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Summary

Decomposing the mass and wind fields in a data assimilation scheme into balanced and unbalanced
flow is part of the process of defining a covariance model. It is not uncommon to assume that the dynamic
balanced part of the flow is approximated solely by the rotational part of the wind, which is obtained from
a Helmholtz decomposition of the horizontal momentum (with an associated balanced pressure being
diagnostically inferred from a balance equation, for example). The unbalanced flow is then represented
by the divergence and the residual unbalanced pressure. The assumption that the rotational part of
the momentum is a good approximation to the total balanced flow is only valid in certain regimes. We
propose a new approach that incorporates flow regime dependence, where we assume that the balanced
part of the flow is approximated instead by a linearised potential vorticity increment. We show the
benefit of such a formulation in the context of shallow water equations defined on a hemisphere.

Keywords: Potential Vorticity Data Assimilation Linearisation Rossby-Haurwitz Waves
Burger number Incremental

1. Introduction

Lorenc (2003, §3(b)) points out that physical arguments are frequently used
to select a set of variables (so-called ‘control variables’ in Numerical Weather
Prediction (NWP)) for use in data assimilation schemes, which decompose
atmospheric states into balanced and unbalanced components. Such variables
enable the background error covariances to be more readily applied than would be
the case if, for example, the usual model variables of momentum and pressure were
used. Most numerical weather centres that perform data assimilation represent
the balanced and unbalanced parts of the flow in a simplified, flow independent
fashion that assumes that the balanced flow is just the rotational part, with the
associated balanced pressure field derived using a linear balance equation. The
‘fast modes’ (i.e. the gravity wave activity) are represented by the divergence
and a residual unbalanced pressure. While it is true that the balanced flow is
predominantly rotational, choosing the rotational wind as the ‘slow variable’
is only applicable in flow regimes where the Rossby radius of deformation is
significantly larger than the characteristic horizontal length scale. In reality, this
assumption breaks down at planetary length scales where the horizontal length
scale is very large or where the Rossby radius of deformation is small due to
buoyancy effects (etc). To incorporate these effects we need a simple scheme that
has some flow regime dependency. An efficient scheme is needed so that this part
of the data assimilation process does not cost significantly more computationally
than at present, and this is an important constraint in schemes that may involve
solving complicated elliptic boundary value problems.

We propose to use a low order potential vorticity (PV) inversion scheme
to select a set of control variables that separate the balanced and unbalanced
components of the flow in a more flow dependent manner. We make the assump-
tion that the potential vorticity contains the balanced part of the flow, and that
the unbalanced flow lies in the kernel of the PV operator (i.e. that flow with
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PV=0). McIntyre and Norton (2000) discuss various hierarchical approximations
to potential vorticity inversion on a hemisphere within a shallow water context.
We propose a PV inversion scheme that is similar to their first order direct inver-
sion scheme, except that we use the linear balance equation instead of Charney
balance as our associated balance condition. We also work with a linearisation of
the potential vorticity because our scheme is designed to work with incremental
data assimilation schemes. Our PV inversion scheme is consistent with the shallow
water equations linearised about a resting state.

We discriminate between different flow regimes by using the Burger number.
This is a measure of the stable stratification of a fluid: when the Burger number
is low, the height, or depth, is an appropriate measure of the balanced component
of the flow; but when the Burger number is high, the vorticity is the appropriate
measure. Another way of saying this is to note that the PV behaves like the
reciprocal of the height at low Burger numbers and like the vorticity at high
Burger numbers. Therefore, in our application in data assimilation, the PV should
be a better representation of the balanced flow where and when the Burger
number is small, while giving approximately similar results to the vorticity when
the Burger number is large.

We present theoretical and numerical aspects of this PV inversion and
show the benefits of such a scheme when compared to a scheme in which the
balanced component is represented by the rotational flow. In section 2 we present
the theoretical aspects, giving a rationale for using potential vorticity within a
shallow water context. We show how the relative contributions to scaled potential
vorticity perturbations vary with Burger number. In section 3 we state the
numerical method that is used and section 4 we present the numerical results.

2. Theory

(a) Introduction
In this section we explain why we want to use a potential vorticity (PV)

inversion scheme in data assimilation to separate the key dynamical aspects of
the flow. Most operational centres use just the rotational and divergent parts of
the flow for this purpose. It is our aim to show that using a PV inversion scheme
is a more consistent approach as it takes account of the regime dependence of the
flow.

The first step is to establish the standard rationale for using the streamfunc-
tion ψ, a scalar quantity representing the rotational wind, as the key variable
representing the dominant behaviour of the flow. This is necessary in order to
show that using PV inversion is an improvement on the standard method.

We use the nonlinear shallow water equations on a sphere. Most meteoro-
logical textbooks (eg Haltiner et al 1980) show that through a scale analysis,
key non-dimensional numbers are found whose values characterize the flow. One
such dimensional number is the Burger number. Cullen (2002) showed that in a
high Burger regime, the shallow water equations (SWE) approximate a balanced
model called 2D Euler in the asymptotic limit as the Burger number gets much
larger than unity. In this balanced model the absolute vorticity, a scalar quantity
describing the amount of rotational wind, is materially conserved by the flow.
If we are dealing with shallow water flow in a regime where it behaves similarly
to inviscid incompressible 2D Euler, it would be sensible to approximate the
dominant aspects of the shallow water flow by a key variable of the 2D Euler
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model, namely the streamfunction ψ. This quantity can be diagnosed using a
Helmholtz decomposition.

The atmosphere, however, is not always in a regime in which the Burger
number is larger than unity; there are situations where the Burger number is
much smaller and the appropriate balanced model that approximates the shallow
water flow is given by the semi-geostrophic equations. In this balanced model it
is the height field that dominates the flow.

Potential vorticity inversion can be used to diagnose the dominant aspects
of the flow in regimes in which the Burger number is larger than one and smaller
than one, since the potential vorticity is defined by both the streamfunction ψ
and the height field h.

We now describe the argument more rigorously by considering the governing
equations, their relationship to the inviscid incompressible 2D Euler equations,
the Helmholtz decomposition, the relationship of SWE’s to semi-geostrophic
equations and finally the use of PV inversion.

(b) Governing equations
The nonlinear shallow water equations take the form:

∂v
∂t

+ v · ∇v + fk× v + g∇h = 0 (1)

∂h

∂t
+∇ · (hv) = 0 (2)

where the main variables in this formulation are the height of the fluid, h and the
horizontal vector wind v. The acceleration due to gravity, g, is considered to be
a constant and the Coriolis parameter, f , on the sphere is a function of latitude
only. The horizontal gradient operator is represented by ∇.

The basic analysis of linearised versions of these equations leads to the
conclusion that there are three eigenmodes: one Rossby mode and two inertio-
gravity modes (Daley, 1991; Gill, 1982; Pedlosky, 1987). For the most part in
mid-latitudes, there is a separation in time scales between the slow Rossby modes
and fast inertio-gravity modes. As stated earlier, we are interested in choosing
variables that demonstrate this dynamical separation.

(c) Relationship of governing equations to incompressible 2D-Euler
One of the key non-dimensional constants that comes from applying scale

analysis to the horizontal momentum equations is the Burger number, Bu, which
is defined as the ratio of the Rossby radius of deformation, LR, and the horizontal
characteristic length scale L. Specifically,

Bu =
LR

L
,

LR =
√

gH

f
, (3)

where f is a typical value for the Coriolis parameter and H is the characteristic
depth of the fluid. Another key non-dimensional constant is the Rossby number

Ro =
U

fL
, (4)
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where U is the characteristic velocity.
For the shallow water equations, in the asymptotic limit as the Burger

number gets large, Bu >> 1, where the Rossby number is kept small, Ro << 1, the
typical spatial differences in depth become increasingly less important compared
to the effect of the characteristic depth within equation (2). In this case, the
continuity equation effectively degenerates into a 2D incompressibility condition.
This enforces a non-divergent flow described by incompressible 2D Euler as

∂v
∂t

+ v · ∇v + fk× v + g∇h = 0, (5)

∇ · v = 0. (6)

Taking the vertical component of the curl of the momentum equation (5)
gives the barotropic vorticity equation

∂∇2ψ

∂t
+ vψ · ∇

(
f +∇2ψ

)
= 0, (7)

where vψ is the rotational, non-divergent part of the wind and the streamfunction
ψ is defined by

∇2ψ = k · ∇ × v. (8)

As (7) is a single equation with a single time derivative, it has just one
eigenmode which approximates the slow mode of the shallow water equations
as the Burger number becomes large. The barotropic vorticity equation is an
example of a balanced model, as it is a reduced model that approximates the
shallow water equations in the asymptotic limit Ro << 1, Bu >> 1.

From this equation we see that in this limit the streamfunction is the
appropriate variable to approximate the slow dynamics.

(d) Linear balance equation
A consequence of inviscid incompressible 2D Euler is that if we take the

divergence of the momentum equation (5), we are left with the Charney-Bolin
balance equation

g∇2h =∇ · f∇ψ − 2J(vψ), (9)

where J is the Jacobian operator. For vψ = (uψ, vψ) in Cartesian co-ordinates
the Jacobian operator is defined as J(vψ) = ∂uψ

∂x
∂vψ

∂y − ∂uψ

∂y
∂vψ

∂x .
Applying scale analysis to this equation shows that for Ro << 1 two terms

are typically a factor of ten larger than the rest. Taking these two terms on their
own gives the linear balance equation as

g∇2h =∇ · f∇ψ. (10)

This is a linear mass-wind coupling that naturally takes into account the
latitudinal variation of the Coriolis parameter and is useful when length scales
L = 106m are considered, even if it is unable to recognise any balanced divergent
components.
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(e) Helmholtz decomposition
A way to approximate the evolution of the barotropic vorticity equation is

to evolve the shallow water equations and calculate the rotational, non-divergent
part of the wind. This can be achieved using a Helmholtz decomposition, which
splits the horizontal wind into a rotational, non-divergent part vψ and a divergent,
irrotational part vχ such that

v = vψ + vχ. (11)

The rotational winds are defined through the streamfunction in the usual way by

vψ = k×∇ψ.

Operational data assimilation systems separate the mass and wind into parts
that approximate the Rossby slow mode and two inertio-gravity modes. Most of
these systems use the Helmholtz decomposition to approximate the evolution of
the streamfunction ψ on each horizontal level and hence, together with the linear
balance equation, separate and identify the mass-wind contribution to the slow
Rossby mode. The separation is assumed to be accurate across all Burger regimes.

( f ) Relationship of governing equations to semi-geostrophic shallow water
equations

In the shallow water context, the assumption that the streamfunction rep-
resents the slow mode becomes increasingly less accurate as the Burger number
becomes smaller, Bu << 1, while the Rossby number remains small, Ro << 1.
When the value of the Burger number is smaller than unity it is more appropri-
ate to choose semi-geostrophic shallow water equations as the reference balanced
model than inviscid incompressible 2D Euler. This is because it is a more accu-
rate approximation in this regime. The smaller the Burger number, the closer
the behaviour of the shallow water equations is to the semi-geostrophic shallow
water equations. Further details of the semi-geostrophic shallow water equations
can be found in Cullen (2002). It is sufficient to say that all the terms in the
continuity equation are important and that this equation no longer reduces into
an incompressibility condition. For a small Burger number less than one, the
depth fields produced by the standard shallow water equations and the semi-
geostrophic shallow water equations are similar, as are the qualitative features of
semi-geostrophic and Ertel potential vorticities. In contrast, the rotational wind
aspects of the two models differ substantially.

(g) Linearisation, linearisation states and the LB method
In data assimilation we are interested in an incremental linearised formu-

lation. We define our increments as the difference between the full heights and
linearisation states. In particular, the height and wind increments are defined by

h′ = h− h,

v′ = v − v,

where the prime variables denote increments and overlined variables represent
linearisation states. In this paper, due to limitations of the numerical method,
the linearisation states h, u, v are a function of latitude only. The way linearisation
states are chosen depends on the situation, but in all cases there is a consistency
between the values given to the linearisation states.
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The linear equations introduced prior to this section all hold both for
increments and for linearisation states, as well as for full fields. In particular,
equation (8) can be used to identify ψ′ from v′ and ψ from v.

The streamfunction increment can be considered to represent the balanced
part of the incremental flow and the linear balance equation (10) can be used
to find the balanced height increment h′b from the streamfunction increment ψ′.
This method for decomposing the flow is referred to here as the LB method. In
summary we state the method as

1. calculate the streamfunction increment from the wind increments using
equation (8) and assume it is balanced, i.e. ψ′b = ψ′;

2. use the linear balance equation (10) to derive the associated balanced height
increment h′b and the unbalanced height increment h′ub = h′ − h′b.

(h) PV and choice of PV inversion
Our goal is to find a better way to separate the mass-wind contribution to the

slow mode. Instead of assuming that the evolution of the slow mode is represented
by the evolution of the streamfunction, we assume instead that it is approximated
by the evolution of the potential vorticity.

Potential vorticity, q, is considered to be a key dynamical quantity that can
capture atmospheric flow features such as frontogenesis, cyclogenesis and general
circulation (Hoskins et al, 1985). In the context of 2D Euler, it can be represented
as the Laplacian of the streamfunction. In the shallow water context, its form is
a generalisation of 2D Euler and is given by

q =
f +∇2ψ

h
, (12)

with the property that it is conserved such that
∂q

∂t
+ u · ∇q = 0. (13)

The linearised potential vorticity increment q′ is defined with respect to a
reference state q that satisfies the nonlinear potential vorticity equation

q =
f +∇2ψ

h
, (14)

with ∇2ψ and h being reference states for the relative vorticity and height.
Linearising the PV equation (12) about q then defines the potential vorticity
increment q′ as

q′

q
=

∇2ψ′

f +∇2ψ
− h′

h
. (15)

To invert the potential vorticity increment and obtain a streamfunction
and height increment, we need an additional equation. We choose to use the
linear balance equation, corresponding to the choice of most operational data
assimilation centres for this task, but use it in a different way. Instead of assuming
that the streamfunction increment represents the slow mode and using the linear
balance equation to find a consistent height (mass), we propose to derive height
and wind increments that are consistent with each other in that they conserve the
potential vorticity increment while at the same time satisfying the linear balance
relation.
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(i) The PV method
The following coupled system of partial differential equations (PDE)s, derived

from (15) and (10), defines our decomposition of the slow dynamics:

∇ · f∇ψ′b − g∇2h′b = 0, (16)
∇2ψ′b − qh′b = hq′, (17)

which we solve, simultaneously for ψ′b and h′b, where q, h and q′ are known. The
term hq′ is precalculated from ψ′ and h′ by just rearranging equation (15) as

hq′ =−qh′ +∇2ψ′. (18)

In addition, ∇2ψ′ is obtained from the full wind increments v′ using the equation
∇2ψ′ = k · (∇× v′).

The coupled system (16), (17) defines a balanced height increment h′b and a
balanced wind increment, given by v′b = k×∇ψ′b. The balanced wind increment
is non-divergent and approximates the full rotational wind increment for high
Burger number regimes. The rest of the rotational wind is described as having no
potential vorticity increment and conserving a departure from linear balance.
The unbalanced rotational wind can be obtained in one of two ways, either
by subtracting the balanced wind and height from the full rotational wind and
height, or by explicitly solving the simultaneous system

∇ · f∇ψ′ub − g∇2h′ub = ∇ · f∇ψ′ − g∇2h′, (19)
∇2ψ′ub − qh′ub = 0, (20)

where the unbalanced rotational wind is defined to be v′ub = k×∇ψ′ub. The
unbalanced height is denoted by h′ub and again, on the right hand side, we use
known full increments ψ′ and h′. The equivalence of the two methods to calculate
the unbalanced height and unbalanced rotational wind is readily seen by adding
equation (16) to (19) and (17) to (20), to give

∇ · f∇ (
ψ′b + ψ′ub

)− g∇2
(
h′b + h′ub

)
= ∇ · f∇ψ′ − g∇2h′, (21)

∇2
(
ψ′b + ψ′ub

)− q
(
h′b + h′ub

)
= hq′. (22)

The remaining wind increment, namely the divergent part vχ
′, is stored in the

velocity potential χ′, which is defined as

∇2χ′ =∇ · v′. (23)

We have chosen to solve the coupled system, (16)/(17) (respectively (19)/(20))
directly and to use a finite difference approach. This has the benefit of allowing
us to deal with just second order partial differential operators and well as making
it easier to find appropriate boundary conditions.

This method of applying a PV inversion to obtain balanced height, h′b, and
balanced horizontal winds, v′b, is referred to here as the PV method. In summary,
we state the method as

1. assume that, instead of conserving ψ′ as in the LB method, the increment
hq′ is conserved.

2. solve the linear balance and linearised PV equations (16), (17) simultane-
ously to give balanced streamfunction increments ψ′b and balanced height
increments h′b; derive the unbalanced height hub from hub = h− hb.
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(j) Dynamic dependence of linearised potential vorticity on Burger regime
It is now appropriate to describe the effect of different Burger regimes on lin-

earised potential vorticity and linear balance increments. We consider properties
of height, vorticity (the Laplacian of the streamfunction) and potential vorticity
increments that satisfy both the linearised potential vorticity relationship (15)
and the linear balance equation, (10) when the Coriolis term is constant. It is
valid to consider relative vorticity perturbations ∇2ψ′ since the linear balance
equation (10) for constant f = f0 is equal to

g∇2h′ = f0∇2ψ′. (24)

Let us assume that the height and vorticity perturbations are on a Cartesian
grid for consistency in assuming constant f and assume that these perturbations
and the reference linearisation states are known.

We use the relationship (24) between the perturbation in relative vorticity
and the height to derive a relationship between the potential vorticity perturba-
tion and the height. We consider perturbations in the height and the vorticity
that take the form h′ = ĥei(k1x+k2y−σt), ζ ′ =∇2ψ′ = ζ̂ei(k1x+k2y−σt), where k1 is
the wave number in the x direction, k2 is the wave number in the y direction and
σ is the frequency. Also, we assume that the perturbations satisfy (24). Using
these two assumptions,

∇2ψ′ =−(k2
1 + k2

2)gh′

f0
. (25)

If the characteristic length scale L is considered to be equal to (k2
1 + k2

1)
− 1

2 ,
then the Burger number is equal to (k2

1 + k2
1)

1
2 (gh)

1
2 /f , where the characteristic

height scale H is considered to be equal to h. By using (15), (25), two separate
relationships can be determined (Wlasak, 2002): one defines scaled perturbations
in potential vorticity in terms of scaled perturbations in height; the other shows
how perturbations in scaled relative vorticity perturbations are related to scaled
perturbations in potential vorticity. These relationships are given by

q′

q
=−N

h′

h

(
1− 1

N

)
q′

q
=

∇2ψ′

∇2ψ + f0

(26)

with

N = 1 +
f0 B2

u

f0 +∇2ψ
. (27)

As the Burger number is always greater than zero, for any given perturbation, N
is always greater than 1. For a fixed q′/q and N >> 1, h′/h will not contribute
much to the scaled potential vorticity perturbations; the potential vorticity
perturbations are similar to the absolute vorticity perturbations with q′/q ≈
∇2ψ′/(f0 +∇2ψ). Moreover, the greater the value of N , the more similar q′/q
will be to ∇2ψ′/(f0 +∇2ψ). The equation (27) shows that a number of conditions
can make N large. One possible way, assuming (f0 +∇2ψ) to be constant, is to
produce a large Burger number. A large Burger number will be obtained when
h is large or when f0 is small. In summary, it is expected that for large Burger
number q′/q will be dominated by ∇2ψ′/(f0 +∇2ψ).
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The equations (26) and (27) can also be written as
(

1− 1
P

)
q′

q
=−h′

h

q′

q
= P

∇2ψ′

f0 +∇2ψ
(28)

with

P = 1 +
f0 +∇2ψ

f0B2
u

. (29)

Examination shows that for a small Burger number, P >> 1 with q′/q >>
∇2ψ′/(∇2ψ′ + f0) and q′/q ≈ h′/h. In this situation it is the scaled height
perturbations h′/h that will dominate q′/q. Small Burger number regimes will
occur where the Coriolis parameter f0 is not small as in the mid-latitudes and
where h is small. It is in these regions that the potential vorticity perturbations
will most resemble the height perturbations.

3. Numerical Procedure

(a) Preamble
Our aim is to diagnose the balanced and unbalanced contributions to the mass

and wind increments determined by the LB and PV methods and to compare the
results under different Burger regimes. We apply the methods on a hemisphere.
This is achieved by solving for the fields on the full sphere, making the height field
and zonal wind field symmetric about the equator and making the meridional
wind antisymmetric. Both shallow water equations on the rotating sphere and
the equations (16)-(17) have the geometric property that they conserve these
symmetries provided the initial fields have them.

We choose the linearisation states to be a function of latitude only. This makes
the coupled equation set separable, enabling the use of a method developed by
Moorthi and Higgins (1993) for solving numerically separable elliptic equations.
The assumption that the potential vorticity linearisation state is a function of
latitude only is a reasonable assumption when the data is coming from a global
shallow water model. Except for around the equator, the major contributor to
the absolute vorticity is the Coriolis parameter, which is a function of the latitude
only. Also the change in height field at any given latitude seems to vary between
5 % and 20 % of its average value.

(b) Longitudinal/Latitudinal decoupling
The PV method uses 1-dimensional inverse fast Fourier transforms (IFFTs)

zonally to decouple the system of partial differential equations (16)-(17) into a
series of coupled systems of ordinary differential equations dependent on zonal
wavenumber. As the equations we are dealing with are linear, each coupled system
of ordinary differential equations is solved independently using second-order finite
differences. The final step applies fast Fourier transforms (FFTs) to reconstitute
the solution in the physical domain to give balanced height hb and streamfunction
ψb.

This method has a number of advantages. Since the ordinary differential
equations (ODEs) to be solved for each wavenumber are independent of each
other, they can be solved in parallel, making this method quite efficient. Memory
requirements are relatively low. The equation should be less sensitive to error as



10 M. Wlasak et al

we are solving coupled systems of ODEs, instead of a highly sensitive fourth order
PDE. The coupled system is coded in Matlab, giving the opportunity to use the
inbuilt Fourier transform algorithms (Cooley et al, 1965; Frigo et al, 1998).

For clarity, the technique used to solve the coupled system is shown from
a continuous perspective, the discrete equivalent being described only where
necessary.

We assume a solution of the form

h′b(λ, φ) =
k=M/2∑

k=−M/2

h̃(k, φ)eikλ, (30)

ψ′b(λ, φ) =
k=M/2∑

k=−M/2

ψ̃(k, φ)eikλ,

hq′(λ, φ) =
k=M/2∑

k=−M/2

h̃q′(k, φ)eikλ,

with M being an even integer setting a truncation limit to the Fourier approxi-
mation, k the wavenumber, and i =

√−1. Since we have periodicity in the longi-
tudinal direction, λ is discretised as

λj = ja

(
2π

M + 1

)
cos φ, j = 1, ..., M + 1, (31)

where a is the radius of the earth. The Fourier coefficients h̃(k, φ), ψ̃(k, φ),

h̃q′(k, φ) are complex.
Substitution of (30) into (16) and (17), produces a series of coupled systems

of second order ODEs in φ to be solved for variables h̃, ψ̃. The system is given
for each k by

− k2

a2 cos2 φ
[gh̃ + fψ̃] +

g

a2 cos φ

∂

∂φ
[cos φ

∂h̃

∂φ
+ f cos φ

∂ψ̃

∂φ
] = 0 (32)

− k2

a2 cos2 φ
[ψ̃] +

1
a2 cos φ

∂

∂φ
[cos φ

∂ψ̃

∂φ
]− qh̃ = h̃q′. (33)

In this situation, we have M + 1 different complex coefficients for h̃, ψ̃, h̃q′ which
are all functions of latitude λj and wave number k. Coefficients h̃q′ are known
and h̃, ψ̃ are to be determined.

The system (32)-(33) is to be solved for each wavenumber k considered. The
beauty of the separability of the coupled PDE’s is now apparent; since h, q, ψ
are functions of latitude only, there is no interaction of wavenumber coefficients
and each system of ODEs for each wavenumber is solved independently.
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(c) Boundary conditions

To solve this system we need h̃q′(k, φ), which is derived by applying the
Fourier transform to the increment hq′(λ, φ), given by (18). We obtain

h̃q′(k, φ) =
1

M + 1

j=M+1∑

j=1

hq′(λj , φ)e−ikλj , k =−M/2, · · · , M/2. (34)

Dirichlet boundary conditions are set at the poles for k 6= 0 with

h̃b(k, π/2) = 0, h̃b(k,−π/2) = 0,

ψ̃b(k, π/2) = 0, ψ̃b(k,−π/2) = 0. (35)
For k = 0 we solve (33) over the sphere and enforce a zero value at the

equator for the anti-symmetric balanced streamfunction increment difference. A
global uniqueness condition is used of the form,∫

h̃bdS = 0, (36)

which is rewritten as ∫ π

2

−π

2

h̃b(0, φ) cos φdφ = 0. (37)

The global uniqueness condition applied to ψ̃,∫ π

2

−π

2

ψ̃b(0, φ) cos φdφ = 0, (38)

is automatically satisfied due to the imposed anti-symmetric nature of the
integrand. Once (32)-(33) has been solved for all wavenumbers considered, we
synthesise the complex coefficients using a discrete inverse Fourier transform.

(d) Scaling
A scaling is introduced to make terms in the discretised operator of approxi-

mately the same size. Scaling of equations is important so as to eliminate unneces-
sary sensitivity to numerical error in the problem. We wish to choose a scaling that
produces a coupled system of ODEs that are represented by a positive definite
matrix. Such a matrix guarantees a unique solution to the discrete problem. This
scaling is achieved using a combination of scale analysis and a control volume
approach. The control volume technique in this situation amounts to multiplying
the value at each grid point in Fourier space by its associated weighted grid-
spacing. For non-polar grid points, the weighted grid-spacing is approximated by
2πa2∆φ cos φi, where a is the radius of the earth, φi is the value of the latitude at
a grid point and ∆φ is the grid spacing. The weighted grid-spacing is an O(∆φ2)
approximation to the true surface area of a spherical segment. At the poles the
surface area is given by 2πa2 ∆φ

2 cos φ 1
2

where φ 1
2

is the latitude value mid-way
between the pole and the adjacent point. The discretisation at the poles is derived
using Green’s theorem as detailed by Barros (1991).

The proposed additional scaling involves a change from height to geopotential
height and from streamfuction to streamfunction multiplied by the angular
velocity of the earth, 2Ω. These scalings make the terms in the modified equations
roughly of the same magnitude.
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(e) The discrete system
The inverse discrete Fourier transforms take the values of M spatial points

at each given latitude and convert to M/2 + 1 wavenumber coefficients, one for
each wavenumber including k = 0. Thus we have M/2 + 1 discrete ODE systems
that are solved using traditional second-order centered finite differences.

The discrete ODE system for each wavenumber k has a block tridiagonal
structure and can be represented in the form Ax = b with A being a (2N − 4)×
(2N − 4) block tri-diagonal nonsingular matrix, where N is the number of equally
spaced grid points from north pole to south.

For k = 0 the situation is a little more complex. At the poles we set
homogenous Neumann boundary conditions for both variables, which fix both
fields up to the addition of a constant. Additional boundary conditions are applied
to both variables. The streamfunction is assumed to be a continuous smooth
function and must be zero at the equator due to the balanced streamfunction
being anti-symmetric. At the equator, for k = 0, we do not solve the coupled
system as its stands but instead solve one equation in which the coupled equations
have been added together. This single equation at the equator is discretised using
fourth order centered differences.

An antisymmetric solution about the equator in balanced streamfunction
enforces a symmetric solution in balanced height hb and there is no need to enforce
∂hb

∂φ = 0. Instead a discrete approximation to mass conservation is enforced, so that
the balanced height field represents the same mass as the full height increment
difference.

A unique solution is given, provided a compatibility condition is enforced on
the full potential vorticity increment such that the volume-weighted sum of the
discrete increments hq′ over the sphere is equal to zero (Swarztrauber,1974). This
is automatically achieved due to the antisymmetric nature of the full potential
vorticity increment.

4. Results

We investigate whether the PV method provides a better representation of
balanced and unbalanced control variables than the LB method. If the coupled
PV system is behaving properly, then in high Burger regimes the balanced
streamfunction increment ψ′b should be similar to ψ′. Similarly, at low Burger
regimes the balanced height increment should resemble the full height increment.
We perform two sets of experiments: the first testing the PV and LB methods
against a primarily balanced flow defined by the evolution of a Rossby-Haurwitz
wave; the second testing the methods with height and wind increments that are
essentially unbalanced.

For the first set of experiments, appropriate height and wind fields need to be
generated to test the coupled system. A global SWE model is run, using a Rossby-
Haurwitz wave (RH wave) as an initial condition. The RH wave is defined in the
Appendix through an analytic expression and is used in standard test cases as an
initial condition for testing global SWE models (Williamson et al, 1992). It has
the property that the wind pattern is advected meridionally at a constant angular
velocity on the sphere when propagated under incompressible 2D Euler equations.
When used in the SWE context such behavior occurs in a regime where Bu >> 1,
the characteristic height H is large and there is little divergent wind. The defining
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parameters of the wave are given by the wavenumber R and the base height h0

of the wave at the poles. The strength of the underlying zonal wind from west to
east is given by ω and K controls the amplitude of the wave. In this test we set
R = 4, K = ω = 7.847e−7s−1, h0 = 8000. Approximating the characteristic length
scale by L = 2aπ cos φ /(4R) m, produces Burger values Bu = 1.8 at φ = 60◦,
Bu = 1.6 at φ = 45◦ and Bu = 4.6 at φ = 10◦, where φ denotes the latitude.

The global SWE model uses a semi-implicit semi-Lagrangian scheme similar
to that used in the Met Office Unified Model (vn 5.1) (Malcolm, 1996). It has the
property that it conserves symmetry and antisymmetry about the equator given
appropriate symmetric/antisymmetric initial fields.

The model is run for 24 hrs, with a timestep of 0.5 hr at coarse spatial
resolution with grid spacing ∆φ = aπ/64, and ∆λ = aπ/48 with the height and
wind components stored from the end of the time integration. These fields are
zonally-averaged to give the linearisation states. The increments are defined by
the difference between the full fields and the zonally-averaged fields. The discrete
version of the nonlinear PV equation (14) is used to define the latitudinally
dependent PV linearisation state q. The quantity hq′ that is needed is given by
(18).

The PV method produces both balanced height and streamfunction incre-
ments. Figure 1 compares the balanced streamfunction to the respective full field
over the area (φ ∈ [π/2,−π/2])× (λ ∈ [0, π/2]).

Figure 1. Balanced ψ (left) and full ψ (right) for RH wave propagated 1 day at high Burger number,
for (φ ∈ [π/2,−π/2])× (λ ∈ [0, π/2]) (scale denotes grid points)
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The two fields are qualitatively similar in shape. The balanced streamfunction
has an amplitude approximately 80% of the full ψ field. Also the balanced field
is slightly more diffuse. In comparision, the balanced height and the full height
perturbations in Figure 2 are notably different in shape.

The above experiment is repeated with RH wave parameters set to R = 4,
K = w = 7.847× 10−7 s−1 and h0 = 50 m. This produces a low Burger regime
in the mid-latitudes. The value for the Burger number is Bu = 0.21 at φ = 60◦,
with Bu = 0.22 at φ = 45◦ and Bu = 0.84 at φ = 10◦. A high spatial resolution is
used with ∆φ = π/128, ∆λ = π/192. Other model parameters are kept the same.
As seen in Figure 4, in regions such as the mid-latitudes, where Bu is low, the
balanced height perturbations resemble the full height perturbations. The full
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Figure 2. Balanced height perturbations (left) and full height perturbations (right) for RH wave
propagated 1 day at high Burger number, with (φ ∈ [π/2,−π/2])× (λ ∈ [0, π/2]) (scale denotes grid

points)
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Figure 3. Balanced ψ (left) and full ψ (right)for RH wave propagated 1 day at low Burger number,
with (φ ∈ [π/2,−π/2])× (λ ∈ [0, π/2]) (scale denotes grid points)
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Figure 4. Balanced height (left) and full height (right) for RH wave propagated 1 day at low Burger
number, with (φ ∈ [π/2,−π/2])× (λ ∈ [0, π/2]) (scale denotes grid points)
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streamfunction and its respective balanced field are far less similar to each other.
This is seen in Figure 3.

The Rossby-Haurwitz wave is an idealistic wave to consider; the wave is
smooth and is analytically defined. We now consider a more realistic situation by
applying the methods to increments derived from a real data set INI7C. These
are produced by taking the initialised fields produced by a potential vorticity con-
serving initialisation scheme and subtracting them from the corresponding unini-
tialised field. The uninitialised field is obtained from a spherical harmonic descrip-
tion of the observed fields at T106 resolution from a NETCDF file V DG7.13.cdf ,
kept at NCAR and found in ftp : //ftp.cgd.ucar.edu/pub/jet/shallow/nminit/.
This experiment shows the strengths and weaknesses of the control variables that
we have developed.

Figure 5 shows the height and wind increments used to test the control
variables. A stereographic projection is used centred on the North Pole. The
increments are composed of many different waves on a wide range of length
scales. The wind increments are typically between −8ms−1 and 8ms−1 and the
height increments vary between −60m and 60m. It is also clear from the figure
that there is great variability in the flow with waves of both short and long
wavelengths present.

If the initialisation is perfect then the increments consist of just the unbal-
anced flow. A perfect set of control variables would apportion the flow into the two
unbalanced variables. In practice this does not occur. Since the balanced condi-
tion used by both sets of control variables holds for the f -plane SWEs linearised
about a state of rest, the methods can only approximate the exact balanced
and unbalanced parts of the nonlinear flow. In fact, provided the initialisation
is perfect, the performance of the balanced control variables is determined by
their relative size; the balanced control variables that correspond to the smallest
balanced height and wind increments identifies the better set.

A coarse grid with ∆φ = π/64 and ∆λ = π/48 is used for this test. The
linearisation state U is shown in the bottom right corner of Figure 5. It is calcu-
lated by applying the PV method to longitudinally averaged uninitialised fields
and then using the 2D Helmholtz relation to convert the resulting streamfunction
to a wind component. This method also calculates a height field that is used to
provide the latitudinally varying linearisation state. The linearisation states for
low and high Burger regimes are shown in Figure 6. The high Burger regime has
Bu ≈ 3.33 at φ = 45◦. The mean height of the linearisation state is 11 km. The
low Burger regime is given by reducing the mean height of the linearisation state
to 41 m at the poles. This gives a Burger number less than unity above φ = 45◦
and makes the sum of the increment and the linearisation states non-negative.
The linearisation states of the winds are unchanged.

Figures 7 and 8 show the balanced height and wind increments produced by
the LB and PV methods in the high Burger regime. The balanced winds from
the two methods are dissimilar. The balanced winds from the PV method are
much smaller. This is because the scaled potential vorticity increment hq′ does
not resemble the full vorticity increment ∇2ψ′. There is cancellation between
∇2ψ′ and qh′. This makes the scaled linearised potential vorticity increments hq′
a factor of ten smaller than the vorticity increment ∇2ψ′. This shows that the PV
method is performing better than the LB method at producing balanced fields.
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Figure 5. (Top) U and V wind increments produced using test case INI7C, (bottom right) height
increment using test case INI7C, (bottom left) U field linearisation state

Figure 6. H field linearisation states for low Burger regime (left) and high Burger regime (right)



Balance Conditions 17

Figure 7. (Top left) Height increment produced using test case INI7C . (Top right) balanced height
increment produced by LB method. (Bottom left) Balanced height increment using PV method at low

Bu. (Bottom right) Balanced height increment using PV method at high Bu

Figure 8. Balanced wind increments produced by using the LB and PV methods at high Bu (mean
height H ≈ 11km)
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In the low Burger regime, the effect of reducing the mean height of the flow
means that the increment that was previously generated to be unbalanced in a
high Burger regime of mean depth of 11 km can no longer be considered to be
unbalanced, as potential vorticity is regime dependent. All that can be claimed
theoretically is that the balanced contribution should resemble the full height
increment in the PV method due to being in a low Burger regime. This indeed
happens as can be seen in the bottom left picture of Figure 7. The LB method,
being insensitive to the Burger regime, produces the same balanced increments
as before in the high Burger regime.

It is interesting to note that around the equator, the LB and PV methods
are not producing similar results even though a high Burger regime is always
present within this region. This is due to the unbalanced height increment still
contributing to the scaled potential vorticity within these regions.

5. Conclusions

We propose a new PV-based approach to the separation of balanced and
unbalanced flow that incorporates flow regime dependence. The benefits of this
approach are demonstrated theoretically and experimentally in the context of the
shallow water equations. The results concur with findings produced by Cullen
(2003) in which a similar technique was applied in a dimensional context to the
reformulation of the background error covariance within a four-dimensional data
assimilation system. Although Cullen’s method had difficulties in dealing with
spurious modes produced by the vertical-staggered Lorenz grid used at ECMWF
at the time, the findings from both studies are encouraging.

As shown here, the PV-based method at high Burger number produces con-
trol variables that are similar to those produced by the customary streamfunction-
constrained LB method. At low Burger number the PV method produces control
variables in which the full height increments/perturbations dictate the balanced
height and wind fields. A difficulty arises in using a linearised potential vorticity
increment at very low Burger number. The smaller the height linearisation state,
the less accurate the linearisation of the potential vorticity increment becomes.
Despite this problem, balanced height increments are obtained that follow the
theory in that at low Burger number the balanced height increments resem-
ble the full height increments. Similarly, for a high Burger regime the balanced
streamfunction perturbations resemble the full streamfunction perturbations as
seen in the Rossby-Haurwitz wave.
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Appendix

Rossby-Haurwitz wave on the sphere
The Rossby-Haurwitz wave is characterised by parameters a, g, Ω, R, h0, ω

and K, where a is the radius of the sphere, g is the acceleration due to gravity, R is
the wave number and h0 is the height at the poles. The strength of the underlying
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zonal wind from west to east is given by ω and K controls the amplitude of the
wave. The latitude and longitude co-ordinates are represented by φ and λ.

The initial velocity field is defined as,

u = aω cos φ + aK cosR−1 φ(R sin2 φ− cos2 φ) cos Rλ,

v = −aKR cosR−1 φ sin φ sin Rλ. (A.1)

The initial height field is defined as,

h = h0 +
a2

g
[A(φ) + B(φ) cos Rλ + C(φ) cos(2Rλ)], (A.2)

where the variables A(φ), B(φ), C(φ) are given by

A(φ) =
ω

2
(2Ω + ω) cos2 φ +

1
4
K2 cos2R φ[(R + 1) cos2 φ

+(2R2 −R− 2)− 2R2 cos−2 φ],

B(φ) =
2(Ω + ω)K

(R + 1)(R + 2)
cosR φ[(R2 + 2R + 2)

−(R + 1)2 cos2 φ],

C(φ) =
1
4
K2 cos2R φ[(R + 1) cos2 φ− (R + 2)]. (A.3)
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