From asymptotics to exact results in Physics and Mathematics

Inês Aniceto
(Jagiellonian University, Krakow)

(Based on work with R. Schiappa, M. Vonk, M. Spaliński)

11th SEMPS, University of Surrey, March 28, 2018
1 Motivation

2 Setting up Resurgence

3 Applications
 • Summation: Painlevé I and Matrix Models
 • Interpolation: Cusp Anomalous Dimension
 • Prediction: QNM in $\mathcal{N} = 4$ SYM

4 Summary/Future Directions
Perturbation theory: fundamental in computations of
- energies in quantum mechanics
- Solutions on NLODEs
- beta-functions in quantum field theory
- genus expansions of string theory
- large N expansion of non-abelian gauge theories

...

Goal: to understand analytic properties beyond numerical computations

BUT... most perturbative expansions are asymptotic, i.e. zero radius of convergence!

- Why? due to non-perturbative "semi-classical" effects such as
 - instantons
 - renormalons
 - Other objects not captured by a perturbative analysis
Double Well in Quantum Mechanics

\[
V(x) = \frac{x^2}{2} (1 + \sqrt{g} x)^2
\]

e.g. \(V(x) = \frac{x^2}{2} (1 + \sqrt{g} x)^2 \)

\[\text{Hamiltonian}\]
\[
H = -\frac{1}{2} \left(\frac{d}{dx} \right)^2 + V(x)
\]

\[\text{Schrödinger eq}\]
\[
H\psi(x, g) = E(g)\psi(x, g)
\]

\[g = 0 \Rightarrow \text{Harmonic oscillator}\]
\[
V_H(x) = \frac{1}{2} x^2
\]
\[
E_{g.s.} = \frac{1}{2}
\]

\[g > 0 \text{ How can we solve it?}\]
Double Well in Quantum Mechanics

Take coupling g very small
Double Well in Quantum Mechanics

Take coupling g very small

Ground-state energy:

$$E_{g.s.}(g) \simeq \sum_{n=0}^{\infty} E_n g^n$$

where $E_0 = 1/2$

Questions:

- Does the series converge? No! **Asymptotic series**
- Exact results? **Borel transform & resummation**
Aside: Asymptotic series

\[f(g) \simeq \sum_{n \geq 0} f_n g^n \]

- Divergent! No matter how small \(g \) is: \(f_n g^n \to \infty \)
- Truncate at some optimal \(n = N \): very good approximation
- Take \(g \ll 1 \) fixed: define truncation \(f_N(g) = \sum_{n=0}^{N} f_n g^n \)

\[\log(f - f_N) \]

Non-perturbative effect: \(g \to 0 \) invisible in perturbation theory!

\[e^{-A/g} \]
Aside: Asymptotic series

\[f(g) \approx \sum_{n \geq 0} f_n g^n \]

- Divergent! No matter how small \(g \) is: \(f_n g^n \to \infty \)
- Truncate at some optimal \(n = N \): very good approximation
- Take \(g \ll 1 \) fixed: define truncation \(f_N(g) = \sum_{n=0}^{N} f_n g^n \)

Double-well Potential: \(E_n \sim n! A^{-n} \) instantons!

If we fix \(E_n \sim n! A^{-n} \), if we fix

\[g = \frac{1}{100} \]

\[N_{\text{op}} = \frac{A}{g} \approx 16 \]

Optimal error:

\[(f - f_N)(g) \sim e^{-A/g} \approx 5.7 \times 10^{-8} \]
Analytic properties? Resummation

Perturbative expansion of quantity $F(g)$ in parameter $g \sim 0$

$$F(g) \sim \sum_{n \geq 0} F_n g^{n+1}, \quad \text{Asymptotic series: } F_n \sim n!$$

▶ How to find $F(g)$?

▶ Borel transform $\mathcal{B}[F]$: "remove" the factorial growth
▶ Analytically continue $\mathcal{B}[F]$ to full complex plane
▶ Define resummation SF by the inverse Borel transform
Aside: Borel Transform & Resummation

Asymptotic series: \(F(g) \cong \sum_{n \geq 0} F_n g^{n+1} \), with \(F_n \sim n! \)

- **Borel transform:**
 \[\mathcal{B}[F](s) = \sum_{n=0}^{\infty} \frac{F_n}{n!} s^n \]
 Rule: \(\mathcal{B}[g^{\alpha+1}](s) = s^\alpha / \Gamma(\alpha + 1) \)
 - finite radius of convergence - find function \(\mathcal{B}[F](s) \)
 - In general \(\mathcal{B}[F](s) \) will have singularities

- **Borel resummation** of \(F \) is the Laplace transform
 \[SF(g) = \int_{0}^{\infty} ds \mathcal{B}[F](s)e^{-s/g} \]
\[F(g) \simeq \sum_{n \geq 0} F_n g^{n+1}, \quad \text{Asymptotic series: } F_n \sim n! \]

Borel resummation of \(F \) along direction \(\theta \) is the Laplace transform

\[S_\theta F(g) = \int_0^{e^{i\theta} \infty} ds \, B[F](s)e^{-s/g} \]

▶ **BUT:** \(SF \) is just a Laplace transform - needs an integration contour to be properly defined!

▶ **If we have a singularity in the complex Borel plane:**

Nonperturbative ambiguity: ambiguity in choosing how integration contour will avoid the singularity.
Nonperturbative Ambiguity

Borel resummation of F along direction θ is the Laplace transform

$$S_\theta F(g) = \int_0^{e^{i\theta}\infty} ds \, \mathcal{B}[F](s)e^{-s/g}$$

- Take $\mathcal{B}[F](s)$ with singularities in direction θ:

 Nonperturbative ambiguity:

 $\mathcal{B}[F](s) \sim \frac{1}{s-A}$ in direction θ

 $$S_+ F(g) - S_- F(g) \sim \exp\left(-\frac{A}{g}\right)$$

 around $g \sim 0$ this is non-analytic

- Singularities in the Borel plane occur along Stokes lines

 Perturbative series is non-Borel resummable along Stokes lines
Glimpse into Resurgence

- Borel plane singularities:
 - Related to non-perturbative data
 - Govern asymptotic behaviour of original perturbative series

Non-perturbative information **resurges** in the perturbative data!

- Understanding the resurgent properties of our solution:

Obtain a non-ambiguous, global, analytic result
How can we achieve this?
Beyond Perturbation Theory?

Learn from the example of anharmonic potential in QM
[Vainshtein’64, Bender,Wu’73]

- Perturbative series of ground-state energy:

\[E^{(0)}(g) = \sum E^{(0)}_k g^k, \quad E^{(0)}_k \sim k! A^{-k}, \quad k \gg 1 \]

- Resummation along real axis: singularities and ambiguity!

What happens if we try to include instanton sectors?

- Expanding around each fixed instanton sector

\[n - \text{instanton sector: } E^{(n)}(g) = e^{-nA/g} \sum E^{(n)}_k g^k \]

Also asymptotic, with large-order behaviour

\[E^{(n)}_k \sim k! (nA)^{-k}, \quad k \gg 1 \]

All multi-instanton series suffer from nonperturbative ambiguities!
Infinite instanton sectors with nonperturbative ambiguities!

Seems to make the problem with perturbation theory even worse!

BUT: for the ground state energy of double-well potential
[Bogomolny, Zinn-Justin ’80-83]

- ambiguity in 2-instanton sector *precisely* cancels ambiguity in perturbative expansion
- ambiguity in 3-instanton sector cancels ambiguity in 1-instanton sector
- ...

Multi-instantonic ambiguities are the *solution* to our problem!
Beyond Perturbation Theory!

Ground-state energy = sum over all multi-instanton sectors

Ambiguities arising in different sectors conspire to cancel each other
The final result is *real* and *free* from any nonperturbative ambiguities!

How to implement this sum? **Transseries ansatz!**

Transseries: formal power series in two or more variables, each a function of the parameter $z \sim 0$

$$E(g, \sigma) = \sum_{n \geq 0} \sigma^n E^{(n)}(g), \quad E^{(n)}(g) \simeq e^{-nA/g} \sum_{k \geq 1} E_k^{(n)} g^k$$

▶ our case has $e^{-A/g}$ and g
▶ σ: instanton counting parameter
Ambiguities along Stokes lines

\[E(g, \sigma) = \sum_{n \geq 0} \sigma^n E^{(n)}(g), \quad E^{(n)}(g) \simeq e^{-nA/g} \sum_{k \geq 1} E_k^{(n)} g^k \]

- If \(B[E^{(n)}] \) has singularities in a direction \(\theta \) (Stokes line)
 - \(E^{(n)}(g) \) has an associated ambiguity: \((S_{\theta^+} - S_{\theta^-}) E^{(n)} \neq 0 \)

- **BUT**: \(S_{\theta \pm} E \) are related:

 \[S_{\theta^+} E^{(n)} = S_{\theta^-} \circ \left(E^{(n)} - \text{Disc}_{\theta} E^{(n)} \right) \]

 - \(\text{Disc}_{\theta} \neq 0 \) encodes Stokes transition at \(\theta \)

- Cancelling ambiguities:
 - Choose \(\sigma = \sigma_0 \) such that \((S_{\theta^+} - S_{\theta^-}) E(z, \sigma_0) = 0 \)
 - Non-ambiguous result is \(\frac{1}{2} (S_{\theta^+} + S_{\theta^-}) E(z, \sigma_0) \)

Calculating Ambiguities and Discontinuities? Via **Resurgence**
Cancelation of ambiguities in multi-instanton sectors: larger structure behind perturbation theory!

Resurgence analysis and Transseries

A transseries \(z = \frac{1}{g} \sim \infty \)

\[
F(z, \sigma) = \sum_{n \geq 0} \sigma^n F^{(n)}(z), \quad F^{(n)}(z) \sim e^{-nAz} \sum_{k \geq 0} F^{(n)}_k z^{-k}
\]

defines a resurgent function if it relates the asymptotics of multi-instanton contributions \(F^{(\ell)}_n \) in terms of \(F^{(\ell')}_n \) where \(\ell' \) is close to \(\ell \)

How does it work?
Multi-instanton asymptotic series

\[F(z) = \sum_{n=0}^{\infty} \sigma^n F^{(n)}(z) \]

Perturbative series: \(F^{(0)}(z) = \sum_{g=0}^{\infty} F_g^{(0)} z^{-g-1} \)

Instanton series: \(F^{(n)}(z) = e^{-nA}z \sum_{g=1}^{\infty} F_g^{(n)} z^{-g} \)
Large-order behaviour - Perturbative series for large g

$$F_g^{(0)} \sim S_1 \sum_{n>0} a_n(g) F_n^{(1)} + 2^{-g} S_1^2 \sum_{n>0} b_n(g) F_n^{(2)} + \ldots$$

All multi-instanton sectors contribute to the large-order behavior of coefficients $F_g^{(0)}$
Equivalently: Perturbative series for large g ENCODES all other sectors

\[F_g^{(0)} \sim S_1 F_1^{(1)} + \ldots \]

From the leading large g behaviour of $F_g^{(0)}$:

determine $F_1^{(1)}, F_2^{(1)}, \ldots$
Equivalently: Perturbative series for large g ENCODES all other sectors.

\[F_g^{(0)} - S_1 \sum_{n>0} a_n(g) F_n^{(1)} \sim 2^{-g} S_1^2 \left(F_1^{(2)} + \frac{2A}{g-1} F_2^{(2)} + \ldots \right) + O(3^{-g}) \]
Resummation and analytic results

Full solution defined by transseries ($z \sim \infty$)

$$F(z, \sigma) = \sum_{n \geq 0} \sigma^n e^{-nAz} \Phi^{(n)}(z), \quad \Phi^{(n)}(z) \sim z^\beta n \sum_{k \geq 0} F^{(n)}_k z^{-k}$$

How to evaluate it? Depends on the value of $z \in \mathbb{C}$

- If $\text{Re}(Az) > 0$, non-perturbative sectors exponentially suppressed:

 Borel summation

 $$S_\theta F(z, \sigma) = S\Phi^{(0)}(z) + \sigma e^{-Az} S\Phi^{(1)}(z) + \mathcal{O}(e^{-2Az})$$

 we can obtain results for large AND small couling ($z \ll 1$)

- If $\text{Re}(Az) = 0$, all sectors of the same order:

 Analytic transseries summation

 $$S F(z, \sigma) = \sum_{n \geq 0} \sigma^n e^{-nAz} z^\beta n F^{(n)}_0 + \frac{1}{z} \sum_{n \geq 0} \sigma^n e^{-nAz} z^\beta n F^{(n)}_1 + \mathcal{O}(z^{-2})$$

 we can obtain analytic information, e.g. zeros of the solution
Applications!
Resurgence in Quantum Theories

- Many recent applications of resurgence
 - Ordinary integrals and non-linear differential equations
 - Quantum Mechanics: Exact WKB, ambiguity cancelations
 - QFTs: fractional instantons, UV renormalons, OPEs
 - Matrix models: generalised instanton sectors
 - String theory: holomorphic anomaly equation

Next:

1. **Analytic summation** [Garoufalidis, Its, Kapev, Mariño, IA, Schiappa, Vaz, Vonk, ’10 - ’18]
 - Global solutions of NLODEs: Painlevé I
 - Asymptotics of matrix models at large N

2. **Ambiguity cancelation and interpolation** [IA, ’15]
 - Cusp anomalous dimension at large coupling

3. **Prediction of nonperturbative phenomena** [IA, Spaliński’15, on-going]
 - Quasi-normal modes in $\mathcal{N} = 4$ SYM
Summation and analytic results

Painlevé I and Matrix Models
Painlevé I, 2d Gravity and Matrix models

- Matrix models:
 - NP description of string theory in simpler backgrounds: non-critical strings and Dijkgraaf-Vafa type topological strings [Dijkgraaf, Vafa '02]
 - Simper models for studying NP structure behind large N 't Hooft expansions
 - Can help us understand large-N duality

- 2d quantum gravity is obtained by taking a double scaling limit: large N and small coupling g_s [Douglas, Shenker '90][Brézin, Kazakov '90][Gross, Migdal '90]

- Free energy of 2d gravity related to the Painlevé I NLODE
 \[u^2 - \frac{1}{6} u'' = z \]
 - $u(z) = -F''(z)$ where $z^{-5/4} \sim g_s$.

- Study Painlevé I: simpler model, already showing major features from string theory
 - Asymptotic series with $(2g)!$ growth $\Rightarrow g_s^2$ expansion
Use a **2-parameter transseries**: [Garoufalidis, Its, Kapaev, Mariño ’10] [IA, Schiappa, Vonk ’11]

\[
u(x; \sigma_1, \sigma_2) = \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} \sigma_1^n \sigma_2^m e^{-\frac{(n-m)A}{x}} \Phi(n|m)(x)
\]

- Two instanton actions \(A = \pm 8\sqrt{3}/5 \): evidence of resonance, many sectors with same exponential grading

- \(x = z^{-5/4} \sim g_s \) is open string coupling; \(\sigma_i \) are boundary data

- Asymptotic series: \(\Phi(n|m)(x) \) have a topological genus expansion \((g_s^2) \), \(\Phi(n|m), n \neq m \) have expansions in \(g_s \): evidence of resonance

- **Sectorial solutions in Painlevé I:** specified by boundary data \(\sigma_i \)
 - Different \(\sigma_i \) determine different solutions and asymptotics
 - Stokes phenomena: "glue" different sectors to build global solutions
Painlevé I solutions

\[u(x, \sigma) = \sum_{n \in \mathbb{N}_0^2} \sigma^n e^{-n \cdot A / x} \phi_n(x), \quad A \equiv (A, -A), \quad \sigma^n \equiv \sigma_1^n \sigma_2^m \]

0 parameter: Tritronquée

1 parameter: Tronquée

2 parameter

4 empty "quintants"

2 empty "quintants"

General

Can we "sum" the transseries into a function? Take \(\sigma_2 = 0 \)

- If \(e^{-A/x} \) is exp. suppressed: Borel-Padé summation
- If \(e^{-A/x} \sim 1 \): analytic transseries summation \(\Rightarrow \) analytical data

- Mathematical interpretation: anti-Stokes line
- Physical interpretation: phase transition
Painlevé I Partition function \mathcal{Z}

- Define Partition function: $\mathcal{Z}(x, \sigma) = e^F$ with $F'' \equiv u$
- Analytic transseries summation: Allows us to go inside the "filled sectors"

\[
\mathcal{Z}(x, \sigma) = \sum_{n=0}^{+\infty} \left(\sigma_1 e^{-A/x} \right)^n x^{\beta_n} F_0^{(n)} + x \sum_{n=0}^{+\infty} \left(\sigma_1 e^{-A/x} \right)^n x^{\beta_n} F_1^{(n)} + \cdots
\]

- Sectors with poles of u, zeros of \mathcal{Z}.
- Find locations of all zeros of the partition function from the transseries [Costin et al, '95-13; IA, Schiappa, Vonk, on-going]

\[
\mathcal{Z}_0 (\zeta, q) = \sum_{n=0}^{+\infty} G_2(n+1) \zeta^n q^{n^2}, \quad \zeta \sim \sigma_1 e^{-A/x}; \quad q \sim x^{1/2}
\]

- Only works for the adjoining sectors: to get to fifth sector: Stokes phenomena
Summation and analytic results

Large N quartic matrix model
Quartic matrix model

Quartic model partition function \((N \times N\) matrix \(M\))

\[
Z(N, g_s) \propto \int dM \exp \left(-\frac{1}{g_s} \text{Tr} V(M) \right), \quad V(z) = \frac{1}{2}z^2 - \frac{1}{24} \lambda z^4
\]

Local solutions in "Stokes regions": saddle point analysis around 1-cut solution

Free energy has perturbative genus expansion at large \(N\)

\[
F \equiv \log Z \simeq \sum_{g \geq 0} F_g(t) g_s^{2g-2}, \quad t = g_s N
\]

- Obey a NP finite difference eq: string equation

\[
\mathcal{R}(t) \left(1 - \frac{\lambda}{6} (\mathcal{R}(t-g_s) + \mathcal{R}(t) + \mathcal{R}(t+g_s)) \right) = t, \quad \mathcal{R}(n g_s) = r_n
\]

where \(r_n = \frac{Z_{n+1}Z_{n-1}}{Z_n^2}\) and \(\mathcal{R}(t)\) is directly related to the free energies
Quartic matrix model

\(\mathcal{R}(t) \) has **resurgent properties**:

\[
\mathcal{R}(t, \sigma_1, \sigma_2) = \sum_{n,m \geq 0} \sigma_1^n \sigma_2^m e^{-N(n-m)\frac{A(t)}{t}} t^{\beta_{nm}} R_{(n|m)}(t)
\]

- **\(R_{(n|m)}(t) \) asymptotic expansions**
- **Instanton action \(A(t) \) and coefficients \(R_{g_{(n|m)}}(t) \) are functions.**
- **Large-\(N \) phase diagram** (first studied in [Bertola ’07, Bertola, Tovbis ’11]): study the leading contributions to the exponentials:
 - **Stokes lines** \(\text{Im} \left(\frac{A(t)}{t} \right) = 0 \): instanton contributions maximally suppressed
 - **Anti-Stokes lines** \(\text{Re} \left(\frac{A(t)}{t} \right) = 0 \): all contributions of same order
- **Recover analytic data from the transseries**:
 - **Finite \(N \) results via Borel-Padé summation** [Couso-Santamaría, Schiappa, Vaz ’15]
 - **Lee-Yang zeros via analytic transseries summation** [IA, Schiappa, Vonk, on-going]
Phase Diagram

- **light blue:** Stokes regions, standard 't Hooft large N expansion
 - I: 1-cut solution is dominant
 - II: 2-cut sym solution dominant

- **green:** anti-Stokes region, dominated by 3-cuts solution, modular properties; no genus expansion
 [Bonnet, David, Eynard '00]

- **light red:** trivalent tree-like configuration dominant

- Re line in I and II: Stokes lines, exponentially suppressed saddles are maximally suppressed

- P1 (P2): DS point described by Painlevé I (II) equation

Evidence of different phases?
What local solutions are associated with each phase?
How to obtain analytic data? Global Solutions?
The anti-Stokes phase: numerical evidence

- Numerically calculate the recursion coefficients r_n with the boundary condition of the 1-cut configuration
- Take $N = 1000$ $\arg t = \frac{\pi}{12}$ fixed, change $|t|$ from the 1-cut phase into anti-Stokes
- r: normalization factor (classical solution $g_s = 0$)

Evidence of different phases: they lead to different asymptotics of the $R(t)$ in different regions
The anti-Stokes phase: numerical evidence

- Perform optimal truncation to the one-parameter sectors of $\mathcal{R}(t, \sigma_1, 0)$:
 - perturbative $R_{(0,0)}(t)$ plus n-instantons $R_{(n,0)}(t)$, for $n = 1, 2, 3$
- Compare to the numerical results for the r_n

Adding the first three instanton correction to the $\mathcal{R}(t)$, we cannot reach far into the anti-Stokes region: all instanton contributions are of the same order and need to be included.
Can we do better? Perform **analytic transseries summation**
Perform analytic transseries summation for the one-parameter partition function $Z(t) = e^F$

Sum the leading terms in g_s for $Z(t)$

Determine the $R(t)$ from these results

Leading g_s analytic transseries summation for $Z(t)$ follows the numerical results far into the anti-Stokes region!
Zeroes of the partition function

Use the analytic transseries summation to predict Lee-Yang zeros?

- **Left**: prediction of zeros of $Z(t)$ obtained from analytic transseries summation with $N = 10$ eigenvalues
- **Down**: numerical calculation of zeros from direct calculation of the matrix integral ($N = 100$). The grayscale is proportional to number of zeros

Leading g_s quadratic transseries summation for $Z(t)$ predicts analytic results deep into the anti-Stokes region!
Cusp Anomalous Dimension
Cusp Anomalous Dimension

- Appears in $\mathcal{N} = 4$ SYM and strings in $AdS_5 \times S^5$

- Scaling behaviour of the anomalous dimension of a Wilson loop with a light-like cusp in the integration contour

\[\langle W \rangle \sim e^{-\Gamma_{cusp} \log \frac{\Lambda_{UV}}{m_{IR}}} \]

- Scaling dimension of a twist-2 operator $\text{tr}(X^I D_{\mu_1} \cdots D_{\mu_5} X^I)$, at large spin S;

- Dispersion relation of long folded spinning strings in AdS:

\[\Delta - S = f(g) \log S \]

$f(g)$: universal scaling function
From integrability it obeys the BES integral equations [Beisert, Eden, Staudacher, 07]

\[
\frac{\gamma(2gt)}{2gt} = K(2gt, 0) - 2g \int_0^\infty \frac{dt'}{e^{t'} - 1} K(2gt, 2gt') \gamma(2gt')
\]

\(K(t, t')\) is so-called BES Kernel [Eden, Staudacher, 06]

Cusp anomalous dimension given by

\[
\Gamma_{\text{cusp}}(g) = 8 \lim_{t \to 0} \frac{\gamma(2gt)}{2gt}.
\]

Weak coupling result \(g \ll 1\) known

Resurgent analysis: for \(g \gg 1\) expansion is asymptotic! [Basso, Korchemsky, Kotanski, 07]
Transseries and ambiguities [IA,15]

- Up to 2-instantons: 1-parameter transseries ansatz ($x = 8\pi g \gg 1$)

$$\frac{\Gamma_{\text{cusp}}(g, \sigma)}{2g} - 1 = \sum_{m=0}^{+\infty} \sigma^m e^{-mA_x} \Gamma^{(m)}(x); \quad \Gamma^{(m)}(x) \simeq x^{-m/2} \sum_{k=0}^{+\infty} \Gamma^{(m)}_k \left(\frac{x}{2}\right)^{-k}$$

- $\Gamma^{(m)}(x)$ are asymptotic series. Resurgent transseries? Yes!
 - sectors $\Gamma^{(0)}$, $\Gamma^{(1)}$ and $\Gamma^{(2)}$ related via large order relations

- g real and positive: resummation of each sector $S_{\theta=0} \Gamma^{(m)}(x)$
 - But: $\theta = 0$ direction has singularities - it is a Stokes line!
 - We have an imaginary ambiguity: $(S_{0^+} - S_{0^-}) \Gamma^{(m)}(x) \neq 0$

- Use resurgence to cancel ambiguity: fix $\sigma_0 = \sigma_R + i \sigma_I$
 - $\Gamma_{\text{cusp}}(g, \sigma_0)$ no longer has imaginary part!

- Can we resum the transseries and obtain results for g finite?

Yes: via the Borel-Padé resummation
Resummation and Results at Weak Coupling [IA,15]

- Resum the results up to 2nd nonperturbative order:

\[
\text{Resummation of Transseries } \text{Re}(\Gamma^{(0)}) + \sigma_R \text{Re}(\Gamma^{(1)}) + (\sigma_R^2 - \sigma_I^2) \text{Re}(\Gamma^{(2)})
\]

- Dashed – truncated sum of the perturbative expansion \(\Gamma^{(0)} \)
- Blue – known small coupling expansion (7 loops) of \(\Gamma(g) \)
Prediction of NP phenomena

Hydrodynamics
Hydrodynamic gradient expansion

- Evolution equations for energy-momentum tensor

\[\nabla_\mu T^{\mu \nu} = 0 \]

- In hydrodynamic theories the E-M tensor is given by

\[T^{\mu \nu} = \mathcal{E} u^\mu u^\nu + \mathcal{P}(\mathcal{E}) (\eta^{\mu \nu} + u^\mu u^\nu) + \Pi^{\mu \nu}, \]

- \(\mathcal{E} \) is energy density
- \(\Pi^{\mu \nu} \) is the shear stress tensor
- \(\mathcal{P}(\mathcal{E}) = \mathcal{E}/3 \) is pressure in \(d = 4 \) conformal theories
- \(u \) is flow velocity - timelike eigenvector of the E-M tensor

- Hydrodynamic gradient expansion: approximate \(\Pi^{\mu \nu} \) by series of corrections to ideal fluid behaviour
Hydrodynamic gradient expansion can be determined via the microscopic theory associated to the fluid.

For relativistic hydrodynamics with boost invariant flow: microscopic theory is large N $\mathcal{N} = 4$ SYM at strong coupling.

Objective: determine energy density from gauge-gravity duality, by solving Einstein's equations with appropriate metric ansatz.

Non-hydrodynamic d.o.f. are exponentially decaying sectors of a transseries-type ansatz for the metric components, quasi-normal modes (QNM).

Determine perturbative part to very high order (240 terms)
[Heller, Janik, Witaszczyk, ’13]

Determine non-perturbative sectors to high order
[IA, Jankowski, Meiring, Spaliński, Witaszczyk, on-going]
Non-hydrodynamic modes and gradient expansion

Borel transform for the perturbative part of gradient expansion:

[Heller, Janik, Witaszczyk, ’13] [IA, Jankowski, Meiring, Spaliński, Witaszczyk, on-going]

QNM:

\[\omega_1; 2\omega_1; 3\omega_1 \]

\[\omega_2; \]

\[\omega_3; \]

\[\overline{\omega}_i; \]

\[\omega_1 = \frac{3}{2} (2.746676 + 3.119452i); \]

\[\omega_2 = \frac{3}{2} (4.763570 + 5.169521i); \]

\[\omega_3 = \frac{3}{2} (6.769565 + 7.187931i); \]

Resurgence?
Transseries and NP predictions

- Multi-parameter transseries ansatz for the energy density

\[\epsilon(\tau, \sigma) = \sum_n \sigma^n e^{-n \cdot A(\omega_i) \tau^{2/3}} \phi_n(\tau) \]

- Analyse the large order behaviour of the hydrodynamic series

\[\phi_0(\tau) \approx \tau^{-4/3} \sum_{k=0}^{+\infty} \epsilon_k^{(0)} \tau^{-2k/3} \]

Convergence of \(\epsilon_k^{(0)} \) to first coefficients of \(\omega_1 \) sector

Convergence of resummed \(\epsilon_k^{(0)} \) to first coefficients of \(\omega_2 \) sector
Introduction to resurgence and applications to physical problems

- **Resurgence analysis:**
 - Transseries solutions
 - Predictions and large-order relations
 - Ambiguity cancelations
 - Summation and analytic results

- **Applications:**
 - Painlevé I NLODE and Large N dynamics of matrix models
 - Strong coupling of cusp anomalous dimension
 - Strongly coupled fluid in $\mathcal{N} = 4$ SYM and gravitational QNM
Current work

- Analysis of phase diagram of quartic matrix model
 - Stokes transitions;
 - modular properties of the transseries

- Stokes transitions in Painlevé I

- Algebra structure of multi-parameter resurgent transseries, interplay between
 - coupling $g_{YM}, g_s \to 0$;
 - rank of gauge group $N \to \infty$;
 - ’t Hooft coupling $\lambda = g_{YM}^2 N$ fixed: large, small

- Applications of resurgence in string theory observables:
 - Bremsstrahlung function;
 - Lüscher corrections and the thermodynamic Bethe ansatz
Thank you!