting a scene given one or a few in-
put images and potentially a controllable target lighting condition.
The first part specifically contains general indoor/outdoor scenarios,
while the second focuses on human faces. The third part addresses
the problem of illumination harmonization between overlaid fore-
ground objects into background plates.

4.1. General scenes

Xu et al. [XSHR18] propose a DNNmodel to generate a scene under
a novel single directional light – given as input, sparse base lighting
images taken under a few pre-defined single light directions. The
proposed model consists of two networks: Sample-Net and Relight-
Net. During training, Sample-Net learns five optimal lighting direc-
tions needed for generating the scene under a target novel illumina-
tion – in an end-to-end scheme with both networks present. During

Figure 8: Murmann et al. [MGAD19] relight an input image
from another light direction. Images taken from Murmann et al.
[MGAD19]

inference, only Relight-Network is employed with a target lighting
direction. The training dataset is rendered synthetically with densely
sampled light directions in the upper hemisphere, procedurally gen-
erated scenes (of nine objects) and arbitrary complex spatially vary-
ing BRDFmaterial models. Experiments show successful relighting
of real objects, as well.

The work of Xu et al. [XSHR18] is in nature very similar
to image-based relighting methods, for example Debevec et al.
[DHT*00]; it however requires a much smaller number of samples.
Also, there is no need for a complex light stage capture setup and the
trained model is not scene-specific. One downside of [XSHR18] is,
on the other hand, its inability to reproduce cast shadows for “highly
non-convex geometry.”

Murmann et al. [MGAD19] propose to train a U-Net [RFB15]
like encoder-decoder DNN to directly regress HDR images which
are lit from another direction, given an input HDR image (see Fig-
ure 8). The network architecture is simple and does not require a
target lighting direction as input; however, a separate network must
therefore be trained for each desired target lighting direction. The
network is trained and tested on the proposed multi-illumination
dataset for indoor scenarios. For more details on the proposed
dataset, see Section 5.

4.1.1. General scenes: modelling shadows

To achieve more realistic results, complex neural architectures such
as Philip et al. [PGZ*19] and Wang et al. [WSL*20] explicitly re-
move shadows from the source image and regenerate them under a
target illumination condition in the inferred image.

Philip et al. [PGZ*19] address the problem of outdoor scenes re-
lighting by first reconstructing a proxy geometry of a scene from
public internet images. The approximate geometry is then used to
create RGB shadow images of the scene for both the source and
target (distant) illumination. These shadow images are refined by
two separate but similar ResNets [HZRS16]. The relighting hap-
pens through a third ResNet which takes as input refined shadow
images, a reference image and its illumination buffers (e.g. normal
map, reflection features, etc.) and infers the relit image. The neu-
ral model is trained on a synthetically generated dataset consisting
of 10 photorealistic scenes. Experiments show the benefit of us-
ing shadow masks/networks compared to a bare ResNet for direct
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Figure 9: Zhou et al. [ZHSJ19] generate a new portrait image un-
der novel lighting. Images taken from Zhou et al. [ZHSJ19]

image-to-image lighting transfer. They also show that first removing
shadows, and then casting new ones from the approximate proxy ge-
ometry does not produce visually comparable results. Also, the net-
work generalises to real footage such as those taken from a drone.
Note that this work does not perform inverse rendering, rather it ben-
efits from a reconstructed geometry as input to the neural model.

Similarly, the neural model put forward byWang et al. [WSL*20]
for indoor scenes has two paths: one for removing the effects of illu-
mination and the other one for estimating shadow priors. The output
of these two paths are concatenated and re-rendered by a third net-
work. The model is trained and tested on the virtual image dataset
for illumination transfer (VIDIT) [HZBS20] and has achieved the
best PSNR in the Advances in Image Manipulation (AIM) 2020
challenge [HZS*20]. For more information on VIDIT, refer to Sec-
tion 5.

4.2. Human face

Sun et al. [SBT*19] focus on portrait relighting in unconstrained en-
vironments using a single input image fed into a U-Net [RFB15] like
encoder-decoder neural network. The encoder sub-network finds the
illuminationmap under which the portrait is taken. The decoder sub-
network can therefore either use the user-edited original illumina-
tion map, or a novel one to generate the relit portrait. The training
of the network is end-to-end and achieved using a dataset of one-
light-at-a-time (OLAT) [DHT*00] images captured from subjects
in a light stage with seven cameras. Key results are visually plau-
sible relighted front-facing portraits and generalization to unseen
real-world selfie photos.

Very similar to [SBT*19, Zhou et al. ZHSJ19] also use an Hour-
glass network [NYD16] for the same problem formulation. They
however train the network with a realistic, synthetically generated
dataset, dubbed portrait relighting (DPR). DPR is generated using
the photorealistic Ratio Image-based rendering algorithm [SR01]
on the images of CelebA-HQ dataset [KALL18]. Experiments show
generalization to real portraits (see Figure 9).

Meka et al. [MHP*19] also address the image-to-image face re-
lighting but with a reflectance-aware approach. To reduce the sam-
pling time of a subject in a light stage and therefore enable fast cap-

Figure 10: Wang et al. [WWL19] harmonize foreground objects to
a background. Images taken from Wang et al. [WWL19]

ture of dynamic performances, Meka et al. [MHP*19] propose to
train a deep neural network (DNN) that takes as input only two
images captured under Colour Gradient illumination [Fyf09], ac-
companied by a desired lighting direction, and can infer the corre-
sponding OLAT image. The OLAT images captured for the train-
ing phase are partially compensated for the subject’s movements
by calculating dense optical flow-fields on the so-called tracking
frames. Tracking frames are captured in between OLATs where all
light stage lamps are on. The results for both the estimated OLATs
and the novel view synthesis are comparable to the ground truth light
stage images.

4.3. Harmonizing foreground to background

Wang et al. [WWL19, Zhan et al. [ZLZ*20] as well as Nicolet
et al. [NPD20] address the illumination consistency/harmonization
problem in mixed reality scenes: given as input a foreground ob-
ject naively pasted in an image, the solution seeks to harmonize the
shading and shadows of the object with the surrounding scene (see
Figure 10). Partial solutions that only consider shadow generation
are proposed by Liu et al. [LLZ*20] for hard shadows and by Sheng
et al. [SZB20] for soft ones. These methods are discussed below.

4.3.1. Shading and shadows

The model of Wang et al. [WWL19] is trained and tested on a
(non-photorealistic) synthetic dataset generated in Unity3D; it cov-
ers various single point light source positions, camera viewpoints
and scene content (from 3DWarehouse [Tri20]). The architecture is
based on a generator-discriminator concept [GPAM*14] and trained
with three different losses: adversarial, features matching and per-
ceptual. Experiments show the capability of the network for illumi-
nation/style transfer from backgrounds to inserted objects – without
any explicit inverse rendering (see Figure 10).

Zhan et al. [ZLZ*20] also address the general problem of illumi-
nation harmonization between composited, foreground objects and
the background – therefore, handling both shadows and shading.
However, they estimate illumination parameters of an SH model as
an intermediate output; They benefit from such estimation in two
separate shadow and texture decoders on a local level. Locally har-
monized foreground objects are then transferred to the global level
in the final image. Similar to Wang et al. [WWL19], a generator-
discriminator-based loss is used for training the DNNs. Experiments

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



326 Einabadi et al. / Deep Neural Models for Illumination Estimation and Relighting: A Survey

are performed using various real datasets and show plausible com-
positing results.

Work of Nicolet et al. [NPD20] is based on multiple usage of the
pre-trained relighting network of Philip et al. [PGZ*19]. In the first
pass, the relighting network is employed for shading the inserted
object in accordance to the illumination of the reference scene; The
second pass, however, generates coherent shadows for the inserted
objects and harmonizes the composited scene.

4.3.2. Shadows only

On the other hand, ARShadowGAN by Liu et al. [LLZ*20] seeks
to generate only shadows from an input image and the respective
mask of an inserted object. The main contribution is annotating
a real dataset containing inserted virtual objects from ShapeNet
[CFG*15]. The annotation includes the ground truth shadows and
occluders of the real objects, in addition to the scene camera and
lighting calibration. Similar to [WWL19, ZLZ*20], a generator-
discriminator scheme is used for modelling the shadow generation
process in real images without inverse rendering. The main down-
sides of the proposed model are: not handling the shading of the
inserted object, and failing to generate correct shadows where there
exist large dark areas in the input image [LLZ*20].

Sheng et al. [SZB20] consider realistic soft shadow generation
without compositing. The solution is based on an encoder-decoder
network and is trained on synthetically generated data from com-
mon classes of objects like humans, chairs, etc. The model does not
generalize to unseen object classes and similar to ARShadowGAN
[LLZ*20] can only generate plausible shadows for planar receivers.

4.4. Discussion

In this section, the problem formulation is inherently more challeng-
ing because these methods do not intend to decompose a scene into
its comprising elements, and rather on the contrary, seek to learn
a model that performs an image-to-image transform. Nevertheless,
face relighting with deep neural models has proven to be success-
ful [ZHSJ19]. For more general scenes, Philip et al. [PGZ*19] and
Murmann et al. [MGAD19] show satisfactory results respectively
for outdoor and indoor scenes.

Approaches in this category have generality but do not consider
temporal coherency. A more recent problem formulation is how
to harmonize illumination effects such as shading and/or shadows
between a naively inserted foreground object and the surrounding
background plate. In addition to illumination, the geometrical as-
pects of such insertions, for example camera perspective and scale,
remain to be further studied.

5. Datasets

Deep neural models are heavily dependent on training data of large
scale and diversity to be able to generalize to unseen scenarios.
Methods reviewed in this survey address this concern differently.
Common practices are to generate a synthetic dataset [HZBS20,
PGZ*19, ZSY*17, LYS*20, LLZ*20, ZHSJ19, GSH*19, GZA*20]

or to record a real one [MGAD19, GSY*17, LM14, XEOT12,
WMP*06]. In the following a few substantial contributions are dis-
cussed in more detail. Table 2 summarizes the key attributes of
these contributions.

5.1. Real datasets

The dataset of multi-illumination images in the wild [MGAD19]
consists of 1000 indoor (e.g. home, or office) scenes which are illu-
minated under 25 different lighting directions. Various lighting di-
rections are generated by servoing a mounted flash on a mirror-less
digital camera. Dataset images are captured with almost 20 steps of
dynamic range and include the appearance of a chrome and a dif-
fuse probe in the scene as illumination ground truth. The proposed
dataset is tested successfully in applications such as single-image il-
lumination estimation, direct image relighting andmixed-illuminant
white balancing [MGAD19].

The Laval indoor HDR panorama dataset [GSY*17] consists of
2100 HDR 360◦ panoramas from various indoor scenes, for exam-
ple houses, apartments, factories, etc. The HDR content covers 22
steps of scene dynamic range which is deemed appropriate for in-
door environments.

The Laval HDR sky database [LM14] covers 1,850 images of 22
outdoor landmark scenes under 350 different illumination condi-
tions. “Each image has high dynamic range, is radiometrically and
geometrically calibrated, and is aligned with its corresponding light
probe.”

The scene understanding 360◦ panorama (SUN360) database
[XEOT12] contains 67,583 LDR panoramas in 80 indoor or outdoor
categories e.g. indoor theatre, outdoor field, etc.

5.2. Synthetically generated datasets

The virtual image dataset for illumination transfer (VIDIT)
[HZBS20] is synthetically generated to create a baseline for compar-
ison of ‘illumination manipulation methods.’ It contains 390 scenes,
each captured with five different colour temperatures, at eight differ-
ent incident light directions, resulting in a total of 15,600 images.
The dataset covers both indoor and outdoor scenes and a variety
of materials. Each rendered image is accompanied by ground truth
metadata such as depth, lighting parameters, etc.

5.3. Dataset generation

More universal methods for dataset generation are recently get-
ting closer attention. For example, Gkitsas et al. [GZA*20] lever-
age the synergy of uncoupled datasets of two categories: (a) HDR
illumination maps, for example the Laval Indoor HDR panorama
dataset [GSY*17] and (b) LDR scenes including corresponding nor-
mals, for example [KZS*19]. Normally, datasets from (a) are lim-
ited in their size and scene variety and datasets from (b) have im-
plicit lighting information already in the captured images. Gkitsas
et al. [GZA*20] estimate the SH lighting parameters through image-
based relighting of scenes from dataset (b) (assuming a global Lam-
bertian albedo) with blended illumination maps from dataset (a). In
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Table 2: Selected dataset contributions compared using the terminology of Section 1.3.

# Scenes # Images Data HDR Scene content Real/Synthetic Publicly available

ARShadowGAN [LLZ*20] – 3000 IB ✗ IOJ S partial
Laval HDR Sky Database [LM14] 22 1850 N

√
O R

√
Laval Indoor HDR Panorama Dataset [GSY*17] 2100 – N

√
I R

√
Multi-Illumination Dataset [MGAD19] 1000 25000 H

√
I R

√
OpenRooms [LYS*20] 1506 118343 HLDGMC

√
I S planned

Philip et al. [PGZ*19] 10 73500 IL ✗ O S ✗

Portrait Relighting Dataset (DPR) [ZHSJ19] 27627 138135 ILG ✗ F S
√

SUN360 (Core/Extended) [XEOT12] 80/369 67583/– P ✗ IO R
√

VIDIT [HZBS20] 390 15600 IL ✗ IO S
√

Zhang et al. [ZSY*17] 45622 568793 ILDGMC ✗ I S
√

Figure 11: OpenRooms [LYS*20] generates synthetic dataset of
indoor scenes. Diagram content and images taken from Li et al.
[LYS*20]

this manner, they increase the amount of supervision to their pro-
posed end-to-end trainable neural model.

For indoor scenes, in a novel work, Li et al. [LYS*20] suggest
generating datasets of HDR images under variety of lighting con-
ditions and materials using available casual 3D scans of the scenes.
The key idea is to reconstruct the room layout from 3D scans and
to retrieve and align furniture CAD models into it. Complex mate-
rials can be assigned to these scene geometries and then lit under
various lighting parameters. Figure 11 shows an overview of this
process. The authors show the generalization of their proposed ap-
proach to real scenes by training the state-of-the-art neural model
of Li et al. [LSR*20] on a synthetically generated dataset based
on ScanNet [DCS*17]. Experiments show comparable results to
[LSR*20, SGK*19, LS18a] for inverse rendering and to [LSR*20,
GHS*19, GSH*19] for mixed reality compositing.

MLIC-Synthetizer [DDG19] is a plugin for Blender to generate
physically-based synthetic multi-light image collections which can
be used in different application scenarios, amongst them relighting.
Each generated image comes with its own ground truth data such as
depth or specularity maps. The plugin also provides the possibility
of changing materials programmatically.

6. Conclusion

In this paper we have reviewed, compared and discussed the recently
proposed deep neural methods for scene illumination estimation and
relighting in three major categories based on approach and use case.
Also, we provided an overview of publicly available datasets in the
respective field and how they are potentially generated, if synthetic.

The main advantage of deep neural approaches for the aforemen-
tioned tasks is the fact that once a model is trained, relighting im-
ages or estimating a scene’s lighting are significantly faster respec-
tively compared to classical global-illumination-based rendering or
optimization-based inverse rendering. In addition, the other equally
important advantage, specifically for relighting and lighting harmo-
nization applications, is that the accurate models of the scene com-
ponents are not necessarily needed – in fact, deep neural models can
learn these representations given the required mathematical capac-
ity and diverse training data at scale.

Considering the ultimate aim of the fast relighting of dynamic
scenes of arbitrary content, we are still in the early stages of re-
search. Notable limitations of the current state-of-the-art using deep
neural models, and potential future research directions, among oth-
ers, are: considering only a single image versus sequences, that is
lack of temporal coherency in predictions; limitations on realism of
the generated images; being limited to certain scene content, for ex-
ample human faces, indoor or outdoor scenes, etc.; limitations on
the complexity of the illumination models, for example only con-
sidering directional lights; and limited existing training datasets in
the senses of scale, realism, and diversity.

More specifically, the related mobile AR lighting applications are
diverse: TV/film post-production or on-set relighting/compositing,
seamless high-quality integration of real/synthetic imagery, real-
time interactive applications such as AR games, etc. The main chal-
lenges include the ones mentioned above but with the emphasis on
the photorealism and complex lighting for TV/film productions, and
performance for interactive media.
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