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SUMMARY 

 
Divergence and vorticity are well known to be geometrically invariant quantities in that their 

mathematical forms are independent of the orientation of the coordinate axes. Various other 

functions of the elements of the horizontal velocity gradient tensor are invariants in the same 

sense; examples are the resultant deformation and the determinant and Frobenius norm of the 

tensor. A brief account of these quadratic invariants is given, focusing on expressions relating 

them to divergence and vorticity and to one another, on their occurrence in the divergence 

equation, and on their behaviour under transformation between rotating and non-rotating 

reference frames. Assuming shallow water dynamics with background rotation, time 

evolution equations for the resultant deformation and the other quadratic invariants are 

derived and compared. None rivals the vorticity and potential vorticity equations for 

compactness, but each may be written quite tidily. Corresponding time evolution equations 

under quasi-geostrophic shallow water dynamics are also derived, and lead to a simple 

prognostic equation for the ageostrophic vorticity. 
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1. Introduction 

 

A coherent account of the core model equations of contemporary numerical 

weather prediction and climate simulation need not involve tensor analysis.  As 

numerous textbooks attest, classical definitions of gradient, divergence and curl 

and a few standard vector differential identities provide the mathematical 

framework necessary to present the vector momentum equation and the 

equations of continuity and thermodynamics, and from them to derive the 

implied conservation equations for angular momentum, energy, vorticity and 

potential vorticity. See, for example, Gill (1982) and Pedlosky (1987). 

 

This broad-brush picture extends in essence to the primitive equations 

consistently combined with the shallow atmosphere approximation, although 

the underlying geometry is then non-Euclidean (Zdunkowski and Bott 2003, 

pp530, 538; P Müller 2006, p59; Thuburn and White 2013). The various vector 

differential identities are formally unchanged because the shallow atmosphere 

approximation is a metric approximation, so derivations and manipulations can 

continue much as in the Euclidean case (see R Müller 1989; White et al. 2005).  

 

Nevertheless, tensor aspects are as important in meteorological dynamics as in 

general fluid dynamics. At least two broad areas of occurrence may be 

identified. Realistic representations of viscosity involve the stress tensor, and its 

divergence features in the momentum equation. Textbooks such as Batchelor 

(1967) and Acheson (1990) give the appropriate molecular viscous expressions 

in various curvilinear coordinate systems, while Becker (2001) discusses 

parallel aspects of the representation of turbulent viscosity (which is the 

relevant issue in most meteorological modelling). Similar mathematical 

structures arise when temporal averaging is undertaken in diagnostic studies of 

the interaction of transient and time-mean fields; see Hoskins et al. (1983).  

 

The second tensorial area is fluid kinematics. Here the velocity gradient tensor  

soon arises because the variation of the flow near any point involves all spatial 

derivatives of all components of the local flow. Eulerian numerical models 

routinely disregard kinematics in time integrations (proceeding solely in terms 

of velocity components and thermodynamic fields – see Salmon 1988) but 

recourse to kinematics is necessary if explicit trajectories are desired in a 

forecast or simulation. Also, fluid kinematics features prominently in the semi-

Lagrangian time integration method (Staniforth and Côté 1991). This is widely 

applied in Eulerian models and offers both practical and conceptual advantages 

in numerical weather prediction and climate simulation (Staniforth et al. 2010, 

Wood et al. 2013). Elements of the velocity gradient tensor appear in stability 

criteria for some semi-Lagrangian schemes (see Pudykiewicz et al. 1985). 
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The velocity gradient tensor occurs also in the time evolution equations for 

gradients of scalar quantities, and – as will be described in section 3 – some of 

its geometric invariants feature in the divergence equation as terms that seem 

obscure if viewed through the usual vectorial prism. 

 

This paper gives an elementary account of the geometric invariants of the 

velocity gradient tensor (VGT) as it arises in 2D fluid kinematics, and explores 

their time evolution under shallow water dynamics. Some of these geometric 

invariants – such as divergence, vorticity and resultant deformation – are well 

known in meteorology, but others – such as the determinant and Frobenius 

norm of the VGT – are less familiar. The Frobenius norm of the VGT arises in 

Thompson’s (1980) gravity-wave filtering technique (see section 6, below). 

 

Our study is inspired by the work of Cantwell (1992), Martín et al. (1998) and 

others (see section 4 of the review by Gibbon 2008) on the time evolution of the 

nine elements of the VGT as it arises in 3D fluid kinematics. In that work, the 

time dependence is specified by the Euler equations for incompressible flow in 

the absence of background rotation. Time evolution equations for the geometric 

invariants of the VGT are constructed from those derived for the individual 

elements. Typically, solutions of the 3D Euler equations are then obtained, upon 

assumption of some (fairly restrictive) model of the Hessian matrix of the 

pressure field. Here we apply essentially the same approach to investigate the 

time evolution of invariants of the 2D VGT when the divergent shallow water 

equations with background rotation specify the dynamics. Divergence and 

rotation are new elements as compared with the 3D studies, and the 2D spatial 

context makes for an analytically simpler treatment. We do not go on to obtain 

solutions on the basis of assumptions about the pressure field, but we do 

examine the time evolution equations that result when quasi-geostrophic 

dynamics is assumed (and obtain finally a simple prognostic equation for the 

ageostrophic vorticity). 

 

The paper’s structure is as follows. Section 2 notes a familiar decomposition of 

the 2D VGT and identifies some of the geometric invariants. Section 3 recalls 

the shallow water equations and the implied vorticity and divergence equations. 

In sections 4, 5 and 6, the determinant of the VGT, the resultant deformation, 

and the Frobenius norm of the VGT are discussed and their time evolution 

equations derived. Section 7 presents quasi-geostrophic, f-plane versions of the 

time evolution equations. Concluding remarks are contained in section 8.  
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2. Definition, decomposition and geometric invariants of the velocity 

gradient tensor (VGT) 

 

General accounts of fluid kinematics and the VGT are given in Batchelor 

(1967), Ottino (1990) and Müller (2006), while treatments in a specifically 

meteorological context – and more elementary in nature – may be found in 

Saucier (1955), Wiin-Nielsen (1973) and Bluestein (1992). Zdunkowski and 

Bott (2003), which uses a dyadic treatment, also has a meteorological context. 

Assuming 2D flow in the Cartesian Oxy plane, we give a brief account of the 

VGT that covers aspects relevant to later sections. 

 

The elements of the VGT, denoted  , are the partial derivatives of the velocity 

components u and v with respect to the corresponding coordinates x and y: 

 

                                                         (
    

    
)                                                            

 

(The explicit notation     ,      for partial differentiation will also be used 

here. Note that the ‘velocity dyadic’ of Zdunkowski and Bott (2003) equates to 

the transpose of A as given by (1).) 

 

The meteorologically familiar divergence, δ , and vorticity, ζ , of the flow are 

formed from the diagonal and off-diagonal elements of A: 
 
                                                                                                    

 
                                                                                                                                

 
To first order in distance and time, A determines the relative displacements of 

fluid particles near any point P at which its elements are evaluated. In a 

Cartesian system moving with the flow (u, v) at P and having its origin there at 

time    , the location         of a particle at time      is (to first order) 

related to its location       at time zero by 

 

                                         (
  

  
)  (

 

 
)    (

       

         
) (

 

 
)                                            

 
Thus, in terms of the vector locations           ,         and unit matrix I, 
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It is helpful to separate A into its antisymmetric and symmetric parts, and also 

to separate the trace-free component of the symmetric part. Thus, by a simple 

algebraic decomposition of (1), 

 
                                                                                                                         
in which  

                                                           (
   
  

)                                                            

 

is the antisymmetric part of 2A, and     is its symmetric part: 

 

                                                           (
  
  

)                                                               

 

                                                           (
      

     
)                                                       

 

In (9),    and     are the deformation components, given by  

 

                                                                                                       

 
To first order in   , (5) can be written as  

 

                                                                                          
 

By considering the displacement of a circular ring of fluid particles over the 

time interval   , it can be shown that (as illustrated in Figure 1):  

(i) vorticity ζ corresponds to rotation of the ring through an angle     ;  
(ii) divergence δ corresponds to a fractional change      of the ring’s radius;   
(iii)    and     correspond to the deformation of the ring to an ellipse whose 

major axis is inclined to the x axis at an angle              , its length 

exceeding the diameter of the initial ring by a fractional amount      (by 

which same amount the minor axis falls short of the diameter).  

Here   is the resultant deformation, given by   
 

                                
    

  (     )
 
  (     )

 
                                 

 
Some properties of   are discussed later in this section and in section 5. 

 

It is well known that certain attributes of a (square) matrix are unchanged under 

similarity transformation (see, for example, Mathews and Walker 1965). In 

particular, the characteristic equation of the matrix and hence its eigenvalues are 
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unchanged; they are said to be invariants of the matrix, and to be invariant 

under similarity transformation. For a 2   2 matrix, the trace and determinant 

are also invariants since they are respectively equal to the sum and the product 

of the eigenvalues. For N   N matrices,    , there are N such invariants.  

 

The tensor A has invariance properties under coordinate rotation that subsume 

those of a 2   2 matrix under similarity transformation. If a coordinate rotation 

Oxy → OXY is made, and the velocity components are also transformed, it is 

found that the trace of A, i.e. the divergence        , is a geometric 

invariant in that it remains formally unchanged. In outline: if OXY is a Cartesian 

system rotated anticlockwise with respect to Oxy through an angle  , and 

velocity components in the OX and OY directions are respectively   and  , then  

 

                                                                                                                  
 

                                                                                                                
Also, 

                                      ⁄           ⁄            ⁄                                     
 

                                      ⁄           ⁄            ⁄                                 
 

Use of (15) and (17) to form     ⁄ , and of (16) and (18) to form     ⁄ , then 

shows that 

                                                      
  

  
 

  

  
  

  

  
 

  

  
                                                

 

In the same way it can readily be shown that the vorticity,  , (defined by (3)) is 

also a geometric invariant (as is expected on physical grounds, given the 

relationship between vorticity and circulation). 

 

The determinant of A is  

                                                                                                                    

 

i.e. the Jacobian of u, v with respect to x, y. By using just (14)–(17), it can be 

shown (with some algebraic labour) that       , as defined by (19), is formally 

invariant under coordinate rotation, i.e.        is a geometric invariant.  

 

       arises in the divergence equation (see section 3) but is rarely discussed 

in meteorology except in a contingent sense. Given its status as an invariant, the 

scarcity of interest in        is surprising. Some properties are noted in section 

4, and its time evolution equation under shallow water dynamics is derived. 
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As is well known, the deformation components    and    (defined by (10) and 

(11) ) are not individually invariant to rotation of the coordinate axes; but   
(see (13)) is invariant in this sense. This may be demonstrated by direct 

transformation (Bluestein 1992, p99), but it also follows from the fact that   

may be expressed in terms of δ, ζ  and       . From the definitions (2), (3), (13) 

and (19) one obtains 

 

                                                                                                                
 

The invariance of   then follows simply from that of δ, ζ and       . Eq.(20) 

is given by Zdunkowski and Bott (2003), p193. 

 
From a diagnostic viewpoint, the resultant deformation   and the deformation 

components    and    are thoroughly treated in textbooks such as Saucier 

(1955) and Bluestein (1992). However, we know of no discussion of the 

Lagrangian time evolution of  . This issue is addressed in section 5, once again 

assuming that the time evolution is governed by the shallow water equations. 

 

Another invariant under coordinate rotation is the sum of the squares of the 

elements of A. This quantity is denoted    by Thompson (1961, 1980): 

 

                                         
  (  )

 
     

  (  )
 
                                      

 

Its invariance follows simply from that of  ,   and   and from the identity  
 

                                                                                                                   
 

(obtained by applying (2), (3) and (13) in (21)). Use of (20) in (22) leads to an 

alternative form, given by Thompson (1980) p260: 

 

                                                                                                                
 

From (22) and (23) (or from (13), (19) and (21)) a further form may be 

obtained: 

                                                                                                                      
 

This is notable for its simplicity and the absence of the linear invariants   and  . 

 

A physical interpretation of     may be obtained by forming the squared 

magnitude    of the particle displacement over the time interval   , according 

to (5):  
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(The superscript T denotes transposition.) Use in (25) of         and the 

definition (1) of   leads to 

 

  
  

   
 *    

  (  )
 
+     (         )   *    

  (  )
 
+             

 

Averaging (26) over the unit circle and use of (21) gives  

 

                                                               ̂                                                                
 

   is thus a measure of the mean squared magnitude of displacements over    
of particles that initially lie on a circle. The effects of divergence and vorticity, 

as well as deformation, are taken into account (as is suggested by (22)).  

 

Thompson (1980), p259, called    ‘the square of the total deformation’. This 

form of words does not rest easily with the mean square displacement 

interpretation just obtained, and might be confused with our use of ‘resultant 

deformation’ to denote the quantity   defined by (13). Since    is simply the 

sum of the squares of each element of A, we shall use standard matrix 

vocabulary and call it the Frobenius norm of A. [In calling   the ‘resultant 

deformation’ we follow both Saucier (1955) and Bluestein (1992), neither of 

whom uses the term ‘total deformation’ – or discusses   .] 

 

The time evolution equation of    under shallow water dynamics is explored in 

section 6. 
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3. Shallow water equations 
 

The x and y components of the momentum equation for inviscid flow of shallow 

water of depth h above a horizontal bed in a frame rotating at angular rate     

about the local vertical are 

 

                           
  

  
      

  

  
           

  

  
      

  

  
                              

 

In terms of the divergence δ (see (2)), the accompanying continuity equation is 

 

                                                           
  

  
                                                               

 

The material derivative in (28)–(30) is given by 

 

                                                  
 

  
 

 

  
  

 

  
  

 

  
                                                

 

From (28) and (29), noting (2), (3) and (31), a prognostic equation for the 

vorticity   follows:  

                                            
 

  
                                                             

 

As is well known and celebrated, (32) condenses to a Lagrangian conservation 

law upon use of (30): 

                                                          
 

  
(
   

 
)                                                          

 

The conserved quantity       ⁄  is the potential vorticity (PV) of the shallow 

water system. 

 

A prognostic equation for the divergence δ  also follows from (28) and (29) 

(upon use of (2), (3) and (31)). With       ⁄   and          ⁄       ⁄  

one obtains  

                                  
  

  
                                                      

 

Eq.(34) is noticeably more complicated than (32). It condenses slightly upon 

use of (30) to 

                                     
 

  
(
 

 
)                                                 
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Another useful version of (34) may be obtained by applying identity (23): 

 

                                       
  

  
                                                      

 

This form was obtained and applied by Thompson (1980) in a gravity-wave 

filtering study (as will be discussed further in section 6).  

 

   In terms of ageostrophic flow components (  ,   ), (28, 29) may be written as  
  

                                     
  

  
                 

  

  
                                          

Here 

                                                                                                             
 

where    and    are the geostrophic flow components defined via 
  

                                                 
  

  
            

  

  
                                           

 

The above forms of the divergence equation all simplify slightly when   ,    

and the associated vorticity    are introduced. For example, (35) becomes 
 

                                       
 

  
(
 

 
)                                                     

 

     Each form of the divergence equation involves a quadratic invariant of A:  

J(u,v) in (34), (35) and (41);    in (36).    may be eliminated from (36) by 

using (22), but the quadratic invariant    is then present. Without a knowledge 

of their status as geometric invariants of A, these terms in the divergence 

equation might appear somewhat mysterious.  

 

Finally in this section, we observe how   features in the equation for the time 

evolution of the gradient     (      )
 
. From (30): 

 

                   
 

  
     (                    )

 
                            

 

Use of (1) allows (42) to be written compactly in terms of   as  
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4. Determinant: the Jacobian J(u,v)  

 

       features prominently in the divergence equation in the forms (34), (35) 

and (41). Indeed, when and where the flow is precisely geostrophic,        = 

         determines [      ] the Lagrangian rate of change of        since 

(41) then reduces to 

                                                     
 

  
(
 

 
)                                                           

 

Cases in which            everywhere include all geostrophically balanced 

purely zonal flows, but if such symmetry is absent then typically             
 

The term          obviously remains in (34), (35) and (41) even if the flow is 

non-divergent (    , or if       is omitted (perhaps in order to eliminate 

gravity waves).  In the non-divergent case the velocity field may be represented 

in terms of a streamfunction,  , i.e.      ,     , and (19) gives 

  

                                                              (   )
 
                                                

 

       thus reduces in the non-divergent case to the Gaussian curvature of the 

streamfunction field (multiplied by (      
  (  )

 
)
 

).    as given by (45) 

is familiar as the eponymous nonlinear term in the approximate form of the 
divergence equation known as the nonlinear balance equation: 
 

                          *       (   )
 
+                                        

 

The corresponding 3D, pressure-coordinate version of (46), is discussed by 

Daley (1991) and others. 

 

An important aspect of        is its behaviour under transformation between 

co-rotating frames (in particular, rotating and non-rotating frames). Of the 

quantities  ,  ,   and        that appear in (20), the vorticity     is dependent 

on frame rotation, but the divergence     and the resultant deformation     are 

not. In other words, relative to a non-rotating frame, vorticity has a planetary 

part but divergence and resultant deformation do not. Consequently,        

must have a planetary part, and it must be of exactly the form required to 

accommodate the behaviour of    in (20). Similarly, the quantity   defined by 

(21) must have a planetary part that exactly accommodates the behaviour of    

in (22). These indications are confirmed in the Appendix. The situation is fully 

consistent with the fact that neither (20) nor (22) depends on any assumption 

about frame rotation rate.  
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Differentiation of (37, 38) gives prognostic equations for each element of  : 

 

                                 
 

  
                                                             

 

                                    
 

  
(  )                                                        

 

                                             
 

  
                                                             

 

                               
 

  
(  )                                                   

 

From (47)–(50), time evolution equations may be derived for the resultant 

deformation   (section 5) and the Frobenius norm    (section 6) as well as for 

the Jacobian       . 
 

Noting the definition (19) of       , an expression for       can be built up by 

multiplying (47)–(50) respectively by   ,    ,     and   , and adding the 

resulting equations. Some cancellation of terms in    occurs, and upon noting 

(39) and evident properties of the Jacobian operator, one obtains 

 

                  
  

  
     [                 ]                              

 

Use of the continuity equation (30) enables (51) to be written as 

   

             
 

  
[
      

 
]   [                 ]                          

 

Though (52) is more complicated than the potential vorticity equation (33), it 

does reduce to a conservation law (for         ) wherever and whenever the 

flow is precisely geostrophic. In this respect it is simpler than the divergence 

equation, which (in the form (41)) reduces to a conservation law (for      only 

if          vanishes. 

 

A transparent alternative form of (52) is worth noting for its compactness: 

 

                                   
 

  
[
      

 
]                                                  
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5. Resultant deformation ( ) 

 

As noted in section 4 – and shown in the Appendix – the resultant deformation 

  is unchanged by transformation between coordinate frames co-rotating at 

different angular velocities (as indeed are the deformation components    and 

  ). There is no ‘planetary’ part of  . This property is physically reasonable 

because deformation, as a change of shape, can hardly depend on rotation of the 

coordinate frame. It is of interest to examine how   varies following the flow. 

Is its behaviour simpler than that of δ – which is also independent of frame 

rotation and yet has a rather complicated Lagrangian rate of change? 

 
An equation for     ⁄  may be derived by first obtaining expressions for 

         and          from (47)–(50) and then applying (13) in the 

differentiated form  

                                           
  

  
   

 

  
       

 

  
                                          

 
From (47) and (50) (noting (10)): 

  

                                         
 

  
            

                                              

 

From (48) and (49) (noting (11)): 

  

                                          
 

  
            

                                             

 

In (55) and (56),  

 

                           
                     

                                               

 

are the deformation components associated with the ageostrophic flow. 

  

Use of (55) and (56) on the r.h.s. of (54) gives 

 

             
 

  
(
  

 
)          

   
    

   
                               

Here 

                                   
                     

                                      
 

are the deformation components associated with the geostrophic flow. 
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Upon use of the continuity equation (30), (58) can be re-written as 

 

       
 

  
(
  

 
)           

   
    

   
                              

 

The most compact form, with no term in  , has   ⁄  inside the time derivative:  

  

                    
 

  
(
 

 
)      

   
    

   
                                    

 

   An alternative way of deriving an equation for     ⁄  is to apply (20) in the 

differentiated form 

                                             
  

  
  

  

  
  

  

  
  

 

  
                                     

 

and then to use expressions already obtained to substitute for the material 

derivatives appearing on the r.h.s. This affords a much lengthier route to (58), 

but provides a useful check on the calculations. In the latter connection, the 

following identity – readily verified – may be noted: 

 

                 
   

    
   

   [                 ]                              
 

In (63),    and    are respectively the (relative) vorticity and divergence of the 

ageostrophic flow, and    and    similarly for the geostrophic flow. It is clear 

that (63) applies for any flow vectors         and          and the associated 

curls, divergences and deformation components, irrespective of their prior 

identification with a geostrophic/ageostrophic decomposition.  

 

Identity (63) can be used to write alternative forms of (51) (or (52)) and (58) (or 

(60), or (61)), though the results are less algebraically compact. Moreover, since 

it can be shown that   
   

    
   

  is invariant to coordinate rotation, and   , 

  ,   ,    all enjoy that status, (63) shows that                    is also 

invariant to coordinate rotation. This result can be confirmed by direct 

transformation and repeated use of (14)–(17).  

 
Eq.(61) has a certain symmetry as regards the term involving ageostrophic and 

geostrophic deformation components.  Also, it shares with (52) the property of 

reducing to a Lagrangian conservation law whenever and wherever the flow is 

precisely geostrophic. In this respect it too is simpler than the divergence 

equation (41). [Note that (60), with    ⁄  inside the material derivative, does 

not exhibit the property in general. However,      if    , so (60) reduces 

to a Lagrangian conservation law in the geostrophic limit in this case.] 
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6. Frobenius norm (  ) 

 

In a study of gravity-wave filtering, Thompson (1980) sought conditions under 

which the balanced form of the divergence equation (36) (i.e. (36) with       

set to zero) would be satisfied at all times. To this end he enforced the condition 

 

                                          
 

  
                                                          

 

[The β-effect was neglected; it had been included in the isentropic coordinate 

case in Thompson (1961).] Equation (32) delivers       for use in (64), and if 

an equation for        can be derived then (64) leads to an equation for 

      and hence (from (30)) for the divergence δ.  Thompson completed this 

lengthy programme, obtaining in an elegant denouement a weakly nonlinear 

fourth order elliptic equation for the velocity potential χ (     ).  

 
Here we derive an equation for        directly from (47)–(50) and compare it 

with Thompson’s form. By multiplying (47)–(50) respectively by   ,   ,    

and   , adding the results and using (21)–(23) and (40) one finds (when    ), 

 

           
 

  
              [                       ]                  

                                        

In place of the term          in (65), Thompson’s form (see his p260) has 

            ; use of (22) shows that the two terms are equivalent. The 

explicit scalar product terms in (65) are also equivalent to those obtained by 

Thompson. Further, if     then a term    (         ) appears on the 

left-hand side of (65), and this term is equivalent to the terms in   retained in 

Thompson’s (1961) isentropic coordinate treatment. 

 

Use of the easily verified identity 

 

     [                       ]     
   

    
   

                       
 

enables (65) to be re-written as   

 

     
 

  
              [   

   
    

   
               ]               

 

Identity (66) establishes the invariant status of its left-hand side (since its right-

hand side consists of known invariants). In comparison with (65), the form (67) 
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has the advantage of featuring terms already seen (in (58)). Use of (63) in (67) 

gives another form that involves familiar terms: 

 

  
 

  
               [                            

]            

 

Equation (67) condenses slightly upon use of the continuity equation (30):                                                                                                                         

 

              
 

  
(
  

 
)       [   

   
    

   
              ]               

 

An alternative form, with   ⁄  inside the material derivative, is 

 

                   
 

  
(
 

 
)      [   

   
    

   
              ]              

 

Terms in   are present in both (69) and (70), and in this respect both are rather 

less tidy than the time evolution equations for   ⁄  (52) and   ⁄  (61). But since 

   vanishes when     (as has been assumed here) both (69) and (70) reduce 

to conservation laws in the geostrophic limit in this case. 

 

Identity (24) allows a check on the time-evolution equations (52) for      , (60) 

for     ⁄  and (68) for    ⁄  . Upon using (63) in (68), it can be shown that  

   

                                           
 

  
(
  

 
)   

 

  
(
  

 
)   

 

  
(
  

 
)                              

 

as required by (24). [The check is easily done if    . If    , the discarded 

term     (         ) must be restored to the left-hand side of (68).] 

  

The properties of    under transformation between different co-rotating frames 

are established in the Appendix and were discussed in Section 4. Briefly,    has 

a planetary part, and it accommodates that of the vorticity so that (22) is obeyed 

by velocities measured in any member of a set of uniformly co-rotating frames. 
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7. Quasi-geostrophic (QG) formulation 

 

The treatment of sections 4–6 may be applied using approximate versions of the 

shallow water equations so long as the component momentum equations are 

given or deducible. To illustrate procedure and consequences, application using 

a quasi-geostrophic (QG) shallow water model will be described. For ease of 

presentation, only the f-plane case is considered: the latitude variation of the 

Coriolis parameter f is neglected, so     and f takes the constant value   . 

 

Appropriate f-plane QG versions of (37), (38), are 

  

                                  
   

   
                 

   

   
                                        

 

The geostrophic flow components    and    are given by (40) with     , i.e.  

 

                                              ⁄               ⁄                                 
 

The material derivative in (72, 73) is the approximate QG version defined in 

terms of    and    as 

                                                 
 

   
 

 

  
   

 

  
   

 

  
                                          

 

The QG form of the continuity equation is 

  

                                                          
   

   
                                                             

 

Here             being an area average value of  . The divergence   

consists only of the contribution    of the ageostrophic flow         , 

        because the geostrophic flow defined by (74, 75) is non-divergent. 

For discussion of these QG approximations, see White (2002), p58.  

 

The QG vorticity equation obtained from (72, 73) is  

 

                                                          
   
   

                                                             

 

in which                  is the vorticity of the geostrophic flow.  

Upon use of (77) to eliminate   , and (74, 75) to express    in terms of     
    , (78) delivers 
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*(   

  
 

   
)  +                                               

 

The quantity inside the square brackets is the potential vorticity of the QG 

shallow water system – the ‘QGPV’ of the system. 

 

Because the geostrophic flow is non-divergent, (72, 73) do not lead to a 

prognostic equation for the divergence. Gravity waves are not implied. Rather, 

     obeys a simple diagnostic partial differential equation, obtained from 

(77) and (79) by eliminating the local time derivatives:  

 

                                         (   
  

 

   
)      [         ]                                 

 

Taking the divergence of (72, 73) gives another diagnostic relation:  

 

                                                                                                                  
 

The vorticity,   , of the ageostrophic flow, is given explicitly in terms of the 

geostrophic flow by (81) 

 

As is well known, the QGPV equation (79) determines the time evolution 

(given suitable boundary conditions). Prognostic equations for QG versions of 

      ,   and    nevertheless follow from (72, 73). The QG analogues of 

(47)–(50) are 
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By manipulating (82)–(85) broadly as in sections 4–6 for the unapproximated 

shallow water equations, time evolution equations may be derived for the 

following QG analogues of       ,       ,   and   : 
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These analogue definitions (86), (87, 88), (89) and (90) correspond to the 

replacement of   by    and   by    in (19), (10,11), (13) and (21) respectively. 

Each analogue is expressible in terms of the streamfunction        ⁄  via  

          and           . In particular,    is expressible in terms of    

in the Gaussian curvature form (45) noted in section 4. 

 

The time evolution equations are: 
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In (92)–(94),   
  and   

  are defined as in (56). 

 

Eqs.(91)–(95) may be compared with corresponding forms obtained in sections 

4–6. Bearing in mind that     ,     in the derivation of (91)–(95), there is 

a close resemblance to (51), (55), (56), (58) and (68) respectively. The absence 

of terms in   in (91)–(95) is the main feature of difference; it is a consequence 

of the non-divergence of the geostrophic flow (     ) in the QG model and its 

appearance as the advecting flow in the QG material derivative (76). 

 

From (92) and (93) (see also (55) and (56)) it may be noted that the 

ageostrophic deformation components rotate the geostrophic deformation 

components in a manner reminiscent of inertial oscillations. However, because 

the ageostrophic deformation components do not necessarily have the same sign 

as the respective geostrophic components, the analogy is not exact.  
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An interesting and important feature is that use of (91) after forming     ⁄  of 

(81) gives a prognostic equation for the ageostrophic vorticity    :  

 

                                            
   
   

  [                 ]                                        

 

What would otherwise be an unproductive operation on (81) becomes useful 

because of (87) and its simplicity – albeit that the Jacobian terms in (96) involve 

ageostrophic as well as geostrophic flow components, of course. These Jacobian 

terms may be written in an alternative (if lengthier) form by use of (63). 

 

 

8. Concluding remarks  
 

This study has examined certain geometric invariants of the 2D velocity 

gradient tensor. Some of these invariants – such as divergence, vorticity and  

resultant deformation – are well known meteorological quantities, but others  

much less so. Examples are the determinant and Frobenius norm of the tensor. 

The determinant is the Jacobian of the velocity components with respect to the 

Cartesian coordinates x and y, and the Frobenius norm is the sum of the squares 

of the four elements of the tensor. Our discussion of these quadratic invariants 

and of the resultant deformation has: (i) noted their occurrence in the divergence 

equation (section 3); (ii) identified expressions that relate them to one another 

(see the compact form (24)) and to the divergence and the vorticity (see (20), 

(22) and (23)); and (iii) revealed the roles played by the determinant and the 

Frobenius norm in transformations between coordinate frames rotating with 

different angular velocities (section 4). Amongst the more obscure geometric 

invariants to have emerged is the sum of the Jacobian of the   components of 

two velocity fields and the Jacobian of their   components (both with respect to 

x, y; see (63)). 

 
Three different sorts of invariance have entered the discussion. Geometric 

invariance corresponds to covariance under instantaneous rotation of axes. 

Frame invariance corresponds to covariance under transformation between 

coordinate frames that rotate with different angular velocities; it amounts to 

independence of frame rotation rate, and is exhibited by the divergence and the 

resultant deformation (and, indeed, by its components) but not by the vorticity 

or by the determinant and the Frobenius norm of the tensor. The third sort of 

invariance is conservation following the flow – the Lagrangian property 

exhibited by the potential vorticity (PV) in inviscid flow; see (33).  

 
In sections 4–6, time evolution equations for the quadratic invariants have been 

derived, the dynamics being supplied by the rotating shallow water equations. 
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The results provide a useful perspective on the simplicity of the shallow water 

PV equation (33). This conservation law, as emphasised by Roulstone and 

Norbury (2013) in a more general context, supplies a constraint that governs the 

time evolution of flow that is closely geostrophic. In the present study, an 

assumption of near-geostrophy has been made only in section 7, but throughout 

it has proved instructive to separate the flow into geostrophic and ageostrophic 

components. The Jacobian        (the tensor’s determinant), the total 

deformation   and the Frobenius norm    of the tensor all have time evolution 

equations that are more complicated than the vorticity equation (32) but 

nevertheless have reasonably tidy forms. In the absence of a planetary vorticity 

gradient their behaviour in the geostrophic limit is simpler than that of the 

divergence equation (34). All five equations may be simplified by use of the 

continuity equation, and in the case of the vorticity equation (32) the result – as 

is well known – is the elegant conservation law (33) for potential vorticity. 
In section 7 the time evolution equations have been re-derived assuming the 

dynamics to be governed by f-plane, quasi-geostrophic (QG) forms of the 

shallow water equations (SWEs). A notable feature is the emergence of a  

simple prognostic equation (96) for the ageostrophic vorticity in terms of the 

geostrophic and ageostrophic flow components. In other respects also, the 

results suggest the changes likely when other balanced forms of shallow water 

dynamics are assumed, such as the semi-geostrophic (SG) model (proposed for 

baroclinic flow by Hoskins (1975)). This case deserves detailed future study. 

 

In this connection we note that the Jacobian        occurs explicitly in f-plane 

SG dynamics as a (numerically) small term supplementing the vorticity of the 

QG flow: 

                                             
   

  
 

   

  
 

 

  
                                           

 

A Monge-Ampère problem arises when a given field of SG potential vorticity 

    ⁄  is ‘inverted’ for the free surface height h, and the Jacobian term in (97) 

then plays an important role in determining its ellipticity and hence solvability. 

[As regards both sign and magnitude, the coefficient of the   term in (97) differs 

from that of similar terms in other formulations, such as the nonlinear balance 

model (see (46)). McIntyre and Roulstone (2002) discuss this issue in detail.] 

  
It would be interesting to study the consequences of other more comprehensive 

specifications of the dynamics. Of many candidates, perhaps the most promising 

cases to consider after shallow water SG are: the baroclinic (3D) QG equations 

in Cartesian form (e.g. Pedlosky 1987, Vallis 2006); the SWEs in spherical 

polar form; and the hydrostatic primitive equations (HPEs) in Cartesian and 

then spherical polar form (with the shallow atmosphere approximation). 
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Appendix 

 

Transformation of kinematics between rotating and non-rotating frames 

 

In a non-rotating Cartesian system Oxy, a flow having uniform angular velocity 

  about the origin O has velocity components u and v given by 

  

                                                                                                                   
 

From (A1), (A2) and definitions (2), (3), (10), (11), (13), (19) and (21): 

  

                                                                                                                        

 

                                                                                                             
 

                                                                                                                    
 

Only the vorticity (  , the Jacobian     and the quadratic norm      are non-

zero. The balance in (20) is between    and   , and in (22) between     and   . 

 

Consider now a more general flow consisting of a uniform solid rotation, as 

above, and arbitrary (once differentiable) deviations U and V from it: 

  

                                                                                               
 

For this flow, application of (2), (3), (10), (11), (13), (19) and (21) gives 

 

                                                                                               

 

                                   
      

      
                      

 

                                       (     )                                                

 

                    (     )      
  (  )

 
     

    (  )
 
                

 

In (A12), (A14), (A15) and (A16), δ,       and   involve only the relative 

velocity components U, V. In (A13), ζ contains a ‘planetary’ part   . In (A.17) 

and (A.18), terms in     and   occur; both   and    contain ‘planetary’ parts. 

Forming    from (A13) shows that its terms in   and    cancel in (20) with 

those from    (see (A17)); thus relation (20) is obeyed by the relative velocity 

components U and V. A similar cancellation of terms in   and    between     

and     ensures that relation (22) is obeyed in terms of U and V.  
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Applying this argument twice covers transformations between frames rotating at 

different uniform rates. 

 

The above analysis is 2-dimensional. A 3-dimensional extension would be 

needed to represent the changes in the direction of apparent vertical that 

accompany transformations between frames rotating at different angular rates 

(see White 1982). 
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Figure and caption 

 

 
 

Figure 1  Schematic of a small initial circle of fluid particles undergoing 

translation, rotation, change of radius and change of shape (circle to ellipse) 

over time interval  t. The translation results from the mean flow (the flow at the 

centre of the circle); the rotation, change of radius and change of shape reflect 

respectively the vorticity, divergence and deformation of the flow within the 

circle and its neighbourhood. See White (2002) for further details. 
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