Chapter 6 Exercises Solutions

- A company currently replenishes its stock by ordering enough supply to cover a 1 month demand. The annual demand of the item is 1500 units. It costs £20 each time an order is placed. The holding cost per unit inventory per month is £2 and no shortages are allowed.
 - (a) Determine the optimal order quantity and the time between orders.
 - (b) Determine the difference in annual inventory costs between the optimal policy and the current policy of ordering a 1 month supply 12 times a year.

With the usual symbols for the parameters and variables, $\beta = 1500/12 = 125$. K = 20, h = 2.

- (a) $Q_0^* = \sqrt{2K\beta/h} = 50$. $t^* = Q_0^*/\beta = 0.4$ months.
- (b) Optimal policy: Monthly cost = $T(Q_0^*) = \sqrt{2K\beta h} = 100$.

Optimal yearly $cost = \pounds 1200$.

Current policy: $Q_0 = 125$ (= monthly demand).

Monthly cost = $T(125) = K\beta/125 + 125h/2 = 145$. Yearly cost = £1740. Difference between annual costs = £540.

2. An item is consumed at the rate of 30 units per day. The holding cost per unit per day is $\pounds 0.05$ and the setup cost is $\pounds 100$. Suppose that no shortage is allowed and the purchasing cost per unit is $\pounds 10$ for any quantity less than q = 300, and is $\pounds 8$ otherwise. Find the economic lot size. What is the answer if q = 500?

In the price-break model, $\beta = 30$, h = 0.05, K = 100, q = 300, $c_1 = 10$, $c_2 = 8$. The two cost per unit time functions are then

$$T_1(Q_0) = 300 + 3000/Q_0 + Q_0/40$$

$$T_2(Q_0) = 240 + 3000/Q_0 + Q_0/40$$

The minimum of both of these occurs at $Q_m = \sqrt{2K\beta/h} = 346.41$. Since $q < Q_m$, then q is in Zone I and so $Q_0^* = Q_m = 346.41$.

If q = 500 then we must find q_1 by solving $T_1(Q_m) = T_2(q_1)$. Substituting the known values gives the equation

$$77.32 = 3000/q_1 + 0.025q_1.$$

The solution of this equation which is greater than Q_m is $q_1 = 3053.5$. Thus, $Q_m < q < q_1$ and so q is in Zone II. The optimal order quantity is therefore $Q_0^* = q = 500$ units. 3. An item sells for £4 per unit but a 10% reduction is offered for lots of size 150 or more. A company that consumes this item at the rate of 20 items per day wants to decide whether to take advantage of the discount. The setup cost for ordering is £50 and the holding cost per unit per day is £0.30. Should the company take advantage of the discount?

In the price-break model, $\beta = 20$, h = 0.3, K = 50, q = 150, $c_1 = 4$, $c_2 = 3.6$. Thus, $Q_m = \sqrt{2K\beta/h} = 81.64$ and so $q > Q_m$. Thus, we must find q_1 by solving $T_1(Q_m) = T_2(q_1)$. Substituting the known values gives the equation

$$32.495 = 1000/q_1 + 0.15q_1.$$

The solution of this equation which is greater than Q_m is $q_1 = 179.49$. Thus, q is in Zone II and so $Q_0^* = 150$ units. The company should take the discount.

- Demand for a product is 600 units per month. The set up cost for placing an order is £25, the unit cost of each item is £3 and the holding cost is £0.05 per month.
 - (a) Assuming that shortages are not allowed determine how often to order and what the optimal order quantity should be.

Here $\beta = 600, K = 25, h = 0.05$, thus

$$Q_0^{\star} = \sqrt{\frac{2K\beta}{h}} = \sqrt{\frac{2 \times 25 \times 600}{0,05}} = 775$$
 to the nearest whole number

The frequency of ordering is $\frac{Q_0^*}{\beta} = 1.29$ months or every 5.6 weeks

(b) Assuming that shortages <u>are</u> allowed but there is a shortage cost of £0.2 per week, determine how often to order and what the optimal order quantity should be.

We have p = 0.02. hence

$$Q_0^{\star} = \sqrt{\frac{2K\beta}{h}} \times \sqrt{\frac{p+h}{h}} = \sqrt{60000} \times \sqrt{1.25} = 886$$
 to the nearest whole number

The frequency of ordering is $\frac{Q_0^*}{\beta} = 1.44$ months or every 6.3 weeks

5. We know that

$$Q_0^{\star} = \sqrt{\frac{2K\beta}{h}}$$

• Sketch graphs to show how Q_0^* changes as each of K, β and h change separately.

- What happens to the value of Q_0^{\star} as a result of the following (separate) changes
- (a) Set up costs reduced to 25% of its original value.
- (b) Demand rate becomes 4 times as large.
- (c) The unit holding cost is reduced to 25% of the original value

$$Q_0^{\star} = \sqrt{\frac{2K\beta}{h}}$$

If K reduced to 25% the original value then Q_0^{\star} will halve.

If β becomes 4 times as large then Q_0^\star will double.

If h is reduced to 25% the original value then Q_0^{\star} is increased by a factor of $\sqrt{\frac{1}{\frac{1}{2}}} = 2$

- 6. What is the effect on Q_0^* as a result of
 - (a) both changes in (a) and (b) above occuring simultaneously No change
 - (b) both changes in (a) and (c) above occuring simultaneously Q₀^{*} increases by a factor of 4.